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ABSTRACT
We identify morphisms of strong profunctors as a categorifica-

tion of quantum supermaps. These black-box generalisations of

diagrams-with-holes are hence placed within the broader field of

profunctor optics, as morphisms in the category of copresheaves

on concrete networks. This enables the first construction of ab-

stract logical connectives such as tensor products and negations for

supermaps in a totally theory-independent setting. These logical

connectives are found to be all that is needed to abstractly model

the key structural features of the quantum theory of supermaps:

black-box indefinite causal order, black-box definite causal order,

and the factorisation of definitely causally ordered supermaps into

concrete circuit diagrams. We demonstrate that at the heart of these

factorisation theorems lies the Yoneda lemma and the notion of

representability.

1 INTRODUCTION
Quantum supermaps have been a major focal point in the field of

quantum foundations over the last couple of decades [8]. These

supermaps are intended to capture the notion of higher-order quan-

tum processes: a first-order process is a quantum channel evolving

quantum states in time, while a second-order process is a map

which acts to send first-order processes to first-order processes,

that is, quantum channels to quantum channels.

Some simple examples of quantum supermaps include circuits-
with-holes, also known as combs [7, 9]. These are given by incom-

plete circuits of quantum channels with holes which one may imag-

ine filling with quantum channels to produce a complete circuit.

Quantum supermaps also encompass substantially more general

notions of higher-order transformation some of which have been

demonstrated to exhibit exotic phenomena such as superpositions

of causal order, and advantage in computational and information-

theoretic tasks [1, 5, 6, 13, 17, 18, 21, 37]. For this reason much of

the focus has been on these families of quantum supermaps that go

beyond combs. In fact, the most investigated higher-order processes

such as the quantum switch [11], the OCB process [25], the Lugano

process [2, 3] and the Grenoble process [34] are known to possess

no decomposition as a comb and thus are truly beyond the class of

maps that could be studied in a framework of combs alone.

At their heart, supermaps model a simple intuitive idea: a model

of first-order processes consists of boxes and wires, while a model

of higher-order processes must extend these compositional compo-

nents to include holes. First-order process theories are understood

to have a solid mathematical foundation in terms of monoidal cate-

gory theory [15], yet there is not a generally accepted and mathe-

matically rigorous foundation that adequately extends these models

to include holes.

The lack of such a foundation is a cause of important domain

specific problems. Firstly, to combine the study of indefinite causal

structure with quantum field theory and ultimately quantum grav-

ity, then the supermap framework will need to be extended to

infinite dimensional and even non-separable Hilbert spaces [27].

Current proposals for extension beyond finite dimensions however,

are restricted to separable Hilbert spaces, and further to either the

1-input setting [12] or to the Wigner-function representation [20].

Secondly, without a stable framework for supermaps in a general

context, it is unclear how to initiate the study of post-quantum

causal structures: causal structures compatible with GPTs or OPTs

[10], a class of physical theories used to study the special place of

quantum physics from information-theoretic principles.

1.1 Contributions
In the main article the goal is to produce a categorical model for su-

permaps which is both structurally well-behaved (with, for instance,

suitable tensor products) but still fully general in the categories it

can be applied to and the kinds of higher order processes incor-

porated. The key idea is to make a direct connection between the

methods of profunctor optics [14, 16, 22, 26, 28–32] and the dia-

grammatic approach of [35, 36], by identifying these diagrammatic

rules with the notion of morphism in the category StProf (C) of
strong profunctors.

It is known that the category StProf (C) has two closed tensor

products [16, 19, 26] which we use to model the spaces of separable

(⊗C ) and sequenced channels (5). As a result the morphisms with

those domains are shown to faithfully represent the supermaps

with indefinite causal order and definite causal order respectively.

𝜂 𝜂

𝜂3

𝜂2

𝜂1

Indefinite

Causal Order

(− ⊗C −)

Abstract

Definite Order

(− 5 −)

Concrete
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(1)
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StProf (C) also has a weak dualising functor (−)∗, which in gen-

eral is not involutive but is still strong with respect to the tensor

⊗C . This allows us to define a functorial par operation

&

which

has many of the same properties as its analogous one in Caus
(for instance it distributes linearly with ⊗C ) but it is generally not
associative or unital and thus fails to be a tensor product. This weak-

ens the ∗-autonomous structure of the Caus-construction [23, 33],

meaning we do not have a model of linear logic but of tensorial
logic [24]. The failure of (−)∗ to be involutive has a number of deep

connections with the structure of supermaps on the category C
and we demonstrate that the involutivity of (−)∗ on certain objects

of StProf (C) is intimately connected with the fundamental decom-

position theorems of quantum supermaps, which demonstrate that

abstract definite orders in quantum theory are realisable as concrete

networks.

2 SUMMARY OF RESULTS
In this work we formalise the notion of a supermap from [36]. Such

a supermap consists of a family of functions of the form:

𝜂𝑥,𝑥 ′

𝑥

𝑥 ′

𝑥 ′

𝑥

𝑎′

𝑎

𝑏′

𝑏

such that the following laws hold.

𝜂𝑥,𝑥 ′ 𝜙

𝑔

𝑓

= 𝜂𝑦,𝑦′ 𝜙

𝑔

𝑓

(2)

𝜂𝑥,𝑥 ′ 𝜙 = 𝜂𝑥⊗𝑦,𝑥 ′⊗𝑦 𝜙 (3)

The idea here is to capture the locality of the supermap 𝜂: that it

should only act locally to the lab 𝒂 and not on other environment

systems 𝒙 = (𝑥, 𝑥 ′). Thus we expect a supermap to commute with

the actions of agents on (𝑥, 𝑥 ′), in particular with pre- and post-

composition by maps on (𝑥, 𝑥 ′) (law (2)) and by further tensorial

extension of the environment (law (3)). These two laws jointly

capture the intuitive idea that supermaps should commute with

combs on the environment.

We are able to repackage this definition categorically as follows.

Definition 2.1. A single-party locally-applicable transformation

is a strong natural transformation of the type

𝜂 : C(𝑎 ⊗ −, 𝑎′ ⊗ =) ⇒ C(𝑏 ⊗ −, 𝑏′ ⊗ =) . (4)

This connection with pre-existing categorical notions means we

can find a tensor product ⊗C on StProf (C) on which the multi-

partite indefinitely-causally ordered supermaps act.

Theorem 2.2. On any symmetric monoidal category C, the strong
natural transformations of type

𝜂 :

𝑛⊗
C

𝑖=1

C(𝑎𝑖 ⊗ −, 𝑎′𝑖 ⊗ =) → C(𝑏 ⊗ −, 𝑏′ ⊗ =)

are the multi-partite locally-applicable transformations of type 𝜂 :

𝒂1, . . . , 𝒂𝑛 −→ 𝒃 .

In the case of quantum channels, this recovers the usual defini-

tion of a quantum supermap.

Theorem 2.3. The quantum supermaps on the non-signalling
channels are the morphisms of strong profunctors of type

𝑆 :

𝑖⊗
CPTP

CPTP(𝑎𝑖 ⊗ −, 𝑎′𝑖 ⊗ =) → CPTP(𝑏 ⊗ −, 𝑏′ ⊗ =) .

We also find another tensor product5 of StProf (C) onwhich the
definitely-causally ordered supermaps act. This captures precisely

the supermaps on 𝑛-combs in the case of quantum theory.

Theorem 2.4. The quantum supermaps on the 𝑛-combs are the
morphisms of strong profunctors of the following type in StProf (CPTP).

𝑛

=
𝑖=1

CPTP(𝑎𝑖 ⊗ −, 𝑎′𝑖 ⊗ =) → CPTP(𝑐 ⊗ −, 𝑐′ ⊗ =) (5)

A core theorem on the structure of quantum supermaps is that

any supermap with definite causal order can be decomposed into

a concrete circuit diagram with holes, such a property can be re-

framed in StProf (C) in terms of the Yoneda lemma.

Definition 2.5 (Supermap Decomposition Theorem). A symmet-

ric monoidal category C has a 1-arity supermap decomposition

theorem if

StProf (C)
(
C(𝑎 ⊗ −, 𝑎′ ⊗ =), C(𝑏 ⊗ −, 𝑏′ ⊗ =)

)
�StProf (C)

(
𝑦𝑏,𝑏′ , 𝑦𝑎,𝑎′

)
More generally it has an 𝑛-arity supermap decomposition theorem

if

StProf (C)
(
5𝑖 C(𝑎𝑖 ⊗ −, 𝑎′𝑖 ⊗ =), C(𝑏 ⊗ −, 𝑏′ ⊗ =)

)
�StProf (C)(𝑦𝑏,𝑏′ ,5𝑖𝑦𝑎𝑖 ,𝑎′𝑖

)
Here, 𝑦𝑎,𝑎′ is the Yoneda embedding of coend optics, understood

to be the space of combs with (𝑎, 𝑎′) as input and variable output,

and quantum theory indeed has this decomposition property.

Theorem 2.6. The category CPTP has an 𝑛-arity supermap de-
composition theorem for every 𝑛.

Finally, we are able to frame this property in terms of involutivity

of weak duals in StProf (C).
Proposition 2.7. A symmetric monoidal category C has a 1-arity

decomposition theorem if and only if

C(𝑎 ⊗ −, 𝑎′ ⊗ =)∗ � 𝑦𝒂, or equivalently, 𝑦∗∗𝒂 � 𝑦𝒂 .

Furthermore, C has an 𝑛-arity supermap decomposition theorem if
and only if

(5𝑖𝑦
∗
𝒂𝑖 )

∗ � 5𝑖𝑦𝒂𝑖 .
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