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The phenomenon of convexity is of key import to a wide variety of fields — optimization,
probability theory, and functional analysis. Classically, convexity is a property subsets of R-vector
spaces. A subset C ⊂ V is termed convex if it contains every line segment between points in C.
However, in practice, the precise nature of the ambient vector space is unimportant, what matters
is that, in a convex space, one can take convex combinations of elements: sums of the form

∑
i αixi

where the αi are non-negative and sum to 1. Distilling convexity down to this essential concept
leads to more abstract approaches to convexity, as in [Neu, Ś74, Fri15, Jac09], in which a convex
space is treated as a set with additional algebraic structure, namely the ability to take convex
combinations in a consistent way.

This paper ( [HOS24]) is concerned with developing operadic methods to analyze and manipulate
convex spaces, and, in particular, with using these methods to provide Grothendieck constructions
for functors valued in convex sets. The more sophisticated of these takes as input generalizations of
lax monoidal functors into the category of convex sets, and thereby generalizes the Set-valued case
of the monoidal Grothendieck construction of [MV20]. The Grothendieck construction reformulates
the data of such a functor into a kind of monoidal discrete fibration with fibrewise convex structure.

Among the applications of this framework are two which we consider to be particularly potent
applications, and which we expose in detail. In the first, we reformulate the categorical characteri-
zation of entropy presented in [BFL11] as a structure-preserving functor out of a convex monoidal
Grothendieck construction. Both the fibrewise convex structures and the generalized monoidal
structures appearing in our Grothendieck construction are essential to this reformulation, suggest-
ing that convex monoidal Grothendieck constructions provide a natural setting to study entropy
with categorical methods.

The second of our applications concerns quantum information theory. In quantum theory, non-
locality [Bel64] and its cousin, contextuality [KS67], are terms for non-classical behaviors of the
probability distributions which arise from quantum systems. Contextuality, in particular, provides
advantages for quantum computing [HWVE14]. Within the framework of simplicial distributions
introduced in [OKI23] to study quantum probabilities, algebraic structures in convex sets called
convex monoids appear as a way to characterize contextual distributions in terms of invertibility
conditions. In [OS], the framework of simplicial distributions is extended to simplicial principal
bundles, an extension which, in particular, captures features of projective quantum measurements.
In this context, generalizations of convex monoids appear as convex Grothendieck constructions of
functors out of the monoidal groupoid of principal bundles over a fixed base.

The convex Grothendieck construction which enables our study of these examples requires two
main prerequisites. Firstly, convex sets come equipped with a kind of map, which we term biconvex,
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in analogy with bilinearity for vector spaces. Formally, given convex sets X, Y , and Z, a map

f : X × Y Z

is biconvex when, for any convex combinations
∑

i αixi and
∑

j βjyj in X and Y , respectively, we
have

f

∑
i

αixi,
∑
j

βjyj

 =
∑
i,j

αiβjf(xi, yj).

In the first section of our paper we develop a convex tensor product which represents biconvex
maps, and show that it provides a symmetric monoidal structure ⊗ on the category CSet of convex
sets.

The second component is the theory of O-monoidal structures developed in the companion
paper [HS]. Given an operad O in Set, an O-monoidal category is a category C equipped with
operations

Cn C

for every n-ary operation of O. These must satisfy the composability conditions encoded by O
up to coherent natural isomorphisms. In the special cases of the associative and commutative
operads, this notion recovers the (unbiased) notions of monoidal and symmetric monoidal categories,
respectively. Using the terminal-ness of the commutative operad, we can consider any symmetric
monoidal structure as an O-monoidal structure for any operad O.

After having developed these two pieces of technology, it is easier to state what lives on each
side of the Grothendieck construction at the core of this work.

• On one side, we have lax O-monoidal functors from an O-monoidal category I into (CSet,⊗).

• On the other side, we have strict O-monoidal discrete fibrations over I with fibrewise convex
structure.

We consider the case O = QConv for convexity. QConv is the operad with n-ary operations
being n-tuples (α1, . . . , αn) such that

∑
i αi = 1. We demonstrate how our convex Grothendieck

construction equips the category of finite probability spaces of [BFL11] with the appropriate convex
structure. Similarly, we retain relevant convexity information when applying the above tools in the
context of twisted distributions.
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