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ABSTRACT
Monoidal optics are the free normalization of the cofree produoidal

category over an arbitrary monoidal category. This extended ab-

stract is based on “The Produoidal Algebra of Process Decomposi-

tion” recently presented at Computer Science Logic 2024 (slides).

1 OPTICS
Definition 1.1 (c.f. [8, 26]). In a monoidal category, an optic from

(𝑋,𝑌 ) to (𝐴, 𝐵) is a pair of morphisms 𝑓 1 : 𝐴 → 𝐿 ⊗ 𝑋 ⊗ 𝑅 and

𝑓 2 : 𝐿 ⊗ 𝑌 ⊗ 𝑅 → 𝐵 quotiented by dinaturality on 𝐿 and 𝑅.

Monoidal categories are the algebra of sequential and parallel

composition. Optics extend this algebra by permitting holes in the

diagrams. However, while optics form a category where composi-

tion is defined by nesting, the sequential and parallel operations are

not so straightforward to define. Parallel composition of optics is

only generally defined if the base category is braided. Even worse,

sequential composition of two optics (two morphisms with a single

hole) does not yield an optic, but a morphism with two holes.

Let us write the type of an optic with two holes as (𝑋 1, 𝑌 1) ⊳
(𝑋 2, 𝑌 2) → (𝐴, 𝐵). Our problem is that the operation (⊳), which
reads as “and then”, is not representable: there is no hole we can put

in place of two holes. Optics do not form a monoidal category but

a promonoidal category, where the tensor and unit are no longer

functors but profunctors. The same problem happens with the par-

allel compostition in the non-braided case: although we understand

what an optic with two parallel holes, (𝑋 1, 𝑌 1) ⊗ (𝑋 2, 𝑌 2) → (𝐴, 𝐵),
must be, these cannot be represented by a single hole.

1.1 Promonoidal Categories
Definition 1.2 (Day and Street [9, 10]). A promonoidal category is

a category V, together with two profunctors,

V(• ⊗ •; •) : V𝑜𝑝 × V𝑜𝑝 × V → Set and V(𝐼 ; •) : V → Set,

and associator and unitor natural transformations between them

satisfying the pentagon and triangle equations.

Intuitively, these profunctors are the non-representable versions

of the tensor and the unit of a monoidal category: even when the

object 𝑋 ⊗ 𝑌 does not exist, the hom-set V(𝑋 ⊗ 𝑌 ;𝐴) does.

Definition 1.3 (Booker and Street [4]). A produoidal category is a

category V with two promonoidal structures

V(• ⊗ •; •) : V𝑜𝑝 × V𝑜𝑝 × V → Set and V(𝐼 ; •) : V → Set,
V(• ⊳ •; •) : V𝑜𝑝 × V𝑜𝑝 × V → Set and V(𝑁 ; •) : V → Set,

that distribute laxly over each other with a structure natural trans-

formation (𝑋 ⊳ 𝑌 ) ⊗ (𝑈 ⊳𝑉 ) → (𝑋 ⊗ 𝑈 ) ⊳ (𝑌 ⊗ 𝑉 ) satisfying the

axioms of duoidal categories. A produoidal category is normal if
the laxator 𝜙0 : V(𝐼 ; •) → V(𝑁 ; •) is an isomorphism.

Proposition 1.4 (c.f. Pastro and Street [23, 32], c.f. Garner

and López Franco [14]). Monoidal optics, with promonoidal tensors,
(⊳) and (⊗), form a produoidal category.

Intuitively, we can think of promonoidal categories as malleable
multicategories, which form an equivalent (but not isomorphic) cat-

egory. A multicategory is malleable whenever its multicategorical

composition is invertible up to dinaturality.

Theorem 1.5 (c.f. Melliès and Zeilberger [21]). There exists
an adjunction between categories and promonoidal categories. The
right adjoint takes a category to the promonoidal category whose
operations are incomplete arrows of the original category.

2 UNIVERSALITY
Theorem 2.1. There exists an adjunction between monoidal cate-

gories and produoidal categories: the right adjoint takes a monoidal
category to the produoidal category whose operations are incomplete
arrows of the original monoidal category (Figure 1).

Figure 1: Incomplete arrows of a monoidal category.
Theorem 2.2. There exists an adjunction between produoidal cat-

egories and normal produoidal categories. The free normalization of
a produoidal category with hom-sets C(𝐴;𝐵) is a normal produoidal
category with hom-setsNC(𝐴;𝐵) = C(𝑁 ⊗𝐴⊗𝑁 ;𝐵). Normalization,
N : pDuo → pDuo, forms an idempotent monad.

Moreover, there exists a specialized produoidal normalization

for the symmetric case, N𝜎 : spDuo → spDuo, that again forms an

idempotent monad.

Theorem 2.3. Monoidal optics form the free normalization of the
cofree produoidal category over a monoidal category (Figure 2).

Figure 2: Monoidal optics.
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3 CONTRIBUTIONS
The main contribution of this work is to provide a universal charac-

terization of the normal produoidal algebra of optics. This charac-

terization arises from the secondary contribution of two novel ad-

junctions. The first adjunction is a novel splice-contour adjunction

betweenmonoidal and produoidal categories; the second adjunction

is the free normalization of produoidal categories. To summarize,

the following are novel contributions.

(1) A universal characterization of the normal produoidal cat-

egory of optics over a monoidal category. Note that, even

though the duoidal structure of Tambara modules has been

mentioned in the literature, this is its first universal charac-

terization in these terms: Tambaramodules are the presheaves

of the free normalization of the cofree produoidal category

over a monoidal category.

(2) We prove that every produoidal category has a normaliza-

tion, and we show that normalization of produoidal cate-

gories forms an idempotent monad. This induces an adjunc-

tion between produoidal categories and normal produoidal

categories. In contrast, note that it is known that duoidal

categories do not necessarily have a normalization [14],

and their normalization – whenever it exists – has not been

universally characterized.

(3) Additionally, we show that there exists a specialized free

normalization adjunction between symmetric produoidal

categories and normal symmetric produoidal categories.

Note that symmetric normalization of symmetric duoidals

[14] would not induce a monad and it is not defined in

general.

(4) We construct a produoidal category of spliced arrows on

top of an arbitrary monoidal category; we construct an ad-

junction between monoidal categories and produoidal cate-

gories. Note that the splice-contour adjunction between cat-

egories and multicategories was known; we introduce both

its coherent counterpart (using promonoidal categories)

and its monoidal counterpart (using produoidal categories).

4 RELATEDWORK
We are indebted to the previous work of Melliès and Zeilberger [21]

on the splice-contour adjunction; but also to the previous work on

duoidal categories, both by Aguiar and Mahajan [1] and by Garner

and López Franco [14].

Tambara modules. Pastro and Street [23] study the sequential

monoidal structure of Tambara modules and its corresponding

promonoidal category of optics, under the name of “doubles”. The

first written record of the correspondence between these Tambara

modules and optics in functional programming [20] seems to be

due to Milewski [22]: note that the correspondence between strong

profunctors for a cartesian monoidal structure and pairs of mor-

phisms 𝐴 → 𝑋 and 𝐴 ×𝑌 → 𝐵 is not trivial; in fact, it took around

ten years to be explored in print. Since then, multiple authors have

extended this framework [8, 26, 33].

Garner and López Franco [14] describe the duoidal category of

bistrong profunctors (or Tambara modules) as the canonical duoidal

category of endocells arising from the adjoint pseudomonoid struc-

ture of any monoidal category on the monoidal bicategory of pro-

functors. A generalization of Day’s theorem [9] could be used to

prove from these results that optics form a produoidal category.

Optics. Functional programmers are to be credited with the de-

velopment of multiple types of optics and their application: lenses

help accessing subfields; prisms recover failing computations; tra-

versals inspect a list uniformly; grates produce an update while

taking the view in continuation-passing style; getters, reviews, folds,

affine traversals, or kaleidoscopes are all data-accessing patterns

[2, 8, 25]. This development was initially independent from the

work of Pastro and Street, and it was based on a reinterpretation

and a generalization of the previous work on lenses.

Lenses and Wiring Diagrams. In the cartesian case, monoidal op-

tics coincide with lenses, which were developed for database theory,

particularly by Johnson and Rosebrugh [13, 18, 19]. Recent work by

Clarke, Di Meglio, and others has generalized lenses in this direc-

tion [6, 7, 12]. Forgetting about the produoidal structure of lenses,

we can recover the operad or multicategory of wiring diagrams

over monoidal categories studied by Spivak, Schultz, Vasilakopolou,

Vagner, Patterson and others [24, 29, 30].

Applications. The produoidal structure of optics seems to be

unknown to most applications of optics, even when sequencing

of optics makes an appearance on some of the literature. Among

multiple other appearances, optics have been applied to quantum

supermaps [16, 17], economic game theory [15], data accessing

[25], exact probabilistic conditioning [31], server architecture [34],

monoidal process iteration [3, 11], or coend calculus [5, 27].

Our work has been extended with an implementation of the

produoidal algebra of monoidal optics in Haskell [28].
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