Inference on diagrams in the category of Markov kernels (Extended abstract)

Grégoire Sergeant-Perthuis* Nils Ruet[†]

Graphical models are widely used families of probability distributions that capture conditional independence relations between a collection of variables X_i , $i \in I$; celebrated examples are Hidden Markov models and Bayesian Networks [1]. Graphical models are built from directed and undirected graphs G = (I,A) where nodes $i \in I$ are uniquely identified with the variables X_i . Inference in graphical models ultimately boils down to inference for an undirected graphical model, achieved through the Belief Propagation algorithm [2]. Such Inference constitutes a specific instance of variational inference as it revolves around a free energy termed the Bethe free energy [2]. Adopting a variational inference perspective for graphical models has facilitated the extension of the Belief Propagation algorithm to encompass broader classes of probability distributions, enabling the accommodation of interactions among more than 2 variables in contrast to traditional graphical models (factor graphs [3]); this is achieved through the introduction of the Kikuchi free energies [4]. Let us denote Mes^{f} , $Kern^{f}$, the categories with objects finite measurable spaces and respectively with morphisms measurable maps and the second Markov Kernels (stochastic matrices). Mes^f can be seen as a subcategory of Kern^f. As exhibited in [5–7], what underlies variational inference for those classes of probability distributions are presheaves from a finite poset to Mes^f, which morphisms are epimorphisms. We will call them the 'graphical' presheaves. Our contribution is to extend the Generalized Belief Propagation [5] to any presheaf from a finite poset to Kern^f. This work is contained in Chapter 9 of [8] and Appendix 1 of unpublished [9], where we consider the more general problem of optimizing a collection of cost functions over a presheaf of signals.

1. Motivation and related work

Consider a collection of agents represented by vertices $i \in I$ that can communicate their beliefs to neighboring vertices ∂i through undirected edges $e \in A$. Each agent has its own representation of its environment, denoted by E_i . They can share their beliefs with neighboring nodes $j \in \partial i$ through a measurable map $f_e^i : E_i \to E_e$. Graphical models and their extensions do not allow us to account for such heterogeneity in the way each agent models their environment. Such setting is better captured by cellular sheaves [10] and applications [11], important examples of which are Sheaf Neural Networks [12], are limited to functors from the poset associated to a graph ($i \leq e \iff i \in e$) to the category of finite vector spaces **Vect**^{*f*}. We are interested in the more general case where beliefs transfer through a hierarchy, i.e. a poset, and we provide an algorithm for inference in such case where Sheaf Neural Networks can't be used; by convention, we consider presheaves instead of functors: 'orders' are given top-down. More generally, cellular sheaves are restricted to the face poset of a cell complex and hence don't apply to all hierarchies and therefore not to our case.

2. Free energy for poset shaped diagrams in Kern^f and message passing algorithm

Definition 1 (Graphical presheaves). Let *I* be a finite set and $\mathscr{A} \subseteq \mathscr{P}(I)$ be a sub-poset of the powerset of *I*. Let $E_i, i \in I$ are finite sets. For $a \in \mathscr{A}$ $E_a := \prod_{i \in a} E_i$, let $F(a) := E_a$, and for $b \subseteq a$, let $F_b^a : E_a \to E_b$

^{*}LCQB, Sorbone université, Paris, France, gregoire.sergeant-perthuis@sorbonne-universite.fr

[†]CIAMS, Université Paris-Saclay, Orsay, France

be the projection map from $\prod_{i \in a} E_i$ to $\prod_{i \in b} E_i$. F is called a graphical presheaf from \mathscr{A} to **Mes**^f.

For \mathscr{A} a finite poset, the 'zeta-operator' of \mathscr{A} , denoted ζ , from $\bigoplus_{a \in \mathscr{A}} \mathbb{R}$ to $\bigoplus_{a \in \mathscr{A}} \mathbb{R}$ is defined as, for any $\lambda \in \bigoplus_{a \in \mathscr{A}} \mathbb{R}$ and any $a \in \mathscr{A}$, $\zeta(\lambda)(a) = \sum_{b \leq a} \lambda_b$. ζ is invertible [13], we denote μ its inverse; its matrix

expression $(\mu(a,b), b \leq a)$ defines the Möbius function of \mathscr{A} . Let F be a presheaf from \mathscr{A} to **Kern**^{*f*}; F_b^a : $F(a) \to F(b)$ is denoted element-wise as $F_b^a(\omega_b|\omega_a)$, with $\omega_b \in F(b), \omega_a \in F(a)$. It induces a presheaf \tilde{F} from \mathscr{A} to **Vect**^{*f*}, where \tilde{F}_b^a : $\mathbb{P}(F(a)) \to \mathbb{P}(F(b))$ is the linear map that sends probability distributions $p \in \mathbb{P}(F(a))$ to $F_b^a \circ p$. Following [5], we introduce a free energy $\mathscr{F}(Q) = \sum_{a \in \mathscr{A}} c(a) (\mathbb{E}_{Q_a}[H_a] - S(Q_a));$ $c(a) = \sum_{b \geq a} \mu(b, a)$ is the generalization of the inclusion-exclusion formula associated to \mathscr{A} . $S(Q_a) = -\sum_{\omega_a \in F(a)} Q_a(\omega_a) \ln Q_a(\omega_a)$ is the entropy of Q_a . We propose to solve $\inf_{Q \in \lim \tilde{F}} \mathscr{F}(Q)$. \tilde{F}^* is the functor obtained by dualizing the morphisms \tilde{F}_b^a , i.e. $\tilde{F}_a^{*,b} : \tilde{F}(b)^* \to \tilde{F}(a)^*$ sends linear maps $l_b : \tilde{F}(b) \to \mathbb{R}$ to $l_b \circ \tilde{F}_b^a : \tilde{F}(a) \to \mathbb{R}$.

For a functor *G* from \mathscr{A} to \mathbb{R} -vector spaces, we define μ_G as, for any $a \in \mathscr{A}$ and $v \in \bigoplus_{a \in \mathscr{A}} G(a)$, $\mu_G(v)(a) = \sum_{b \leq a} \mu(a, b) G_a^b(v_b)$. Let us define the function $FE : \prod_{a \in \mathscr{A}} \mathbb{P}(E_a) \to \prod_{a \in \mathscr{A}} \mathbb{R}$ as $FE(Q) = (\mathbb{E}_{Q_a}[H_a] - S_a(Q_a), a \in \mathscr{A})$, which sends a collection of probability measures over \mathscr{A} to their Gibbs free energies. For any $Q \in \prod_{a \in \mathscr{A}} \mathbb{P}(E_a)$, let us denote $d_Q FE$ as the differential of *FE* at the point *Q*.

Theorem 1. Let \mathscr{A} be a finite poset, let F be a presheaf from \mathscr{A} to $Kern^f$. Let $H_a : F(a) \to \mathbb{R}$ be a collection of (measurable) functions. The critical points of \mathscr{F} are the $Q \in \lim \tilde{F}$ such that,

$$\mu_{\tilde{F}^*} d_Q F E|_{\lim \tilde{F}} = 0 \tag{1}$$

The message-passing algorithm we consider is Algorithm 1; it specializes to the General Belief Propagation for graphical presheaves. For two elements $a, b \in \mathcal{A}$, such that $b \leq a$, two types of messages are considered: top-down messages $m_{a\to b} \in \mathbb{R}^{F(b)}$ and bottom-up messages $n_{b\to a} \in \mathbb{R}^{F(a)}$.

Algorithm 1: Message passage algorithm for presheaves from \mathscr{A} to Kern^f

Data: Initialization: $(m_{a\to b}^0 \in \mathbb{R}^{F(b)}, b, a \in \mathscr{A} \text{ s.t. } b \leq a)$, a poset \mathscr{A} , a presheaf $F : \mathscr{A} \to \mathbf{Kern}^f$; 1 for t < T do for $a \in \mathscr{A}, b \in \mathscr{A}$ such that $b \leq a$ do 2 $\forall \boldsymbol{\omega}_{a} \in F(a), \quad n_{b \to a}(\boldsymbol{\omega}_{a}) \leftarrow \prod_{\substack{c:b \leq c \\ c \leq a}} \sum_{\boldsymbol{\omega}_{b}' \in F(b)} m_{c \to b}(\boldsymbol{\omega}_{b}') \cdot F_{b}^{a}(\boldsymbol{\omega}_{b}'|\boldsymbol{\omega}_{a})$ 3 end 4 for $a \in \mathscr{A}, b \in \mathscr{A}$ such that $b \leq a$ do 5 $\begin{vmatrix} b_a = e^{-H_a} \prod_{b \in \mathscr{A}} n_{b \to a} \\ b_{\leq a} = \frac{b_a}{\sum_{\omega_a} b_a(\omega_a)} \\ m_{a \to b} \leftarrow m_{a \to b} \cdot \frac{\tilde{F}_b^a(p_a)}{p_b} \end{vmatrix}$ 6 7 8 9 end 10 end

A criterion to stop the algorithm is when the beliefs do not change, i.e., when $p_a^{t+1} \approx p_a^t$. The fixed points of the previous message-passing algorithm correspond to critical points of \mathscr{F} over $\lim F$ (Corollary of Theorem 2.2 [9]v2). Theorem 1 differs from a similar characterization of critical points of a free energy for specifications in [14] by the fact that the $\mu_{\tilde{F}^*}$ and $\lim \tilde{F}$ are applied to the same presheaf \tilde{F} and not two different presheaves/functors (G, F).

References

- [1] J. Pearl, *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. Morgan Kaufmann Publishers, 1988.
- [2] J. S. Yedidia, W. T. Freeman, and Y. Weiss, *Understanding belief propagation and its generalizations*, p. 239–269. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.
- [3] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
- [4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, "Generalized belief propagation," in *Proceedings of the 13th International Conference on Neural Information Processing Systems*, NIPS'00, (Cambridge, MA, USA), p. 668–674, MIT Press, 2000.
- [5] J. Yedidia, W. Freeman, and Y. Weiss, "Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms," *IEEE Transactions on Information Theory*, vol. 51, pp. 2282–2312, July 2005.
- [6] O. Peltre, "Message passing algorithms and homology," 2020. Ph.D. thesis, Link.
- [7] O. Peltre, "A homological approach to belief propagation and Bethe approximations," in *International Conference on Geometric Science of Information*, pp. 218–227, Springer, 2019.
- [8] G. Sergeant-Perthuis, *Intersection property, interaction decomposition, regionalized optimization and applications.* PhD thesis, Université de Paris, 2021. Link.
- [9] G. Sergeant-Perthuis, "Regionalized optimization," 2022. https://arxiv.org/abs/2201.11876.
- [10] J. Curry, *Sheaves, cosheaves and applications*. PhD thesis, The University of Pennsylvania, 2013. arXiv:1303.3255.
- [11] J. Hansen and R. Ghrist, "Distributed optimization with sheaf homological constraints," in 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 565–571, 2019.
- [12] C. Bodnar, F. D. Giovanni, B. P. Chamberlain, P. Lio, and M. M. Bronstein, "Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in GNNs," in *Advances in Neural Information Processing Systems* (A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.
- [13] G.-C. Rota, "On the foundations of combinatorial theory I. Theory of Möbius functions," *Probability theory and related fields*, vol. 2, no. 4, pp. 340–368, 1964.
- [14] G. Sergeant-Perthuis, "Compositional statistical mechanics, entropy and variational inference," 2024. https://arxiv.org/abs/2403.16104.