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Abstract

Give a set X of “outcomes” and a set T of “types”, a recursive preference structure
(RPS) is a function that assigns a continuous partial order over T ˆX to every element
of T . This describes an agent who has preferences not only over the outcomes in X ,
but also over her own preferences (as encoded by the types). We prove the existence
of a universal RPS —one into which any other RPS can be mapped in a unique way.
Formally, this universal RPS is a terminal coalgebra of a suitably defined endofunctor
on the category of compact Hausdorff spaces.
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A taste is almost defined as a preference about which you do not argue —de gustibus non

est disputandum. A taste about which you argue, with others or yourself, ceases ipso facto

being a taste —it turns into a value. —Albert Hirschman

What if you could choose your own preferences? How would you do this? Does this
even make sense? Is the rational selection of one’s own preferences even possible? These
questions have inspired a rich philosophical literature concerning personal autonomy, moral
responsibility, and transformative experiences (see e.g. Frankfurt 1971; Paul 2014; Petti-
grew 2019). But they are also relevant to normative decision theory (Pettigrew, 2015).
Recently, Pivato (2023a) proposed a decision-theoretic framework to examine these issues.
Its focus is normative rather than descriptive; it does not ask how people actually choose
their preferences, but rather, how an ideally rational agent could choose her preferences.
What is the decision problem faced by such an agent? What is the feasible set, and what
is the appropriate notion of rational choice?

One of the models introduced in Pivato (2023a) is the recursive preference structure.
Given a set X of possible outcomes (e.g. consumption bundles), a recursive preference
structure over X consists of a type space T together with a function φ : T ÝÑP , where
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P is a set of preference orders over T ˆ X . In other words: φ maps each type in T to a
preference order over type-outcome pairs. This represents an agent who has preferences not
only over outcomes in X , but also preferences about her own type. Since types determine
preferences, this means she implicitly has preferences over her own preferences.

Such higher-order preferences represent a desire for autonomy: an agent’s desire to de-
cide what kind of person she will be, and what kind of preferences she will have. Her degree
of autonomy is directly proportional to the diversity of preferences over T ˆ X that are
theoretically available to her via φ. For this reason, we might want P to include incomplete
preferences, describing an agent who regards some pairs of options as incommensurable:
neither is better than the other.

More generally, the size of the image of φ determines the agent’s autonomy: a larger
image allows more autonomy. Thus, one might say that she is fully autonomous if the image
of φ contains every possible preference order over T ˆ X . In general, this is impossible,
because the set of all possible preferences over T ˆX always has a strictly larger cardinality
than T itself, so there can be no surjection from the latter set into the former. But if we
posit topologies on T and X , and restrict attention to continuous preferences on T ˆ X ,
then such a fully autonomous recursive preference structure is possible (Proposition 1.4).

An even greater degree of autonomy would be obtained by a recursive preference struc-
ture which not only covers every preference order on T ˆ X , but contains an image of
every other recursive preference structure. Such an agent would be truly autonomous: not
only could she, in principle, adopt any possible preference order on T ˆ X — she could
even mimic any other recursive preference structure. The main result of this paper estab-
lishes the existence of such a “universal” recursive preference structure (Theorem 2.4). As
explained below, it is a terminal coalgebra of an endofunctor on the category of compact
Hausdorff spaces. Terminal coalgebras have many important properties, and play an im-
portant role in logic and theoretical computer science (Jacobs and Rutten, 1997; Rutten,
2000). They also have interesting applications in theoretical economics (Vassilakis, 1992).
Since the seminal papers of Moss and Viglizzo (2004, 2006), it has been understood that the
universal type spaces of Bayesian game theory are terminal coalgebras; see Pintér (2010),
Heinsalu (2014), Fukuda (2021), Guarino (2022) and Galeazzi and Marti (2023) for recent
applications of this approach.1 But not all endofunctors have terminal coalgebras. Proving
their existence is nontrivial (Adámek et al., 2018). The main contribution of this paper
is proving that a terminal coalgebra exists for the endofunctor that describes recursive
preference structures.

The remainder of this paper is organized as follows. Section 1 introduces recursive
preference structures and related concepts. Section 2 defines the key concept of this paper:
a universal recursive preference structure. It contains the main result (Theorem 2.4), which
states that they exist under general conditions. It also contains other results describing
their structure and properties. Section 3 explains how the main concepts and results of
Sections 1 and 2 can be reformulated in terms of terminal coalgebras of endofunctors on the

1Heinsalu (2014), Guarino (2022), and Galeazzi and Marti (2023) explicitly formulate their results in
terms of terminal coalgebras, whereas Pintér (2010) and Fukuda (2021) do not. But they do describe
universal type spaces as the terminal objects in a category of type spaces and type morphisms.
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category of compact Hausdorff spaces. Section 4 briefly reviews some prior literature. The
proofs of all results are in the appendices. Appendix A reviews mathematical background,
Appendix B contains the proofs of results from Section 1, and Appendix C contains the
proofs of results from Section 2. All the results in the paper are formulated in terms of
continuous partial orders. Finally, Appendix D explains how all concepts and results in
the paper can be reformulated in terms of the dual notion of continuous quasiorders.

1 Recursive preference structures

Let X be a set. A strict partial order on X is a binary relation ą that is transitive (for all
x, y, z P X , if x ą y and y ą z, then x ą z) and antisymmetric (for all x, y P X , it is never
the case that both x ą y and x ă y). Antisymmetry implies that ą is irreflexive (x č x
for all x P X ).

Now suppose that X is a topological space. A strict partial order ą is continuous if the
set tpx, yq P XˆX ; x ą yu is open in XˆX . This implies that all the upper and lower
contour sets of ą are open subsets of X , but it is a slightly stronger condition.2

A local continuous strict partial order is an ordered pair pY ,ąq, where Y Ď X is a closed
subset, and where ą is a strict partial order on Y which is continuous relative to the
subspace topology on Y . (Note that ą might not be continuous with respect to the ambient
topology on X —for example, this could happen if Y itself is nowhere dense in X .)

Suppose X is a compact Hausdorff space, and let KpX q be the set of all nonempty
closed subsets of X . Then KpX q itself is a compact Hausdorff space, when equipped with
the Vietoris topology (see Appendix A.2). For any local continuous strict partial order
pY ,ąq, let rrY ,ąss :“ tpx, yq P YˆY ; x č yu; this is a closed subset of YˆY (because
it is the complement of an open set, because ą is continuous on Y); hence it is a closed
subset of X ˆX (because Y itself is closed), and hence, an element of KpX ˆX q. Let
P pX q be the set of all local continuous strict partial orders on X . Then the injective
function P pX q Q pY ,ąq ÞÑ rrY ,ąss P KpX q identifies P pX q with a subset of KpXˆX q, and
the subspace topology induced by the Vietoris topology pulls back to define a topology on
P pX q, which we will call the co-Vietoris topology. In this topology, P pX q is itself a compact
Hausdorff space. If X is metrizable, then so is P pX q (see Proposition A.1).

Recursive preference structures. Let X be a compact Hausdorff space. A recursive
preference structure (RPS) over X is an ordered pair pT , φq, where T is a compact Hausdorff
space, and φ : T ÝÑP pT ˆ X q is a continuous function. So for any type t P T , φptq is
a local continuous strict partial order on T ˆ X ; this represents the preferences of type t
over type-outcome pairs.

Example 1.1. Let T and X be compact Hausdorff spaces, and endow T ˆ X with
the product topology. Let v : T ˆ T ˆ XÝÑR be continuous. For all t P T , define a

2For any y P X , the upper and lower contour sets are defined Upyq “ tx P X ; x ą yu and Lpyq “
tx P X ; x ă yu.
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continuous partial order ąt on T ˆ X by stipulating that pt1, x1q ąt pt2, x2q if and only
if vpt; t1, x1q ą vpt; t2, x2q. (In other words: vpt; ¨, ¨q is an ordinal utility function for ąt.)
The partial order ąt is continuous because the function vpt, ¨, ¨q : T ˆXÝÑR is continuous.
Let φptq :“ pT ˆX ,ątq for all t P T ; this yields a function φ : T ÝÑP pT ˆX q. Under mild
conditions on v, the function φ is continuous in the co-Vietoris topology (see Proposition
B.2), and hence an RPS. ♦

Example 1.2. Let T and X be Peano continua (e.g. compact, connected subsets of RN),
and let d be a convex metric on T ˆX that is compatible with the product topology.3 Let
γ : T ÝÑT ˆ X be a continuous function. For all t P T , we define a continuous partial

order ąt on T ˆ X by stipulating that pt1, x1q ąt pt2, x2q if and only if d
´

γptq, pt1, x1q

¯

ă

d
´

γptq, pt2, x2q

¯

. Heuristically: γptq is the “ideal point” of an agent of type t, and all

type-outcome pairs in T ˆX are ordered by their proximity to γptq. The partial order ąt

is continuous because d is continuous with respect to the product topology on pT ˆ X q ˆ
pT ˆX q. Define φptq :“ pT ˆX ,ątq for all t P T ; this yields a function φ : T ÝÑP pT ˆX q
that is continuous in the co-Vietoris topology (see Lemma B.1), and hence an RPS. ♦

Recursive optimality. Preference-maximization is the sine qua non of rational choice.
So what is the relevant notion of rational choice for recursive preference structures?

Let pT , φq be a recursive preference structure over X . Let t˚ P T , let φpt˚q “ pYt˚ ,ąt˚q,
and let x˚ P X . The type-outcome pair pt˚, x˚q in T ˆX is recursively optimal if pt˚, x˚q P Yt˚
and pt˚, x˚q is undominated according to ąt˚ . That is: there is no t P T and x P X such
that pt˚, x˚q ăt˚ pt, xq.

Example 1.3. Let T and X be Peano continua, let d be a convex metric on T ˆ X , let
γ : T ÝÑT ˆ X be a continuous function, and define the RPS φ : T ÝÑP pT ˆ X q as in
Example 1.2. Let γ1 : T ÝÑT be the first coordinate of γ; this is a continuous self-map of
T . Suppose γ1 has a fixed point t˚. Thus, γpt˚q “ pt˚, x˚q for some x˚ P X . It is easily
verified that pt˚, x˚q is recursively optimal. ♦

In general, recursively optimal type-outcome pairs are not unique. Indeed, there
may even be two recursively optimal type-outcome pairs pt˚, x˚q and pt:, x:q such that
pt˚, x˚q ąφpt˚q pt

:, x:q while pt:, x:q ąφpt:q pt
˚, x˚q.

Fully Autonomous RPS. An RPS pT , φq over X is fully autonomous if the map φ :
T ÝÑP pT ˆ X q is surjective. In other words, by choosing a suitable type in T , an agent
with this RPS can realize any possible local continuous strict partial order on T ˆX .4 For
example, endow t0, 1u with the discrete topology, and let K :“ t0, 1uN, endowed with the
Tychonoff product topology. Then K is a totally disconnected, compact, metrizable space,
called Cantor space (Willard 2004, Example 17.9(c); Aliprantis and Border 2006, §3.13).

3See Appendix A.1 for the definitions of Peano continuum and convex metric.
4In epistemic game theory, the analogous concept is a complete type space (Brandenburger, 2003).
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Proposition 1.4 Let T “ K. Then for any compact, metrizable space X , there is a fully
autonomous RPS pT , φq over X .

Perfectly autonomous RPS. In a recursive preference structure pT , φq, the function
φ : T ÝÑP pT ˆX q could be many-to-one. Thus, there could be many different types in T
that all determine the same preference order over T ˆX . So these types are “behaviourally
indistinguishable”. Yet φ-image preferences on T ˆ X might still have strict preferences
between these types. So preferences over T ˆ X might distinguish between types based
on behaviourally non-observable properties. In some contexts, this might be undesirable.
Motivated by this, we will say that an RPS pT , φq is perfectly autonomous if the map
φ : T ÝÑP pT ˆ X q is bijective, and thus, a homeomorphism. In other words: for every
possible local continuous strict partial order over T ˆ X , there exists a unique type in T
that realizes this preference order.

Proposition 1.5 If T “ X “ K, then there is a perfectly autonomous RPS over X .

An obvious limitation of this result is that it only applies when the outcome space X
is a Cantor space. The main result of this paper will yield a much more general class
of perfectly autonomous recursive preference structures. But first we must develop the
appropriate mathematical framework.

2 Universal recursive preference structures

Forward images of partial orders. Let X and X 1 be compact Hausdorff spaces, and
let φ : XÝÑX 1 be continuous. For any local continuous strict partial order pY ,ąq on X ,
let φ¶pY ,ąq :“ pY 1,ą1q, where Y 1 :“ φpYq, and where ą1 is the binary relation on Y 1
defined as follows: for any x1, y1 P Y 1, x1 ą1 y1 if and only if x ą y for all x P Y X φ´1tx1u
and y P Y X φ´1ty1u. It can be shown that ą1 is itself a continuous partial order on Y 1,
so that pY 1,ą1q P P pX 1q. Furthermore, the function φ¶ is continuous with respect to the
co-Vietoris topologies on P pX q and P pX 1q (see Proposition A.2).

Morphisms of RPSs. Let pT1, φ1q and pT2, φ2q be two recursive preference structures
over X . (That is: T1 and T2 are compact Hausdorff spaces, and φ1 : T1ÝÑP pT1 ˆ X q and
φ2 : T2ÝÑP pT2 ˆ X q are continuous.) Let ψ : T1ÝÑT2 be another continuous function.
Let IX : XÝÑX be the identity function, and define ψ ˆ IX : T1 ˆ XÝÑT2 ˆ X in
the obvious way (i.e. pψ ˆ IX qpt, xq “ pψptq, xq, for all pt, xq P T1 ˆ X .) Finally, let
ψ: :“ pψ ˆ IX q

¶ : P pT1 ˆ X qÝÑP pT2 ˆ X q. The function ψ is a morphism of recursive
preference structures if the following diagram commutes:

T1 P pT1 ˆ X q

T2 P pT2 ˆ X q

φ1

ψ ψ:

φ2

(1)
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Example 2.1. (a) Suppose that T1 Ď T2 and ψ : T1 ãÑ T2 is the inclusion map. Let t P T1,
and suppose φ1ptq “ pY ,ąq, for some closed subset Y Ď T1 ˆ X . Then diagram (1) says
that φ2ptq “ pY ,ąq also, but with Y now seen as a subset of the larger space T2 ˆ X . A
similar interpretation applies when ψ is any injective function.

(b) An endomorphism is a morphism from an RPS into itself. For example, let X :“ tx, yu
and let T :“ tt, su (both with the discrete topology). Suppose φptq “ pT ˆ X ,ątq where
pt, xq ąt ps, xq ąt ps, yq ąt pt, yq, while φpsq “ pT ˆ X ,ąsq where ps, xq ąs pt, xq ąs

pt, yq ąs ps, yq. Let αptq :“ s and αpsq :“ t. Then α is an endomorphism of pT , φq.
(c) Let T and X be compact Hausdorff spaces, let v : T ˆ T ˆXÝÑR be continuous, and
use v to define an RPS φ : T ÝÑP pT ˆX q as in Example 1.1. Let T 1 be another compact
Hausdorff space, let ψ : T 1ÝÑT be continuous, and define v1 :“ v ˝pψˆψˆIX q : T 1ˆT 1ˆ
XÝÑR. Under certain conditions, we can use v1 to define an RPS φ1 : T 1ÝÑP pT 1ˆX q as
in Example 1.1.5 In this case, ψ is an RPS morphism from pT 1, φ1q to pT , φq.
(d) Let X and T be finite sets (with the discrete topology), and let pT , φq be an RPS over
X . Let T 1 be a compact Hausdorff space, and let ψ : T 1ÝÑT be continuous. Given pY ,ąq
in P pT ˆ X q, let Y 1 :“ pψ ˆ IX q

´1pYq Ď T 1 ˆ X , and for all pt11, x1q and pt12, x2q in Y 1
stipulate that pt11, x1q ą

1 pt12, x2q if and only if pψpt11q, x1q ą pψpt
1
2q, x2q. It is easily verified

that pY 1,ą1q P P pT 1 ˆ X q. So if we define ΨpY ,ąq :“ pY 1,ą1q in this way for all pY ,ąq
in P pT ˆX q, we get a function Ψ : P pT ˆX qÝÑP pT 1 ˆX q; it is continuous because the
co-Vietoris topology on P pT ˆX q is discrete (because T and X are discrete). Now define
φ1 :“ Ψ ˝φ1 ˝ψ : T 1ÝÑP pT 1ˆX q. By construction, this function is continuous, so pT 1, φ1q
is another RPS over X , and ψ is an RPS morphism from pT 1, φ1q to pT , φq.6 ♦

An RPS morphism ψ is an isomorphism if it is a homeomorphism, and ψ´1 is also an
RPS morphism. In this case, pT1, φ1q and pT2, φ2q are essentially “the same” recursive
preference structure, with two different descriptions.

The next result explains that RPS morphisms preserve the relevant notion of optimality
for recursive preferences.

Proposition 2.2 Let pT1, φ1q and pT2, φ2q be two recursive preference structures over X ,
and let ψ : T1ÝÑT2 be a morphism. If pt˚1 , x

˚q is recursively optimal for pT1, φ1q, and
t˚2 “ ψpt˚1q, then pt˚2 , x

˚q is recursively optimal for pT2, φ2q.

Universal RPS. Let X be a compact Hausdorff space, and let pT̆ , φ̆q be an RPS over
X . We shall say that pT̆ , φ̆q is a universal RPS over X if, for any other RPS pT , φq over
X , there is a unique RPS morphism ψ : T ÝÑT̆ . Thus, pT̆ , φ̆q is “universal” in the sense
that any other RPS can be “represented” within it. A universal RPS is thus somewhat

5To be precise: ψ has local sections if, for all t1 P T 1, there is an open neighbourhood O of t “ ψpt1q in
T , and a continuous function σ : OÝÑT 1 such that σptq “ t1 and ψ ˝ σpoq “ o for all o P O. If v satisfies
the hypotheses of Proposition B.2 so as to define an RPS as in Example 1.1, and ψ has local sections, then
v1 also satisfies these hypotheses, so it also defines an RPS. See Proposition B.3 for details.

6If T and X are not discrete, then Ψ is generally not continuous, even if ψ is a nice function (e.g. a
coordinate projection from a product space). That is why this example assumes T and X are finite.
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analogous to a universal type spaces in Bayesian game theory (Mertens and Zamir, 1985;
Brandenburger and Dekel, 1993). The next result says that it has some special properties:
it is perfectly autonomous, and it is essentially unique up to isomorphism.7

Proposition 2.3 Suppose that pT̆ , φ̆q is a universal RPS over X . Then:

(a) The function φ : T̆ ÝÑP pT̆ ˆ X q is a homeomorphism.

(b) If ppT , pφq is another universal RPS over X , then there is a (unique) RPS isomor-

phism from pT̆ , φ̆q to ppT , pφq .

Because of Proposition 2.3(b), we can speak of “the” universal RPS over X , if such an
object exists. But its existence is not obvious. We now come to our main result.

Theorem 2.4 For any compact Hausdorff space X , there is a universal recursive prefer-
ence structure over X . The type space T̆ of this universal RPS is a compact Hausdorff
space. If X is metrizable, then T̆ is also metrizable.

The type space T̆ in the universal RPS of Theorem 2.4 depends on the choice of outcome
space X , and does not admit a simple description in general. The next result sheds some
light on its topological properties, and provides an explicit description in certain cases.

Proposition 2.5 Let X be a compact Hausdorff space, and let pT̆ , φ̆q be its universal RPS.

(a) T̆ contains a subspace homeomorphic to X .

(b) If X is homeomorphic to K, then so is T̆ .

(c) If X is a nonsingleton finite set with the discrete topology, then T̆ – K.

(d) If X is a continuum, then T̆ is a continuum.8

Part (a) of Proposition 2.5 shows that the topology of T̆ is at least as large and complicated
as that of X itself. For example, the topological dimension of T̆ must be no less than that
of X . Part (b) is a strengthened form of Proposition 1.5. Part (c) shows that even if X
is quite small and simple, T̆ can be quite large and complicated. Part (d) shows that, in
contrast to parts (b) and (c), T̆ can be a connected space.

The unique morphism from any other RPS into the universal RPS is called the terminal
morphism. The next two results give us some insight about this morphism.

Proposition 2.6 Let X be a compact Hausdorff space, and let pT̆ , φ̆q be its universal RPS.
Let pT , φq be some other RPS over X , and let ψ : T ÝÑT̆ be the terminal morphism.

7In fact, these are consequences of a much more general result, which has nothing to do with recursive
preference structures per se; see Proposition 3.3 below.

8See Appendix A.1 for the definition of continuum.
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(a) For all t1, t2 P T , if φpt1q “ φpt2q, then ψpt1q “ ψpt2q.

Thus, if φ is not injective, then neither is ψ.

(b) For all t1, t2 P T , if there is an RPS endomorphism α : T ÝÑT such that αpt1q “
t2, then ψpt1q “ ψpt2q.

(c) Let pT 1, φ1q be another RPS over X , and let γ1, γ2 : T ÝÑT 1 be RPS morphisms
(possibly, γ1 “ γ2). For all t1, t2 P T , if γ1pt1q “ γ2pt2q, then ψpt1q “ ψpt2q.

Proposition 2.6(a,b) says that the terminal morphism eliminates redundancy, by merging
elements of T which are “the same” in some sense. Proposition 2.6(c) says that the
terminal morphism is “less injective” than every other RPS morphism out of pT , φq: if
ψpt1q ‰ ψpt2q, then the contrapositive of Proposition 2.6(c) implies that γpt1q ‰ γpt2q for
any RPS morphism γ from pT , φq to any other RPS. This might create the concern that ψ
is degenerate —perhaps even a constant function. The next result alleviates this concern.

Let pT , φq be an RPS over X . For any t P T , we define a strict partial order Ït on X
as follows. Suppose φptq “ pYt,ątq, where Yt Ď T ˆ X and ąt is a partial order on Yt.
For all x1, x2 P X , stipulate that x1 Ït x2 if px1, t1q ąt px2, t2q for all t1, t2 P T such that
px1, t1q and px2, t2q are in Yt. Heuristically, Ït isolates the part of type t’s preferences over
outcomes that is so strong that it overrides any of her preferences between different types.

Proposition 2.7 We continue the notation of Proposition 2.6. Let s, t P T . If Ïs and
Ït are different, then ψpsq ‰ ψptq.

Thus, if every t in T induces a different order Ït on X , then ψ is injective.

The next result says that any “similarity” between two topological spaces X1 and X2 is
reflected by a corresponding similarity between the universal RPSs over these spaces.

Proposition 2.8 Let X1 and X2 be compact Hausdorff spaces. Let pT̆1, φ̆1q and pT̆2, φ̆2q

be the universal RPSs over X1 and X2. Let ξ : X1ÝÑX2 be continuous. There is a unique
continuous function τ : T̆1ÝÑT̆2 such that the following diagram commutes:

T̆1 P pT̆1 ˆ X1q

T̆2 P pT̆2 ˆ X2q

φ̆1

τ pτˆξq¶

φ̆2

(2)

If ξ is surjective (respectively, a homeomorphism), then so is τ .

Despite the similarity between diagrams (1) and (2), the function τ in Proposition
2.8 is not an RPS morphism, unless X1 “ X2 and ξ is the identity map. In particular,
continuous self-maps of X do not induce RPS-endomorphisms of the universal RPS over
X . (Indeed, by the uniqueness property of the universal RPS, it has no nontrivial RPS-
endomorphisms.) Later we shall see that Proposition 2.8 is just one part of a more general
result (Proposition 3.2).
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3 A categorical perspective

To prove Theorem 2.4, it is helpful to reformulate recursive preference structures in the
language of category theory. A (concrete) category is a structure C “ pC˝, ~Cq, where C˝ is
a collection of sets (each perhaps with some mathematical structure), called objects, while
~C “ t~CpA,Bq; A,B P C˝u is a collection of functions (called morphisms), one for each pair

of objects in C˝. For all A,B P C˝, the elements of ~CpA,Bq are functions from A to B.

Furthermore, for any A,B,C P C˝, and any morphisms α P ~CpA,Bq and β P ~CpB,Cq their

composition β ˝ α is an element of ~CpA,Cq. Finally, for all A P C˝, the identity function

IA is always an element of ~CpA,Aq. For example, in the category CHS, the objects are
compact Hausdorff spaces, and the morphisms are continuous functions between them.9

Isomorphisms. Let C be a category and let A,B P C˝. A morphism φ P ~CpA,Bq is called

an isomorphism if there is a morphism ψ P ~CpB,Aq (the inverse of φ) such that ψ ˝ φ “ IA
and φ ˝ ψ “ IB. If such an isomorphism exists, then we say that A and B are isomorphic
in the category C. For example, in the category CHS, a function is an isomorphism if and
only if it is a homeomorphism.

Endofunctors. An endofunctor on a category C consists of (i) a function F : C˝ÝÑC˝;
and (ii) for all A,B P C˝, a function FA,B : ~CpA,BqÝÑ~CrF pAq, F pBqs, which preserves mor-
phism composition. In other words: for all A,B,C P C˝, if A1 “ F pAq, B1 “ F pBq and C 1 “

F pCq, then we have functions FA,B : ~CpA,BqÝÑ~CpA1, B1q, FB,C : ~CpB,CqÝÑ~CpB1, C 1q and

FA,C : ~CpA,CqÝÑ~CpA1, C 1q such that, for all α P ~CpA,Bq and β P ~CpB,Cq, FA,Cpβ ˝ αq “
FB,Cpβq ˝ FA,Bpαq. (Normally, we do not write the subscripts on FA,B, FB,C , etc.)

Example 3.1. (a) Let X be a compact Hausdorff space, and consider the endofunctor
FX on CHS defined as follows. For any space T P CHS˝ let FX pT q :“ T ˆ X , equipped
with the Tychonoff product topology. For any spaces S, T P CHS˝, and any continuous
function φ : SÝÑT , let FX pφq :“ φ ˆ IX : S ˆ XÝÑT ˆ X . It is easily verified through
direct computation that FX is an endofunctor on CHS.

(b) For any space X P CHS˝, recall that P pX q is the compact Hausdorff space of all local
continuous strict partial orders on X , with the co-Vietoris topology. For any X ,Y P CHS˝,
and any continuous function φ : XÝÑY , there is a continuous function φ¶ : P pX qÝÑP pYq,
as explained at the start of §2. Furthermore, if Z P CHS˝ is another space, and ψ : YÝÑZ
is another continuous function, then it is easily verified that pψ ˝ φq¶ “ ψ¶ ˝ φ¶. Thus, if
we define P pφq :“ φ¶ for all continuous functions φ between compact Hausdorff spaces,
then we get an endofunctor P on CHS (Pivato, 2023b, Theorem 5.1(b)). ♦

The universal RPS endofunctor. Proposition 2.8 is actually a consequence of a more
general result.

9For more about categories, see Adámek et al. (2009), Awodey (2010) or Leinster (2014).
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Proposition 3.2 For any compact Hausdorff space X , let URPSpX q be the type space of
the universal RPS over X , from Theorem 2.4. For any continuous function ξ : X1ÝÑX2,
let URPSpξq be the function τ from Proposition 2.8. The URPS is an endofunctor on the
category CHS.

Coalgebras. Let C be a category, and let F : CÝÑC be an endofunctor. An F -coalgebra
is an ordered pair pT, φq, where T P C˝ and φ P ~CpT, F pT qq. In other words, φ is a morphism
from T to F pT q in the category C.

For example, let X P CHS˝ be a compact Hausdorff space, let FX : CHSÝÑCHS and
P : CHSÝÑCHS be the endofunctors introduced in Example 3.1, and let RX :“ P ˝ FX .
So for any space T P CHS˝, we have RX pT q “ P pT ˆ X q. This is an endofunctor on the
category CHS. An RX -coalgebra is a pair pT , φq, where T is a compact Hausdorff space,
and φ : T ÝÑP pT ˆX q is a continuous function; in other words, it is a recursive preference
structure over X .

Coalgebra morphisms. Let F : CÝÑC be an endofunctor on a category C, and let
pT1, φ1q and pT2, φ2q be two F -coalgebras. For any morphism ψ P ~CpT1, T2q, we get a

morphism F pψq P ~CrF pT1q, F pT2qs (because F is a functor). We say that ψ is an F -
coalgebra morphism if the following diagram commutes:

T1 F pT1q

T2 F pT2q

φ1

ψ F pψq

φ2

(3)

For example, let RX :“ P ˝ FX , as in the previous paragraph. By comparing diagrams (1)
and (3), we see that an RPS morphism is just a morphism of RX -coalgebras.

If pT3, φ3q is another F -coalgebra, and ξ P ~CpT2, T3q, is another F -coalgebra morphism,
then it is easily verified that ξ˝ψ is an F -coalgebra morphism from T1 to T3. The collection
of all F -coalgebras itself is a category, when endowed with these morphisms.

Terminal coalgebras. Let C be any category. An object T P C˝ is a terminal object if,
for any other object A P C˝, there is a unique morphism in ~CpA, T q (called the terminal
morphism). For example, in the category CHS, the terminal objects are precisely the one-
point spaces.10 It is easily verified that any two terminal objects are isomorphic. Thus, we
sometimes speak of “the” terminal object in a category.

Now let F : CÝÑC be an endofunctor on a category C. A terminal F -coalgebra is a
terminal object in the category of F -coalgebras. In other words, it is an F -coalgebra pT:, φ:q

such that, for any other F -coalgebra pT, φq, there is a unique C-morphism ψ P ~CpT, T:q
which is also a F -algebra morphism.

10Similar statements are true in many other familiar categories, such as the category of sets and functions,
or the category of vector spaces and linear maps.
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For example, let X P CHS˝ be a compact Hausdorff space, and recall that recursive pref-
erence structures over X are just coalgebras of the endofunctor RX :“ P ˝FX : CHSÝÑCHS.
An RPS pT̆ , φ̆q is universal if and only if it is a terminal RX -coalgebra. Thus, Theorem
2.4 is simply the statement: “The endofunctor RX has a terminal coalgebra.” Proposition
2.3 is thus an immediate consequence of the following classic result of Lambek, which says
that a terminal F -coalgebra is a “fixed point” of the endofunctor F , and is unique up to
isomorphism.

Proposition 3.3 (Lambek) Let F : CÝÑC be an endofunctor on a category C, and let
pT, φq be a terminal F -coalgebra. Then:

(a) φ is an isomorphism from T to F pT q in the category C.

(b) If pT 1, φ1q is another terminal F -coalgebra, then there is a (unique) F -coalgebra
isomorphism from pT, φq to pT 1, φ1q.

Proof: See Jacobs and Rutten (1997, Lemma 6.4), Rutten (2000, Theorem 9.1) or Awodey
(2010, Lemma 10.10, p.269). l

4 Prior literature

An important literature in economics seeks to explain the formation of people’s preferences
as a process of rational choice (Rotemberg, 1994; Becker and Mulligan, 1997; Akerlof
and Kranton, 2000; Ng and Wang, 2001; Palacios-Huerta and Santos, 2004; Welsch, 2004;
Östling, 2009; Bernheim et al., 2021). Unlike this literature, the focus of the present paper
is normative, rather than descriptive. Recursive preference structures are not intended to
describe how people actually form their preferences. Rather, they address the question:
how would an ideally rational agent choose her preferences? An RPS is a formal model of
the decision problem that such an agent would face. A universal RPS is the version of this
decision problem which offers this agent maximal autonomy.

As already noted in the introduction, the coalgebraic approach of this paper is compara-
ble to the coalgebraic construction of universal type spaces in Bayesian game theory, which
was pioneered by Moss and Viglizzo (2004, 2006) and further developed by Pintér (2010),
Heinsalu (2014), Fukuda (2021), Guarino (2022). But these papers concern hierarchies of
probabilistic beliefs, whereas we are concerned with hierarchies of preferences.

Epstein and Wang (1996), Di Tillio (2008), Chen (2010) and Ganguli et al. (2016) have
constructed type spaces involving hierarchies of preferences. But at both a conceptual level
and a technical level, these papers are very different from the present work, and essentially
unrelated to it. The present paper concerns the preferences of a single agent with full
information, whereas these four papers are concerned with strategic interactions between
multiple agents in an environment of uncertainty. Their goal is to construct game-theoretic
type spaces that allow non-expected utility models of decision-making, and in which the
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expected utility model can be derived axiomatically à la Savage, rather than being as-
sumed a priori. Thus, they consider hierarchies of preferences over “Savage acts” —that
is, functions mapping a space S of possible “states of the world” into a space X of possible
outcomes. A complication is that the each element of S must provide a description not only
of the (unknown) state of nature, but also of the (unknown) characteristics of the other
players. In the classic Harsanyi model, each point in S would specify, for each player, a
utility function plus a hierarchy of probabilistic beliefs. In the models of the four aforemen-
tioned papers, each element of S specifies, for each player, a hierarchy of preferences over
increasingly sophisticated acts; at level n of the hierarchy, acts are functions which depend
on all the information available at all lower levels of the hierarchy, and level-n preferences
are preferences over these level-n acts.

It might be thought that the central question of the present paper could be addressed
by considering a “degenerate” case of the models of these four papers, in which there is only
one player and only one state of nature (so that “acts” could be identified with elements of
X ). But this is not correct. In their models, an agent does not have preferences over the
preferences of other players (much less over her own preferences); rather, she has preferences
over acts, whose outcomes depend on the state of the world, which includes a description
of the other players’ preferences. In the “degenerate” case, there is no uncertainty at all
in their models, and the hierarchy never gets off the ground. Finally, because their models
involve preferences over acts, they use a notion of “consistency” between level-n preferences
and level-pn´ 1q preferences which is unavailable in our framework.11

A totally different hierarchical-preference model of strategic interactions has been pro-
posed by Bergemann et al. (2017). In their model, each agent has a finite set of possible
utility functions; her true utility function is some convex combination of these. So the space
of possible preferences for each agent is structurally isomorphic to a probability simplex.
Using this isomorphism, Bergemann et al. formally represent a hierarchy of preferences as
a hierarchy of probabilities, analogous to the standard belief hierarchy of Bayesian game
theory. Their main goal is to establish strategic distinguishability between types, which
has applications in mechanism design. But like the four papers in the previous paragraph,
this paper has little in common with the present work, conceptually or technically.12

11There are also important technical differences. For example, all the levels in Di Tillio’s hierarchy are
finite sets, with no topology. Epstein and Wang’s model (extended by Chen and by Ganguli et al.) does
have a topology, but it is obtained by representing preferences with utility functions, and is very different
from the Vietoris topology used in the present work. Furthermore, while Epstein and Wang and Di Tillio
show that their type spaces are complete (i.e. there is a canonical isomorphism between the type space and
the set of preferences defined with respect to that type space), they do not show that they are universal,
in the sense of being terminal objects in a category of type spaces and type morphisms. However, Chen
and Ganguli et al. do provide universality results of this kind.

12Rather than a hierarchy of preferences, Galeazzi and Marti (2023) construct a universal type space
based on a hierarchy of choice functions, so as to further weaken the rationality assumptions of the model.
Aside from their explicitly coalgebraic approach, their work is unrelated to the present paper.
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A Mathematical preliminaries

A.1 Continua

A topological space X is connected if it cannot be written as a disjoint union of two
nonempty open sets. A continuum is a compact, connected, metrizable topological space.
A Peano continuum is a continuum X that is locally connected: for all x P X , every open
neighbourhood around x contains a connected open neighbourhood around x. For example:
any compact hypersurface in RN is a Peano continuum. Meanwhile, let Y :“ t0u Y t 1

n
;

n P Nu, let X1 :“ Y ˆ r0, 1s, let X2 :“ tpx, 0q; x P r0, 1su, and let X :“ X1 Y X2 (shown
below). Then X is a continuum, but not a Peano continuum.

A metric d on a space X is convex if, for all x, z P X , there exists y P X (possibly not
unique) such that dpx, yq “ dpy, zq “ 1

2
dpx, zq. This does not imply that X is convex in

the linear algebra sense. For example: let X be the unit circle, and for all x, y P X , let
dpx, yq be the angular distance between x and y; then d is a convex metric. A compact
topological space has a convex metric if and only if it is a Peano continuum (Bing, 1949;
Moise, 1949); see also Illanes and Nadler (1999, Theorem 10.3, p.80).

A.2 Hyperspace

Let pX , dq be any compact metric space, and let KpX q be the set of all nonempty closed
subsets of X . For any K P KpX q and any x P X , we define

dpx,Kq :“ inf
kPK

dpx, kq.

The Hausdorff metric on KpX q is defined as follows: for any A,B P KpX q,

dHpA,Bq :“ max

"

sup
aPA

dpa,Bq, sup
bPB

dpb,Aq
*

.

With this metric, KpX q is itself a compact metric space (Aliprantis and Border, 2006,
Theorem 3.85(3)). It is called a hyperspace over X . More generally, suppose that X is a
locally compact Hausdorff space (not necessarily compact or metrizable). Let OpX q be the
set of all open subsets of X . For any O P OpX q, let

Ou :“ tK P KpX q ; H ‰ K Ď Ou and O` :“ tK P KpX q ; K XO ‰ Hu.

Next, for any O0,O1, . . . ,ON P OpX q, let

BpO0,O1, . . . ,ONq :“ Ou0 XO`1 X ¨ ¨ ¨ XO`N . (A1)

Let B :“ tBpO0,O1, . . . ,ONq; N P N and O0,O1, . . . ,ON P OpX qu. This is a base for
a topology on KpX q, which is variously called the Vietoris topology, exponential topology,
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Fell topology, or topology of closed convergence.13 Equipped with this topology, KpX q is
itself a compact Hausdorff space (Illanes and Nadler, 1999, Exercise 3.12, p.20). If pX , dq
is a metric space, then the Vietoris topology on KpX q is the same as the Hausdorff metric
topology (Aliprantis and Border, 2006, Theorem 3.91). See Aliprantis and Border (2006,
§3.17-3.18), Illanes and Nadler (1999) or Beer (1993) for more about hyperspaces.

A.3 Properties of preference spaces.

We now give precise statements of some of the claims made informally in Section 1.

Proposition A.1 Let X be a compact Hausdorff space.

(a) P pX q is a compact Hausdorff space in the co-Vietoris topology.

(b) If X is metrizable, then so is P pX q.

(c) If X is a continuum, then so is P pX q.

(d) P pX q contains a subspace that is homeomorphic to X .

Proof: See Pivato 2023b, Theorems 4.1 and 4.3. l

Proposition A.2 Let X and X 1 be compact Hausdorff spaces, and let φ : XÝÑX 1 be
continuous.

(a) The function φ¶ : P pX qÝÑP pX 1q is continuous in the co-Vietoris topology.

(b) If φ is surjective, then so is φ¶.

Proof: See Pivato 2023b, Theorem 4.5. l

A.4 Limit spaces

Consider a chain
X0

φ0
ÐÝ X1

φ1
ÐÝ X2

φ2
ÐÝ X3

φ3
ÐÝ ¨ ¨ ¨ (A2)

where X0,X1, . . . are topological spaces and φ0, φ1, . . . are continuous functions. The limit
of the chain (A2) is the space

X8 :“

#

x P
8
ź

n“0

Xn ; φnpxn`1q “ xn, for all n P N

+

, (A3)

13For a general topological space, the Fell topology is coarser, since its base only includes sets
BpO0,O1, . . . ,ON q where O0 is co-compact. But if X is compact, then all open sets are co-compact,
so Fell and Vietoris are equivalent.
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equipped with the subspace topology that it inherits from the Tychonoff product topol-

ogy on
8
ś

n“0

Xn. If X0,X1, . . . are compact Hausdorff, then X8 is also compact Hausdorff

(Willard, 2004, Theorem 29.11). For all n P N, let πn : X8ÝÑXn be the coordinate pro-
jection. These maps define a cone over the diagram (A2). In other words, we have a
commuting diagram:

X8

X0 X1 X2 X3 ¨ ¨ ¨

π0 π1 π2 π3

¨¨¨

φ0 φ1 φ2 φ3

(A4)

Now suppose that Y is some other topological space, and for all n P N, suppose that there
are continuous functions γn : YÝÑXn such that we get the commuting diagram (A5)(a):

paq Y

X0 X1 X2 X3 ¨ ¨ ¨

γ0 γ1 γ2 γ3

¨¨¨

φ0 φ1 φ2 φ3

X8 Y

Xn pbq

πn

ξ

γn
@ n P N. (A5)

The universal property of limits says that there is a unique continuous function ξ : YÝÑX8
that makes the diagram obtained by combining diagrams (A4) and (A5)(a) commute, as
shown in diagram (A5)(b).

A.5 Limit-preserving endofunctors

Let F be an endofunctor on the category CHS. If we apply F to the chain (A2), we get
another chain

F pX0q
F pφ0q
ÐÝ F pX1q

F pφ1q
ÐÝ F pX2q

F pφ2q
ÐÝ F pX3q

F pφ3q
ÐÝ ¨ ¨ ¨ (A6)

Let Y8 be the limit of the chain (A6). Meanwhile, let X8 be the limit of the original chain
(A2). There is a natural continuous function from F pX8q into Y8, as we now explain

Recall that X8 Ď
8
ś

n“0

Xn, by defining formula (A3). For all n P N, let πn : X8ÝÑXn
be the coordinate projection map. Applying F yields a continuous function γn :“ F pπnq :

F pX8qÝÑF pXnq. Combining all of these together, we get a function Γ : F pX8qÝÑ
8
ś

n“0

F pXnq

defined by setting Γpzq :“ pγnpzqq
8
n“0, for all z P F pX8q. But we also have Y8 Ď

8
ś

n“0

F pXnq,

by applying formula (A3) to chain (A6). It turns out that Γ actually maps F pX8q into
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the subspace Y8. To see this, apply F to the cone (A4), to get a new cone

F pX8q

F pX0q F pX1q F pX2q F pX3q ¨ ¨ ¨

¨¨¨

γ3
“
F
pπ

3
q

γ2“
F p
π2q

γ1“
F pπ1

q

γ0“F
pπ0q

F rφ0s F rφ1s F rφ2s F rφ3s

(A7)

This diagram commutes. So for any z P F pX8q, if we define zn :“ γnpzq for all n P N, then
F rφnspzn`1q “ zn for all n P N. Thus, the sequence pznq

8
n“0 is an element of Y8, as defined

by applying formula (A3) to chain (A6). In other words: Γpzq P Y8.
We thus get a continuous function Γ : F pX8qÝÑY8. Of course, Γ is not necessarily a

homeomorphism. We say that the functor F preserves ω-limits on CHS if Γ is a homeomor-
phism from F pX8q to Y8, for any chain (A2) of compact Hausdorff spaces and continuous
functions.14

The next result says that the functor P preserves ω-limits. To be precise, suppose we
apply P to the chain (A2). Then we get a new chain of compact Hausdorff spaces:

P0
φ¶0
ÐÝ P1

φ¶1
ÐÝ P2

φ¶2
ÐÝ P3

φ¶3
ÐÝ ¨ ¨ ¨ (A8)

where Pn :“ P pXnq for all n P N. Let P8 be the limit of (A8).

Proposition A.3 There is a homeomorphism Γ : P pX8q ĄÝÑ P8 defined by setting
ΓpY ,ąq :“

`

π¶
npY ,ąq

˘8

n“0
for all pY ,ąq P P pX8q.

Proof: See Pivato 2023b, Theorem 4.6. l

B Proofs from Section 1

The continuity of the function φ : T ÝÑP pT ˆ X q in Example 1.2 is a consequence of the
following slightly stronger result.

Lemma B.1 Let Z be a Peano continuum, and let d be a convex metric on Z. Define δ

on ZˆZ by setting δ
´

px, yq, px1, y1q
¯

:“ max
!

dpx, x1q, dpy, y1q
)

, for all x, y, x1, y1 P Z.

Then let dH be the Hausdorff metric on KpZˆZq induced by δ. Via the identification
P pZq Q pY ,ąq ÞÑ rrY ,ąss P KpZˆZq, this induces a metric d˚H on P pZq.

For all z P Z, define the relation ąz on Z by stipulating for all x, y P Z that x ąz y
if and only if dpx, zq ă dpy, zq. Then ąz is a continuous partial order on Z, so pZ,ązq P

P pZq.
Define φ : ZÝÑP pZq by φpzq :“ pZ,ązq for all z P Z. Then φ is Lipschitz continuous

with respect to d˚H , with Lipschitz factor 2.
14We have developed this idea in the category CHS. But all of this material generalizes immediately to

any endofunctor defined on any category.
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x y

z z’x’ y’

Figure 1: A counterexample showing the need for a convex metric in Lemma B.1.

Proof: For all z P Z, the relation ąz is obviously a partial order. It is continuous because
the function d : ZˆZÝÑR` is continuous. It remains to show the Lipschitz continuity
of φ.

For all z P Z, let Φpzq :“ rrY ,ązss “ tpx, yq P ZˆZ; x ćz yu “ tpx, yq P ZˆZ;

dpx, zq ď dpy, zqu. Let z, z1 P Z. We must show that dH

´

Φpzq,Φpz1q
¯

ď 2 dpz, z1q.

To do this, let px, yq P Φpzq. We must show that inf
px1,y1qPΦpz1q

δ
´

px, yq, px1, y1q
¯

ď

2 dpz, z1q. If dpx, z1q ď dpy, z1q, then px, yq P Φpz1q, so this infimum is zero. So, as-
sume that dpx, z1q ą dpy, z1q. Now let s :“ dpx, z1q ´ dpy, z1q. Then

s ď
p˚q

dpx, zq ` dpz, z1q ´ dpy, zq ` dpz, z1q

“ dpx, zq ´ dpy, zq ` 2 dpz, z1q ď
p:q

2 dpz, z1q, (B1)

where p˚q is because dpx, z1q ď dpx, zq` dpz, z1q while dpy, z1q ě dpy, zq´ dpz1, zq, by the
triangle inequality, while p:q is because dpx, zq ď dpy, zq because px, yq P Φpzq.

Now let D :“ dpx, z1q. Then s ď D. Since d is convex, there is an isometric em-
bedding ζ : r0, DsÝÑZ with ζp0q “ x and ζp1q “ z1. (Illanes and Nadler, 1999,
Proposition 10.4). Let x1 :“ ζpsq; then dpx, x1q “ s and dpx1, z1q “ dpx, z1q ´ s, be-
cause ζ is an isometric embedding. Thus, dpx1, z1q “ dpy, z1q, so px1, yq P Φpz1q. But

δ
´

px, yq, px1, yq
¯

“ dpx, x1q “ s ď 2 dpz, z1q, where the last step is by inequality (B1).

Thus, inf
px1,y1qPΦpz1q

δ
´

px, yq, px1, y1q
¯

ď 2 dpz, z1q.

This argument works for all px, yq P Φpzq. By a symmetric argument, we have

inf
px,yqPΦpzq

δ
´

px1, y1q, px, yq
¯

ď 2 dpz, z1q for all px1, y1q P Φpz1q. We conclude that dH

´

Φpzq,Φpz1q
¯

ď

2 dpz, z1q, as desired. l

Remark. Figure 1 shows why a convex metric is needed for the conclusion of Lemma
B.1. The figure shows a Peano continuum Z that is a tree-like subset of the Euclidean
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plane R2. Endow Z with the Euclidean metric (which is not convex when restricted to Z).
Then along the central “crossbar” of Z, we can find points z and z1 that are arbitrarily
close together, but such that x ąz y, while x ăz1 y. Furthermore, the only points x1 in Z
that are close to x are those on the left “arc”, while the only points y1 close to y are those on
the right “arc”, as shown in the figure. Thus, for any pair px1, y1q in ZˆZ such that px1, y1q
is close to px, yq, we still have x1 ąz y

1, while x1 ăz1 y
1. Thus, the infimum distance from

px, yq to Φpz1q is large, and the infimum distance from py, xq to Φpzq is also large. Thus,
dHpΦpzq,Φpz

1qq is large, even though z and z1 are very close together. Thus, the function
φ : ZÝÑP pZq is not continuous in the Hausdorff metric. For any metric compatible with
the topology of Z, the corresponding Hausdorff metric on KpZˆZq induces the Vietoris
topology (Aliprantis and Border, 2006, Theorem 3.91). So φ is not Vietoris continuous. ˛

Under what conditions is the function φ in Example 1.1 continuous in the co-Vietoris
topology? To answer this question, we need a mild technical condition. Let ps; t, xq P
T ˆ T ˆ X , and let r :“ vps; t, xq. A locally parameterized fibre for v at ps; t, xq is a pair
pQ, ϕq where Q Ď T is an open neighbourhood of s and ϕ : QÝÑT ˆ X is a continuous
function such that ϕpsq “ pt, xq, while vpq; ϕpqqq “ r for all q P Q.

For example, suppose that T Ă RN and X Ă RM are compact sets with nonempty
interiors, and v : T ˆ T ˆ XÝÑR is continuously differentiable. Write a generic element
of T as t “ pt1, . . . , tNq and a generic element of X as x “ px1, . . . , xMq. Suppose that
ps; t,xq is in the interior of T ˆ T ˆ X , and either Bv

Btn
ps; t,xq ‰ 0 for some n P r1 . . . N s,

or Bv
Bxm
ps; t,xq ‰ 0 for some m P r1 . . .M s. Then the Implicit Function Theorem says that

there is a locally parameterized fibre pQ, ϕq at ps; t,xq. More generally, if T and X are
compact differentiable manifolds, and v : T ˆ T ˆ XÝÑR is continuously differentiable,
then a similar statement holds under a similar condition on the derivative of v. However,
if ps; t,xq is a singular point of v (e.g. a local extremum), then the Implicit Function
Theorem is not applicable (because all derivatives of v are zero). Nevertheless, a locally
parameterized fibre could still exist at ps; t,xq.

In general, we will say that a function v satisfies the IFT property if it has a locally
parameterized fibre at every point in T ˆ T ˆX . As explained in the previous paragraph,
the name comes from applying the Implicit Function Theorem at nonsingular points of
differentiable functions on differentiable manifolds, but the property is meaningful even
for singular points, and indeed, applicable even when T and X are arbitrary compact
Hausdorff spaces and v is an arbitrary continuous function. Nevertheless, this hypothesis
is somewhat restrictive. To see this, define v : T ÝÑR by setting vpsq :“ maxtvps; t, xq;
pt, xq P T ˆX u, for all s P T . This function is well-defined by the Extreme Value Theorem,
and continuous by the Berge Maximal Theorem. If v satisfies the IFT property, then v
must be constant on each connected component of T , because for all s P S there must be a
locally parameterized fibre pQ, ϕq at s such that vpq; ϕpqqq “ vpsq (and hence, vpqq ě vpsq)
for all q P Q. We can now answer the question about Example 1.1.

Proposition B.2 Let v : T ˆ T ˆ XÝÑR and φ : T ÝÑP pT ˆ X q be as in Example 1.1.
If v satisfies the IFT property, then φ is continuous in the co-Vietoris topology.

Proof of Proposition B.2. Define φA : T ÝÑKrpT ˆ X q ˆ pT ˆ X qs by setting φApsq :“
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pT ˆX ˆ T ˆX qzφpsq for all s P T .15 Then φ is co-Vietoris-continuous if and only if φA

is Vietoris-continuous.

Define the correspondence Ψ : T Ñ pT ˆ X q ˆ pT ˆ X q by setting Ψpsq :“ φpsqA for
all s P T . The function φA : T ÝÑKppT ˆ X q ˆ pT ˆ X qq is continuous in the Vietoris
topology if and only if the correspondence Ψ is continuous (Aliprantis and Border, 2006,
Theorem 17.15, p.563). So we must show that Ψ is both upper and lower hemicontinuous.

Upper hemicontinuous. Define f : T ˆpT ˆX qˆpT ˆX qÝÑR by fps; t1, x1; t2, x2q :“
vps; t1, x1q ´ vps; t2, x2q. This function is clearly continuous. The graph of Ψ is the set
tps; t1, x1; t2, x2q P T ˆpT ˆX qˆpT ˆX q; vps; t1, x1q ď vps; t2, x2qu “ tps; t1, x1; t2, x2q P

T ˆ pT ˆ X q ˆ pT ˆ X q; fps; t1, x1; t2, x2q ď 0u “ f´1p´8, 0s. This is a continuous
preimage of a closed set, hence closed. Thus, Ψ is upper hemicontinuous, because it has
a closed graph and T ˆ X is a compact Hausdorff space (Aliprantis and Border, 2006,
Theorem 17.11).

Lower hemicontinuous. For any open subset V Ď pT ˆX qˆpT ˆX q, define Ψ`pVq :“
ts P T ; Ψpsq X V ‰ Hu. We will show that Ψ`pVq itself is open. Let s P Ψ`pVq.
Then Ψpsq X V ‰ H, so let pt1, x1; t2, x2q P Ψpsq X V . Thus, vps; t1, x1q ď vps; t2, x2q.
Let r1 :“ vps; t1, x1q and r2 “ vps; t2, x2q. The IFT yields locally parameterized fibres
pQ1, ϕ1q and pQ2, ϕ2q at s such that vpq; ϕ1pqqq “ r1 for all q P Q1 and vpq; ϕ2pqqq “ r2

for all q P Q2. Let Q0 :“ Q1 X Q2. This is an open neighbourhood of s. Define
ϕ :“ pϕ1, ϕ2q : QÝÑpT ˆ X q ˆ pT ˆ X q. Then for all q P Q0, we have vpq; ϕ1pqqq ď
vpq; ϕ2pqqq and hence ϕpqq P Ψpqq. The function ϕ is continuous, so Q :“ ϕ´1pVq is
an open subset of Q0. Furthermore, s P Q because ϕpsq “ pt1, x1; t2, x2q P V . By
construction, Ψpqq X V ‰ H for all q P Q; thus, Q Ď Ψ`pVq. Thus Q is an open
neighbourhood around s contained in Ψ`pVq.

This construction works for any s P Ψ`pVq. Thus, Ψ`pVq is open. This argument
works for any open subset V Ď pT ˆ X q ˆ pT ˆ X q. Thus, Ψ is lower semicontinuous
(Aliprantis and Border, 2006, Lemma 17.5). l

The next result justifies a claim made in Footnote 5 of Example 2.1(c).

Proposition B.3 Let T and X be compact Hausdorff spaces, let v : T ˆ T ˆXÝÑR and
ψ : T 1ÝÑT be continuous, and define v1 :“ v ˝ pψ ˆ ψ ˆ IX q : T 1 ˆ T 1 ˆ XÝÑR. If v
satisfies the IFT property, and ψ has local sections, then v1 also satisfies the IFT property.

Proof: Let ps1, t1, xq P T 1 ˆ T 1 ˆ X . We must show that v1 has a locally parameterized
fibre near ps1, t1, xq. Thus, if r :“ v1ps1, t1, xq, then we want some open neighbourhood
Q1 Ď T 1 around s1 and continuous function ϕ1 : Q1ÝÑT 1 ˆ X such that ϕ1ps1q “ pt1, xq,
while v1pq1; ϕ1pq1qq “ r for all q1 P Q1.

Let s :“ ψps1q and t :“ ψpt1q. Then vps, t, xq “ vpψps1q, ψpt1q, xq “ v1ps1, t1, xq “ r.
By hypothesis, v has a locally parameterized fibre near ps, t, xq. So there is an open

15The set φApsq is compact because it is closed, because φpsq is open because ąs is continuous.
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neighbourhood Q Ď T around s and continuous function ϕ : QÝÑT ˆ X such that
ϕpsq “ pt, xq, while vpq; ϕpqqq “ r for all q P Q. Meanwhile by hypothesis, ψ has
local sections, so there is an open neighbourhood O Ď T around t and a continuous
function σ : OÝÑT 1 such that σptq “ t1 and ψ ˝ σpoq “ o for all o P O. Let O˚ :“
ϕ´1pO ˆ X q; this is an open neighbourhood of s in T (because ϕpsq “ pt, xqq. Now
let Q1 :“ ψ´1pQ X O˚q; then Q1 is an open neighbourhood around s1 in T 1 (because
ψps1q “ s). Define ϕ1 :“ pσ ˆ IX q ˝ ϕ ˝ ψ : Q1ÝÑT 1 ˆ X . Then ϕ1 is continuous, and
ϕ1ps1q “ pσ ˆ IX qpϕpψps

1qqq “ pσ ˆ IX qpϕpsqq “ pσ ˆ IX qpt, xq “ pt
1, xq.

It remains to show that v1pq1; ϕ1pq1qq “ r for all q1 P Q1. To see this, let q1 P Q1 and
let q :“ ψpq1q. Then q P Q (because q1 P Q1 Ď ψ´1pQq). Suppose that ϕpqq “ pt1, x1q for
some t1 P T and x1 P X . Then ϕ1pq1q “ pt11, x1q, where t11 “ σpt1q. Thus, v1pq1; ϕ1pq1qq “
v1pq1, t11, x1q “ vpψpq1q, ψpt11q, x1q “ vpq, t1, x1q “ vpq; ϕpqqq “ r, as desired. Thus,
pQ1, ϕ1q is a locally parameterized fibre for v1 at ps1, t1, x1q. l

The proof of Proposition 1.4 requires some background. The Cantor space K is metrizable.
In particular, the topology on K is generated by the metric d defined as follows: for any
x, y P K, set dpx, yq :“ 2´N where N :“ mintn P N; xn ‰ ynu.

Proof of Proposition 1.4. If X and T are compact metrizable spaces, then P pT ˆX q is also
a compact metrizable space, by Proposition A.1(a,b). There is a continuous surjection
from K onto any compact metrizable space (Willard, 2004, Theorem 30.7, p.217). Thus,
in particular, there is a continuous surjection from K onto P pKˆ X q. l

The proofs of Propositions 1.5 and 2.5(c) depend on the next result.

Lemma B.4 P pKq is homeomorphic to K.

Proof: See Pivato 2023b, Theorem 4.2. l

Proof of Proposition 1.5. If T “ X “ K, then T ˆ X is also homeomorphic to K. Thus,
by Lemma B.4, P pT ˆ X q is homeomorphic to K. l

C Proofs from Section 2

Proof of Proposition 2.2. Let pY1,ą1q :“ φ1pt
˚
1q and pY2,ą2q :“ φ2pt

˚
2q. If pt˚1 , x

˚q is recur-
sively optimal for pT1, φ1q, then pt˚1 , x

˚q is maximal in pY1,ą1q. Thus, pψ ˆ IX qpt
˚
1 , x

˚q is
maximal in pψ ˆ IX q

¶pY1,ą1q (Pivato, 2023b, Theorem 4.5(d)). But pψ ˆ IX qpt
˚
1 , x

˚q “

pψpt˚1q, x
˚q “ pt˚2 , xq, while pψ ˆ IX q

¶pY1,ą1q “ pY2,ą2q, because t˚2 “ ψpt˚1q, and ψ
is an RPS morphism. Thus, pt˚2 , x

˚q is maximal in pY2,ą2q; in other words, pt˚2 , x
˚q is

recursively optimal for pT2, φ2q. l
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Proof of Proposition 2.3. This follows immediately from Proposition 3.3. l

The proof of Theorem 2.4 depends on a techical result. Let X be a compact Hausdorff
space. For any space T P CHS˝, let RX pT q :“ P pT ˆ X q. For any continuous function
φ : SÝÑT , let RX pφq “ pφˆ IX q

¶ : RX pSqÝÑRX pT q.

Proposition C.1 RX is an endofunctor on the category CHS, and it preserves ω-limits.

Proof: Observe that RX :“ P ˝FX , where FX is the “product” functor from Example 3.1(a),
while P is the functor from Example 3.1(b). Since RX is a composition of two functors,
it is also a functor. The functor FX obviously preserves ω-limits, and Proposition A.3
says that P preserves ω-limits. Thus, RX preserves ω-limits. l

Proof of Theorem 2.4. We will use a well-known, general method for constructing terminal
coalgebras. Let C be any category, let F : CÝÑC be an endofunctor, and let T0 be a
terminal object of the category C. Let T1 :“ F pT0q. Let φ0 : T1ÝÑT0 be the (unique)
terminal morphism. Next, let T2 :“ F pT1q “ F 2pT0q, and let φ1 :“ F pφ0q : T2ÝÑT1.
Let T3 :“ F pT2q, let φ2 :“ F pφ1q “ F 2pφ0q : T3ÝÑT2, and so forth. For all n P N, let
Tn :“ F npT0q and φn :“ F npφ0q : Tn`1ÝÑTn. Finally, let T̆ be the limit of the chain

T0
φ0
ÐÝ T1

φ1
ÐÝ T2

φ2
ÐÝ T3

φ3
ÐÝ ¨ ¨ ¨ (C1)

Applying F to (C1) yields a new chain: F pT0q
F pφ0q
ÐÝ F pT1q

F pφ1q
ÐÝ F pT2q

F pφ2q
ÐÝ ¨ ¨ ¨. But

Tn :“ F npT0q and φn :“ F npφ0q for all n P N, so this new chain is simply

T1
φ1
ÐÝ T2

φ2
ÐÝ T3

φ3
ÐÝ T4

φ4
ÐÝ ¨ ¨ ¨ (C2)

Clearly, the limit of (C2) is isomorphic to the limit of (C1). Thus if the functor F
preserves ω-limits as explained Appendix A.5, then there is an isomorphism from F pT̆ q
to T̆ . In this case, by Theorem 3.21 and Corollary 3.22 of Adámek et al. (2018), the
limit object T̆ along with the aforementioned isomorphism φ : T̆ ÝÑF pT̆ q is the terminal
F -coalgebra (see also Awodey (2010, Proposition 10.12, p.271).

In the case that interests us, C “ CHS, and T0 is the one-point space t˚u. Having fixed
some compact Hausdorff space X , F is the functor RX that maps any space T to the
space P pT ˆX q. Thus, in the chain (C1) shown above, we have T1 “ RX pT0q “ P pt˚uˆ
X q – P pX q, T2 “ F pT1q “ P rP pX q ˆ X s, T3 “ F pT2q “ P pP rP pX q ˆ X s ˆ X q,
and so forth. Meanwhile, φ0 is the constant map, and φn`1 “ RX pφnq for all n P

N. The functor RX preserves ω-limits, by Proposition C.1. Thus, there is a natural
homeomorphism φ : T̆ ÝÑRX pT̆ q. (The explicit construction appears above diagram
(A7).) As explained in the previous paragraph, this is the terminal RX -coalgebra.

We now turn to the metrizability statement. If X and T are both metrizable, then
RX pT q is also metrizable, by Proposition A.1(b). The one-point space T0 is (trivially)
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metrizable. Thus, if X is metrizable, then each of the spaces T1, T2, . . . is metrizable.

Thus, the Tychonoff topology on the countable Cartesian product
8
ś

n“0

Tn is metrizable.

Since T̆ Ď
8
ś

n“0

Tn, the subspace topology on T̆ is also metrizable. l

Lemma C.2 Let T and T 1 be compact Hausdorff spaces. If φ : T ÝÑT 1 is surjective, then
RX pφq : P pT ˆ X qÝÑP pT 1 ˆ X q is also surjective.

Proof: Observe that RX :“ P ˝FX , where FX is just the “product” functor FX pT q “ T ˆX
and FX pφq “ φ ˆ IX : T ˆ XÝÑT 1 ˆ X . If φ is surjective, then φ ˆ IX is obviously
surjective. Thus, FX pφq is surjective, by Proposition A.2(b). l

Corollary C.3 For all n P N, let φn : Tn`1ÝÑTn be as in the proof of Theorem 2.4. Then
φn is surjective.

Proof: The function φ0 : T1ÝÑT0 is trivially surjective, because T0 is a one-point space.
Thus, by inductive application of Lemma C.2, φn is surjective, for all n P N. l

The proof of Proposition 2.5 depends on a technical result. Recall that a topological space
X is perfect if it has no isolated points —in other words, for any x P X , the singleton txu
is not open. Equivalently: every open set containing x contains at least one other point.

Proposition C.4 Let X8 be the limit of a chain (A2) in which Xn is a perfect metric
space and φn is a continuous surjection for all n P N. Then X8 is also perfect.

Proof: For all n P N, let dn be a metric on Xn. The topology on Xn also generated by the
bounded metric dnpx, yq :“ mint1, dnpx, yqu. So by replacing dn with dn if necessary, we
can assume without loss of generality that dnpx, yq ď 1 for all x, y P Xn. For any x P Xn
and ε ą 0, let Bnpx, εq :“ ty P Xn; dnpx, yq ă εu.

The topology on the product space
8
ś

n“0

Xn is metrizable with the metric dpx,yq “

8
ř

n“0

1
2n
dnpxn, ynq. Define X8 Ď

8
ś

n“0

Xn as in formula (A3), and let x “ pxnq
8
n“0 be a point

in X . Let ε ą 0. We must find some y P X with dpx,yq ă ε, but y ‰ x.

Claim 1: There is a sequence pεnq
8
n“0 with 0 ă εn ă ε{2 for all n P N, such that

φn´1 rBnpxn, εnqs Ď Bn´1pxn´1, εn´1q for all n P N.

Proof: Let ε0 :“ ε{2. Since φ0 : X1ÝÑX0 is continuous, there is some ε1 ą 0 such that
φ0 rB1px1, ε1qs Ď B0px0, ε0q. Without loss of generality assume ε1 ď ε0. Next, since
φ1 : X2ÝÑX1 is continuous, there is some ε2 ą 0 such that φ1 rB2px2, ε2qs Ď B1px1, ε1q.
Without loss of generality assume ε2 ď ε0. Inductively, let N P N, and suppose we
have constructed ε1, . . . , εN ď ε0 such that φn´1 rBnpxn, εnqs Ď Bn´1pxn´1, εn´1q for all
n P r1 . . . N s. Since φN : XN`1ÝÑXN is continuous, there is some εN ą 0 such that
φN rBN`1pxN`1, εN`1qs Ď BNpxN , εNq. 3 Claim 1



Universal recursive preference structures Draft June 5, 2024 23

Now, find some N P N such that 1
2N
ă ε

2
. Now, XN is perfect, so there is some yN`1 P

BpxN`1, εN`1q, with yN`1 ‰ xN`1. For all n P r0 . . . N s, let yn :“ φn˝φn`1˝¨ ¨ ¨˝φNpyN`1q.
Then yn P Bpxn, εnq, by the defining property of the sequence pεnq

8
n“0 in Claim 1.

Since φN`1 : XN`2ÝÑXN`1 is surjective, there is some yN`2 P XN`2 with φN`1pyN`2q “

yN`1. Inductively, using the surjectivity of the functions φN`2, φN`3, . . ., we can con-
struct a sequence yn P Xn for all n ě N ` 2 such that φnpyn`1q “ yn for all n P N.

Now let y “ pynq
8
n“0. The y P X8 by construction, and y ‰ x (because yN`1 ‰ xN`1).

By construction, we have dnpxn, ynq ă εn ă ε{2 for all n P r0 . . . N ` 1s. Meanwhile,
dnpxn, ynq ď 1 for all n ě N ` 2, because we have assumed that pXn, dnq has diameter
1. Thus,

dpx,yq “

8
ÿ

n“0

1

2n
dnpxn, ynq “

N`1
ÿ

n“0

1

2n
dnpxn, ynq `

8
ÿ

n“N`2

1

2n
dnpxn, ynq

ă

N`1
ÿ

n“0

1

2n
ε

2
`

8
ÿ

n“N`2

1

2n
ă

ε

2
`

1

2N`1
ă

ε

2
`
ε

2
“ ε,

as desired. l

Proof of Proposition 2.5 (a) By Proposition 2.3(a), T̆ is homeomorphic to P pT̆ ˆX q. By
Proposition A.1(d), P pT̆ ˆ X q contains a subspace homeomorphic to T̆ ˆ X , and thus,
a subspace homeomorphic to X .

This proves (a). To prove (b) and (c), we recall the construction from the proof of

Theorem 2.4. Recall that T̆ is the limit of a chain T0
φ0
ÐÝ T1

φ1
ÐÝ T2

φ2
ÐÝ ¨ ¨ ¨, where T0 “

t˚u, T1 “ P pX q, and Tn`1 “ P pTnˆX q for all n P N. Meanwhile, φ0 is the (unique) map
into T0, and for all n P N, φn “ pφn´1 ˆ IX q

¶ : Tn`1 “ P pTn ˆX qÝÑP pTn´1 ˆX q “ Tn.

(b) If X is a finite set with the discrete topology, then T1 “ P pX q is just the set of
all strict partial orders defined on some nonempty subset of X . Thus, T1 is also finite,
and the co-Vietoris topology on T1 is also discrete. Thus, X ˆ T1 is finite and discrete,
and thus, T2 “ P pT ˆX q (the set of all strict partial orders defined on some nonempty
subset of T1ˆX ) is finite and discrete. Inductively, Tn is finite and discrete for all n P N.

Thus, the Cartesian product
8
ś

n“1

Tn is a Cantor space, and T̆ is a closed subset of this

space. Thus, T̆ is compact, metrizable, and totally disconnected.

Claim 1: For all n P N, every element of Tn has more than one φn-preimage in Tn`1.

Proof: (by induction on n) To prove the case n “ 0, recall that T0 is a one-point set
and T1 “ P pX q. Clearly, the (unique) map φ : T1ÝÑT0 is many-to-one.

Now suppose inductively that every element of Tn´1 has more than one φn´1-
preimage in Tn, and consider the function φn : Tn`1ÝÑTn. Let pYn,ąnq P Tn, and
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suppose that pYn`1,ąn`1q P Tn`1 is such that φnpYn`1,ąn`1q “ pYn,ąnq. What
sort of structure must pYn`1,ąn`1q have? Recall that Tn “ P pTn´1 ˆ X q. Thus,
Yn Ď Tn´1 ˆ X and ąn is a partial order on Yn. Meanwhile, φn “ pφn´1 ˆ IX q

¶.
Thus, Yn “ pφn´1 ˆ IX qpYn`1q, and for all pr, xq, ps, yq P Yn, we have pr, xq ąn ps, yq
if and only if pr1, xq ąn`1 ps

1, yq for all r1 P φ´1
n´1tru and s1 P φ´1

n´1tsu such that
pr1, xq, ps1, yq P Yn`1. (By the induction hypothesis, the preimages φ´1

n´1tru and φ´1
n´1tsu

are nonempty. So it is always possible to construct an order ąn`1 with this property.)
Thus, the order ąn totally determines the order ąn`1 on all fibres over pairs of ele-
ments in Yn that are ąn-comparable.

However, if r “ s and x “ y, then pr, xq and ps, yq are not ąn-comparable, because
ąn is strict. Thus, for any x P X , we can arbitrarily set pr1, xq ąn`1 ps

1, xq for some
(distinct) r1, s1 P φ´1

n´1tsu with pr1, xq, ps1, xq P Yn`1, while we set pr1, xq ăn`1 ps
1, xq for

other r1, s1 P φ´1
n´1tsu with pr1, xq, ps1, xq P Yn`1, and make pr1, xq ąn`1-incomparable

to ps1, xq for still other r1, s1 P φ´1
n´1tsu with pr1, xq, ps1, xq P Yn`1, as long as we don’t

set them all the same way. (Since the topology of TnˆX is discrete, any strict partial
order on Yn`1 defines an element of P pTnˆX q.) By the induction hypothesis, φ´1

n´1tsu
has more than one element. So if Yn is large enough (e.g. if Yn “ T ˆ X ), then it
contains two or more of these preimages. Thus, there are many partial orders ąn`1

on Yn`1 such that φnpYn`1,ąn`1q “ pYn,ąnq. And of course, there are also generally
many subsets Yn`1 Ď Tn ˆ X such that pφn´1 ˆ IX qpYn`1q “ Yn. Thus, pYn,ąnq has
many φn-preimages in Tn`1. 3 Claim 1

Claim 2: T̆ is perfect.

Proof: Let t P T̆ . Then t “ pt0, t1, t2, . . .q where tn P Tn for all n P N. To show that t is
a cluster point of T̆ zttu, it suffices to show that, for all N P N, there is some t1 P T̆
such that t1n “ tn for all n P r0 . . . N s, while t1n ‰ tn for some n ě N . This follows
from Claim 1. 3 Claim 2

Thus, T̆ – K, because any compact, perfect, totally disconnected metric space is home-
omorphic to K (Willard, 2004, Corollary 30.4).

(c) From Theorem 2.4, we know that T̆ is a compact metrizable space. Following the
steps of the construction, we have T1 “ P pKq – K by Lemma B.4, and then, by induction

Tn`1 “ P pTn ˆ X q – P pK ˆ Kq – K for all n P N. Thus, T̆ Ď
8
ś

n“0

Tn –
8
ś

n“0

K – K. So

T̆ is a subset of a totally disconnected space, hence totally disconnected.

Furthermore, K is a perfect metric space, so combining Corollary C.3 and Proposition
C.4, we deduce that the limit space T̆ is also perfect. Thus, T̆ – K, because any
compact, perfect, totally disconnected metric space is homeomorphic to K (Willard,
2004, Corollary 30.4).

(d) If X is a continuum, then T1 “ P pX q is a continuum, by Proposition A.1(c). Thus,
T1 ˆ X is a continuum. Thus, T2 “ P pT1 ˆ X q is a continuum, by Proposition A.1(c).
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Likewise, if Tn is a continuum, then Tn`1 “ P pTn ˆ X q is a continuum. Inductively, Tn
is a continuum for all n P N.

Claim 3: T̆ is connected.

Proof: For all N P N, let pTN be the projection of T̆ onto the coordinates r0 . . . N s. It is
easily verified that this is a continuous image of TN ; thus, it is connected. Thus, the

product T N :“ pTN ˆ
8
ś

n“N`1

Tn is also connected. But T 1 Ě T 2 Ě . . . and T̆ “
8
Ş

n“1

T n.

Thus, it is the intersection of a nested sequence of connected sets, hence connnected.
3 Claim 3

Finally, T̆ is compact and metrizable by Theorem 2.4, because X is compact and metriz-
able. Thus, T̆ is a continuum. l

Proof of Proposition 2.6. These are general facts which are true for terminal coalgebras
of any functor in any category. But for completeness, we will provide a proof.

(a) The terminal morphism ψ satisfies the following commuting diagram.

T P pT ˆ X q

T̆ P pT̆ ˆ X q

φ

ψ ψ:

φ̆

(C3)

Now, if φpt1q “ φpt2q, then ψ: ˝φpt1q “ ψ: ˝φpt2q. Thus φ̆˝ψpt1q “ φ̆˝ψpt2q, by diagram
(C3). But Proposition 2.3 says that φ̆ is bijective. So we conclude that ψpt1q “ ψpt2q.

(b) If α is an endomorphism of pT , φq, then ψ ˝α is an RPS morphism from pT , φq to
pT̆ , φ̆q. But ψ is the unique morphism from pT , φq to pT̆ , φ̆q. So we must have ψ ˝α “ ψ.
Thus, if αpt1q “ t2, then ψpt1q “ ψpt2q.

(c) This just extends the argument of (b). Let ψ1 : T ÝÑT̆ be the terminal morphism
out of pT 1, φ1q. Then ψ1 ˝ γ1 and ψ1 ˝ γ2 are both morphisms from pT , φq to pT̆ , φ̆q. But
ψ is the unique morphism from pT , φq to pT̆ , φ̆q. So we must have ψ1 ˝ γ1 “ ψ “ ψ1 ˝ γ2.
Thus, if γ1pt1q “ γ2pt2q, and hence ψ1 ˝ γ1pt1q “ ψ1 ˝ γ2pt2q, then ψpt1q “ ψpt2q. l

Remark. Proposition 2.6(a) is not only true for terminal morphisms. It holds for any
RPS pT̆ , φ̆q in which φ̆ is injective (e.g. any perfectly autonomous RPS) and any RPS
morphism ψ : T ÝÑT̆ .
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Proof of Proposition 2.7. Let πX : T ˆ XÝÑX and π̆X : T̆ ˆ XÝÑX be the projection
maps onto the second coordinate. Consider the following commuting diagram:

T P pT ˆ X q

T̆ P pT̆ ˆ X q P pX q

φ

ψ ψ:
π¶
X

φ̆ π̆¶
X

(C4)

The rectangle on the left commutes because ψ is an RPS morphism. The triangle on
the right commutes because ψ: “ pψ ˆ IX q

¶, and thus,

π̆¶
X ˝ ψ

:
“ π̆¶

X ˝ pψ ˆ IX q
¶

pzq
rπ̆X ˝ pψ ˆ IX qs

¶
“ π¶

X ,

where pzq is by functoriality. Now, for any t P T , if φptq “ pYt,ątq, then π¶
X ˝ φptq “

π¶
X pYt,ątq “ pXt,Ïtq, where Xt :“ πX pYtq. Thus, if Ït and Ïs are distinct, then

π¶
X ˝ φptq ‰ π¶

X ˝ φpsq. Thus, π̆¶
X ˝ φ̆ ˝ ψptq ‰ π̆¶

X ˝ φ̆ ˝ ψpsq, because diagram (C4) says

that π̆¶
X ˝ φ̆ ˝ ψ “ π¶

X ˝ φ. Thus, we must have ψptq ‰ ψpsq. l

Proof of Propositions 2.8 and 3.2. The key idea of the proof is that each of the components
in the construction of the universal RPS is itself functorial in the argument X . To be
precise, let X , X 1 and X 2 be compact Hausdorff spaces. Let T0 “ T 10 “ T 20 “ t˚u be the
one-point space, let T1 :“ P pX q, T 11 :“ P pX 1q, and T 21 :“ P pX 2q, and for all n ě 1,
inductively define Tn`1 :“ P pTn ˆ X q, T 1n`1 :“ P pT 1n ˆ X 1q, and T 2n`1 :“ P pT 2n ˆ X 2q.
Let φ0 : T1ÝÑT0, φ10 : T 11ÝÑT 10 and φ20 : T 21 ÝÑT 20 be the terminal morphisms (i.e. the
unique map into the one-point space). Letting ˝ represent either a blank space, one
prime, or two primes, let πX ˝ : T ˝

1 ˆ X ˝ÝÑX ˝ be the projection map onto the second
coordinate, and then define

φ˝
1 :“ π¶

X ˝ : P pT ˝
1 ˆ X ˝

q “ T ˝
2 ÝÑT ˝

1 “ P pX ˝
q. (C5)

Now, for all n ě 2, inductively assume that we have already defined φ˝
n : T ˝

nÝÑT ˝
n´1,

and then define

φ˝
n`1 :“ pφ˝

n ˆ IX ˝q
¶ : T ˝

n`1 “ P pT ˝
n ˆ X ˝

qÝÑP pT ˝
n´1 ˆ X ˝

q “ T ˝
n . (C6)

This yields the chain

T ˝
0

φ˝
0

ÐÝ T ˝
1

φ˝
1

ÐÝ T ˝
2

φ˝
2

ÐÝ T ˝
3

φ˝
3

ÐÝ ¨ ¨ ¨ (C7)

Finally, let T̆ ˝ be the limit of the chain (C7) in the category CHS. Recall from the proof
of Theorem 2.4 that this is the type space of the universal RPS over X ˝.

Let ξ : XÝÑX 1 and ξ1 : X 1ÝÑX 2 be continuous, and let ξ2 :“ ξ1˝ξ : XÝÑX 2. Define

τ1 :“ ξ¶ : T1 “ P pX qÝÑP pX 1q “ T 11 ,
τ 11 :“ pξ1q¶ : T 11 “ P pX 1qÝÑP pX 2q “ T 21 ,

and τ 21 :“ pξ2q¶ : T1 “ P pX qÝÑP pX 2q “ T 21 .
(C8)
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Then τ 21 “ τ 11 ˝ τ1, because P is a functor (Example 3.1(b)) and ξ2 “ ξ1 ˝ ξ. Inductively,
for all n ě 2, suppose we have defined τn : TnÝÑT 1n, τ 1n : T 1nÝÑT 2n and τ 2n : TnÝÑT 2n
such that τ 2n “ τ 1n ˝ τn. Now define

τn`1 :“ pτn ˆ ξq
¶ : Tn`1 “ P pTn ˆ X qÝÑP pT 1n ˆ X 1q “ T 1n`1,

τ 1n`1 :“ pτ 1n ˆ ξ
1q¶ : T 1n`1 “ P pT 1n ˆ X 1qÝÑP pT 2n ˆ X 2q “ T 2n`1,

and τ 2n`1 :“ pτ 2n ˆ ξ
2q¶ : Tn`1 “ P pTn ˆ X qÝÑP pT 2n ˆ X 2q “ T 2n`1.

(C9)

Then τ 2n`1 “ τ 1n`1 ˝ τn`1 because P is a functor, τ 2n “ τ 1n ˝ τn, and ξ2 “ ξ1 ˝ ξ. At this
point, we have the diagram shown in the left part of (C10) below:

T0 T1 T2 T3 ¨ ¨ ¨ ¨ ¨ ¨ T̆

T 10 T 11 T 12 T 13 ¨ ¨ ¨ ¨ ¨ ¨ T̆ 1

T 20 T 21 T 22 T 23 ¨ ¨ ¨ ¨ ¨ ¨ T̆ 2

τ0τ20

φ0

τ1τ21

φ1

τ2τ22

φ2

τ3τ23

φ3

ττ2

τ 10

φ10

τ 11

φ11

τ 12

φ12

τ 13

φ13

τ 1

φ20 φ21 φ22 φ23

(C10)

Claim 1: The diagram in the left part of (C10) commutes.

Proof: We have already shown that τ 2n “ τ 1n ˝ τn for all n P N. Now consider the squares
in diagram (C10). First note that φ0, φ10, φ20, τ0, τ 10, and τ 20 are all instances of the
(unique) terminal morphism from their respective domains. So the squares in the
farthest left column commute, trivially. Next,

τ1 ˝ φ1
pC5,C8q

ξ¶ ˝ π¶
X pzq

pξ ˝ πX q
¶

p˚q

´

πX 1 ˝ pτ1 ˆ ξq
¯¶

pzq
π¶
X 1 ˝ pτ1 ˆ ξq

¶
pC5,C9q

φ11 ˝ τ2,

so the top square in the second column of (C10) commutes. Here, the equalities
marked pzq are because P is a functor, while p˚q is because ξ ˝ πX pt, xq “ ξpxq “
πX 1 ˝ pτ1 ˆ ξqpt, xq for all pt, xq P T1 ˆ X , and thus, ξ ˝ πX “ πX 1 ˝ pτ1 ˆ ξq. The other
equalities come from substituting the definitions from equations (C5), (C8), and (C9).
By a similar argument, the bottom square in the second column commutes.

By induction, suppose that we have shown that the squares of the nth column of
(C10) commute —i.e. that

τn´1 ˝ φn´1 “ φ1n´1 ˝ τn and τ 1n´1 ˝ φ
1
n´1 “ φ2n´1 ˝ τ

1
n. (C11)

Then

τn ˝ φn
p˚q

pτn´1 ˆ ξq
¶
˝ pφn´1 ˆ IX q

¶
pzq

´

pτn´1 ˆ ξq ˝ pφn´1 ˆ IX q
¯¶

“

´

pτn´1 ˝ φn´1q ˆ pξ ˝ IX q
¯¶

p:q

´

pφ1n´1 ˝ τnq ˆ ξ
¯¶

“

´

pφ1n´1 ˆ IX 1q ˝ pτn ˆ ξq
¯¶

pzq
pφ1n´1 ˆ IX 1q

¶
˝ pτn ˆ ξq

¶
p˚q

φ1n ˝ τn`1,
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as desired. Here, both p˚q are by defining formulae (C6) and (C9), both pzq are
because P is a functor, and p:q is by the induction hypothesis (C11).

By a similar argument, we obtain τ 1n ˝ φ
1
n “ φ2n ˝ τ

1
n`1. By induction, the whole

diagram commutes. 3 Claim 1

For all n P N, let πn : T̆ ÝÑTn, π1n : T̆ 1ÝÑT 1n, and π2n : T̆ 2ÝÑT 2n be the projection maps
associated with the limit of the chains (C7). Composing these with τn, τ 1n and τ 2n yields
the maps τn ˝ πn : T̆ ÝÑT 1n, τ 1n ˝ π

1
n : T̆ 1ÝÑT 2n , and τ 2n ˝ πn : T̆ ÝÑT 2n , for all n P N.

Claim 2: The following three diagrams commute:

paq T̆

T 10 T 11 ¨ ¨ ¨

τ0˝π0

τ1˝π1 ¨¨¨

φ10 φ11

pbq T̆ 1

T 20 T 21 ¨ ¨ ¨

τ 10˝π
1
0

τ 11˝π
1
1 ¨¨¨

φ20 φ21

and

pcq T̆

T 20 T 21 ¨ ¨ ¨

τ20 ˝π0

τ21 ˝π1 ¨¨¨

φ20 φ21

(C12)

Proof: We will prove the claim for diagram (C12)(a). (The proofs for the other diagrams
follow the same pattern). We have φ1n ˝ pτn`1 ˝ πn`1q “ pφ

1
n ˝ τn`1q ˝ πn`1

p˚q
pτn ˝φnq ˝

πn`1 “ τn ˝ pφn ˝ πn`1q
p:q
τn ˝ πn, where p˚q is by Claim 1 and p:q is by the property

of the limit cone defining T̆ . 3 Claim 2

In light of Claim 2, the universal property of limits yields unique continuous functions
τ : T̆ ÝÑT̆ 1, τ 1 : T̆ 1ÝÑT̆ 2, and τ 2 : T̆ ÝÑT̆ 2 such that, for all n P N, the following
diagrams commute:

paq T̆

T 1n T̆ 1

τn˝πn τ

π1n

pbq T̆ 1

T 2n T̆ 2
τ 1n˝π

1
n τ 1

π2n

and

pcq T̆

T 2n T̆ 2
τ2n˝πn τ2

π2n

(C13)

Using these diagrams, we can finally prove that the “limit” diagram at the right end of
(C10) also commutes.

Claim 3: τ 2 “ τ 1 ˝ τ .

Proof: For all n P N, we have

π2n ˝ pτ
1
˝ τq “ pπ2n ˝ τ

1
q ˝ τ

p˚q
pτ 1n ˝ π

1
nq ˝ τ “ τ 1n ˝ pπ

1
n ˝ τq

p:q
τ 1n ˝ pτn ˝ πnq “ pτ 1n ˝ τnq ˝ πn p˛q

τ 2n ˝ πn,

where p˚q is by diagram (C13)(b), p:q is by diagram (C13)(a), and p˛q is by Claim 1.
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Thus, for all n P N, we have π2n ˝ pτ
1 ˝ τq “ τ 2n ˝ πn. In other words, τ 1 ˝ τ satisfies

the defining property of τ 2, as expressed in diagram (C13)(c). Thus, we must have
τ 2 “ τ 1 ˝ τ . 3 Claim 3

Now, let φ̆ : T̆ ĄÝÑ P pT̆ ˆX q, φ̆1 : T̆ 1 ĄÝÑ P pT̆ 1ˆX 1q, and φ̆2 : T̆ 2 ĄÝÑ P pT̆ 2ˆX 2q be the
homeomorphisms constructed in the proof of Theorem 2.4. The next claim establishes
the first statement in Proposition 2.8.

Claim 4: The following diagrams commute:

paq pbq pcq

T̆ P pT̆ ˆ X q

T̆ 1 P pT̆ 1 ˆ X 1q

φ̆

τ pτˆξq¶

φ̆1

T̆ 1 P pT̆ 1 ˆ X 1q

T̆ 2 P pT̆ 2 ˆ X 2q

φ̆1

τ 1 pτ 1ˆξ1q¶

φ̆2

and

T̆ P pT̆ ˆ X q

T̆ 2 P pT̆ 2 ˆ X 2q

φ̆

τ2 pτ2ˆξ2q¶

φ̆2

Proof: We will prove that diagram (a) commutes. (The proofs for diagrams (b) and
(c) follow the same pattern.) For all n P N, let πn : T̆ ÝÑTn be the projection maps
associated with the limit of chain (C7). We thus have a limit cone

T̆

T0 T1 T2 T3 ¨ ¨ ¨

π0 π1 π2 π3

¨¨¨

φ0 φ1 φ2 φ3

(C14)

Then let

rπn :“ pπn ˆ IX q
¶ : P pT̆ ˆ X qÝÑP pTn ˆ X q “ Tn`1 (C15)

and rπ1n :“ pπ1n ˆ IX 1q
¶ : P pT̆ 1 ˆ X 1qÝÑP pT 1n ˆ X 1q “ T 1n`1. (C16)

We thus get another cone:

P pT̆ ˆ X q

T1 T2 T3 T4 ¨ ¨ ¨

rπ0 rπ1 rπ2 rπ3

¨¨¨

φ1 φ2 φ3 φ4

(C17)

and a corresponding cone involving the functions trπ1nu
8
n“0. (To see that (C17) com-

mutes, note that φn`1 “ RX pφnq and rπn “ RX pπnq for all n P N, and recall RX
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is an endofunctor by Proposition C.1. Thus, the diagram (C17) commutes because
it is the result of applying the endofunctor RX to the commuting diagram (C14).)
Thus, the universal property of the limits T̆ and T̆ 1 yields unique continuous func-
tions γ : P pT̆ ˆ X qÝÑT̆ and γ1 : P pT̆ 1 ˆ X 1qÝÑT̆ 1 such that, for all n P N, the
following diagrams commute:

piq P pT̆ ˆ X q

Tn`1 T̆

rπn γ

πn`1

piiq P pT̆ 1 ˆ X 1q

T 1n`1 T̆ 1

rπ1n γ1

π1n`1

(C18)

Now RX preserves ω-limits (by Proposition C.1), so γ and γ1 are actually homeomor-
phisms. In the proof of Theorem 2.4, we then defined φ̆ :“ γ´1 and φ̆1 :“ pγ1q´1.
Thus, φ̆ and φ̆1 are the unique functions such that the following diagrams commute,
for all n P N:

piq P pT̆ ˆ X q

Tn`1 T̆

rπn

πn`1

φ̆

piiq P pT̆ 1 ˆ X 1q

T 1n`1 T̆ 1

rπ1n

π1n`1

φ̆1 (C19)

To prove that diagram (a) commutes, it is equivalent to prove that γ1˝pτˆξq¶˝ φ̆ “ τ ,
(because γ1 “ pφ̆1q´1). To do this, it is sufficient to show that

π1m ˝ γ
1
˝ pτ ˆ ξq¶ ˝ φ̆ “ τm ˝ πm (C20)

for all m P N, because this shows that γ1 ˝ pτ ˆ ξq¶ ˝ φ̆ satisfies the defining property
of τ , as expressed in diagram (C13)(a). The case m “ 0 of equation (C20) is trivially
true, because π10 and τ0 are both the (constant) function into the one-point space T 10 .
It remains to prove (C20) for m ě 1. To achieve this, first note that

π1n`1 ˝ γ
1
˝ pτ ˆ ξq¶

p˚q
rπ1n ˝ pτ ˆ ξq

¶
p;q

pπ1n ˆ IX 1q
¶
˝ pτ ˆ ξq¶

pzq

´

pπ1n ˆ IX 1q ˝ pτ ˆ ξq
¯¶

“

´

pπ1n ˝ τq ˆ pIX 1 ˝ ξq
¯¶

p:q

´

pτn ˝ πnq ˆ pξ ˝ IX

¯¶
“

´

pτn ˆ ξq ˝ pπn ˆ IX q
¯¶

pzq
pτn ˆ ξq

¶
˝ pπn ˆ IX q

¶
p˛q

τn`1 ˝ rπn, for all n P N. (C21)

Here, p˚q is by diagram (C18)(ii), p;q is by formula (C16), p:q is by diagram (C13)(a),
p˛q is by formulae (C9) and (C15), and both pzq are because P is a functor. Thus,

π1n`1 ˝ γ
1
˝ pτ ˆ ξq¶ ˝ φ̆

p˚q
τn`1 ˝ rπn ˝ φ̆

p:q
τn`1 ˝ πn`1, for all n P N. (C22)

Here p˚q is by equation (C21) and p:q is by diagram (C19)(i). Setting n :“ m ´ 1 in
(C22) yields equation (C20) for all m ě 1. We conclude that γ1 ˝ pτ ˆ ξq¶ ˝ φ̆ “ τ , as
claimed. Similar arguments show that diagrams (b) and (c) commute. 3 Claim 4
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Claim 4 shows that τ , τ 1, and τ 2 all satisfy the relevant version of diagram (2). Thus,
τ , τ 1, and τ 2 are the functions promised in Proposition 2.8.

Functoriality. Define URPSpξq :“ τ , URPSpξ1q :“ τ 1, and URPSpξq :“ τ 2. Then
Claim 3 yields URPSpτ 1 ˝ τq “ URPSpτ 1q ˝ URPSpτq; hence URPS is a functor, as
claimed by Proposition 3.2.

Surjectivity. Suppose ξ is surjective. Let t̆1 P T̆ 1. We want t̆ P T̆ such that τpt̆q “ t̆1.

Claim 5: τn : TnÝÑT 1n is surjective for all n P N.

Proof: If ξ is surjective then τ1 is surjective, by defining formula (C8) and Proposition
A.2(b). Now let n P N, and suppose that τn is surjective. Then τn ˆ ξ is surjective.
Thus, τn`1 is surjective, by defining formula (C9) and Proposition A.2(b). Inductively,
τn : TnÝÑT 1n is surjective for all n P N. 3 Claim 5

Suppose that t̆1 “ pt1nq
8
n“0.

Claim 6: For all n P N, there exists t̆pnq P T̆ such that, if we write if t̆pnq “ pt
pnq
m q

8
m“0,

then τmpt
pnq
m q “ t1m for all m P r1 . . . ns.

Proof: Claim 5 yields some tn P Tn such that τnptnq “ t1n. For all m P r0 . . . n´ 1s, define
tm :“ φm ˝φm`1 ˝ ¨ ¨ ¨ ˝φn´1ptnq. Then τmptmq “ t1m via the commuting diagram (C10)
(established by Claim 1). Meanwhile, Corollary C.3 says there is some tn`1 P Tn`1

such that φnptn`1q “ tn, Inductively, for all m ě n ` 1 we obtain tm`1 P Tm`1 such
that φmptm`1q “ tm. Now let t̆pnq :“ ptmq

8
m“0. Then by construction, t̆pnq P T̆ , and

τmptmq “ t1m for all m P r0 . . . ns. 3 Claim 6

Let t̆ be a cluster point of the sequence tt̆pnqu8n“1; this exists because T̆ is compact.
Suppose that t̆ “ ptmq

8
m“0. For all m P N, we have τmptmq “ t1m, because τm is continuous

and τmpt
pnq
m q “ t1m for all n ě m. Thus, τpt̆q “ t̆1, as desired.

Homeomorphism. Functors preserve isomorphisms. So if ξ : XÝÑX 1 is a home-
omorphism (i.e. an isomorphism in the category CHS), then τ : T̆ ÝÑT̆ 1 is also a
homeomorphism. l

D The dual model: recursive quasipreferences

This appendix briefly presents another model of recursive preferences that is “dual” to the
one presented in the rest of the paper. It has a somewhat different economic interpretation.
But all of the earlier results are easily translated into this new model, by means of duality.

Let X be a set and let � be a binary relation on X . Recall that � is complete if for
all x, y P X , either x � y or x � y. Let � be the asymmetric part of � (i.e. x � y if
x � y and y ­� x). We say that that � is quasitransitive if � is transitive. In other words,
for all x, y, z P X , if x � y and y � z, then x � z. However, if x � y and y � z, it is
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not necessarily the case that x � z. In particular, if ” is the symmetric part of �, then
we may have x ” y and y ” z, but x � z. But we cannot have x � y and y ” z while
x� z —this would violate quasitransitivity. Thus, the most we can say is that if x� y and
y � z, then x � z. Quasiorders describe preferences that exhibit “sorites paradoxes”, in
which a sequence of tiny, unnoticeable changes (e.g. individual grains of sugar in a cup of
coffee) can add up to a noticeable change.

Now suppose that X is a topological space. A quasiorder � is continuous if the set
tpx, yq P X ˆX ; x � yu is closed in X ˆX . A local continuous quasiorder is an ordered
pair pY ,�q, where Y is a closed subset of X , and � is a continuous quasiorder on Y .
Let rrY ,�ss :“ tpx, yq P X ˆX ; x � yu; this is a closed subset of X ˆX , because Y is
closed and � is continuous. Let QpX q be the set of all continuous quasiorders on X . Then
the injective function QpX q Q pY ,�q ÞÑ rrY ,�ss P KpX q identifies QpX q with a subset of
KpX q, and the Vietoris topology on KpX q pulls back to define a topology on QpX q, which
we will also call the Vietoris topology.

Duality. Let X be a set, and let ą be a binary relation on X . The dual of ą is the
binary relation � defined as follows:

For all x, y P X ,
´

x � y
¯

ðñ

´

x ć y
¯

. (D1)

Clearly, if � is dual to ą, then ą is dual to �. So we will say they are dual to each other.

Lemma D.1 Let X be a topological space, let Y Ď X be a closed subset, and let � and ą

be two binary relations on Y that are dual to each other. Then pY ,�q is a local continuous
quasiorder if and only if pY ,ąq is a local continuous strict partial order. Thus, the duality
relation defines a bijection between P pX q and QpX q. This bijection is a homeomorphism
between the co-Vietoris topology on P pX q and the Vietoris topology on QpX q.

Proof: See Pivato 2023b, Lemma B. l

In light of Lemma D.1, Proposition A.1 can immediately be translated into an equivalent
statements for QpX q. Thus, if X is a compact Hausdorff space, then so is QpX q. If X is
metrizable, then so is QpX q. If X is a continuum, then so is QpX q.

Forward images of quasiorders. Let X and X 1 be compact Hausdorff spaces, and
let φ : XÝÑX 1 be continuous. For any local continuous quasiorder pY ,�q on X , let
φ@pY ,�q :“ pY 1,�1q, where Y “ φpYq Ď X , and where the binary relation �1 is defined
on Y 1 by stipulating, for all x1, y1 P X 1, that x1�1y1 if x� y for some x P φ´1tx1u and
y P φ´1ty1u. It can be shown that pY 1,�1q is itself a continuous quasiorder on X 1; thus, we
get a function φ@ : QpX qÝÑQpX 1q.

Now let pY ,ąq be a local continuous strict partial order on X , and let pY ,�q be a
local continuous quasiorder. Let X 1 be another topological space, and let φ : XÝÑX 1
be continuous. If pY ,ąq is dual to pY ,�q, then it is easily verified that φ¶pY ,ąq is dual
to φ@pY ,�q. Thus, Proposition A.2 implies that the function φ@ : QpX qÝÑQpX 1q is
continuous in the Vietoris topology. If φ is surjective, then so is φ@.
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Recursive quasipreference structures. In light of this duality between quasiorders
and strict partial orders, we can introduce a “dual” version of recursive preference struc-
tures. Let X be a compact Hausdorff space. A recursive quasipreference structure (RQS) over
X is an ordered pair pT , φq, where T is a compact Hausdorff space, and φ : T ÝÑQpT ˆX q
is a continuous function. Thus, for any type t P T , φptq is a continuous quasiorder on T ˆX .
By Lemma D.1 and the homeomorphism P pT ˆX q – QpT ˆX q, we see that any recursive
quasipreference structure φ : T ÝÑQpT ˆX q can be transformed into a dual recursive pref-
erence structure φ : T ÝÑP pT ˆX q, and vice versa. Thus, the two models are equivalent,
and can be used interchangeably.

Every concept and theorem for recursive preference structures has an equivalent version
for recursive quasipreference structures. For example, a type-outcome pair pt˚, x˚q in T ˆ
X is recursively optimal for an RQS pT , φq if pt˚, x˚q is maximal in the local continuous
quasiorder φpt˚q. To be precise: if φpt˚q “ pY ,�q, then pt˚, x˚q is recursively optimal if
pt˚, x˚q�pt, xq for all pt, xq P Y . If an RQS and an RPS are dual to each other, then a
type-outcome pair is recursively optimal for one if and only if it is recursively optimal for
the other one. (This follows from the last statement in Lemma B of Pivato 2023b.)

Let pT1, φ1q and pT2, φ2q be recursive quasipreference structures over X . A RQS-
morphism from pT1, φ1q to pT2, φ2q is a continuous function ψ : T1ÝÑT2 such that the
following diagram commutes:

T1 QpT1 ˆ X q

T2 QpT2 ˆ X q

φ1

ψ pψˆIX q
@

φ2

If pT1, φ
1
1q and pT2, φ

1
2q are the RPS’s that are dual to pT1, φ1q and pT2, φ2q, then ψ is a RQS-

morphism from pT1, φ1q and pT2, φ2q if and only if it is an RPS-morphism from pT1, φ
1
1q and

pT2, φ
1
2q. Thus, there is an RQS version of Proposition 2.2.

An RQS pT̆ , φ̆q over X is universal if, for any other RQS pT , φq over X , there is a unique
RQS-morphism ψ : T ÝÑT̆ . Lambek’s Theorem (Proposition 3.3) yields an RQS version
of Proposition 2.3. Finally, Theorem 2.4 and Proposition 2.5 yield the following result:

Theorem D.2 For any compact Hausdorff space X , there is a universal RQS over X .
The type space T̆ of this universal RQS is a compact Hausdorff space, which contains a
subspace homeomorphic to X . If X is metrizable, then so is T̆ . If X is a continuum, then
so is T̆ . If X is homeomorphic to Cantor space, then so is T̆ .

References
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