
DRAFT March 29, 2024

Reinforcement Learning in
Categorical Cybernetics

Jules Hedges Riu Rodrı́guez Sakamoto

We show that several major algorithms of reinforcement learning (RL) fit into the framework of
categorical cybernetics, that is to say, parametrised bidirectional processes. We build on our previous
work in which we show that value iteration can be represented by precomposition with a certain
optic. The outline of the main construction in this paper is: (1) We extend the Bellman operators
to parametrised optics that apply to action-value functions and depend on a sample. (2) We apply
a representable contravariant functor, obtaining a parametrised function that applies the Bellman
iteration. (3) This parametrised function becomes the backward pass of another parametrised optic
that represents the model, which interacts with an environment via an agent. Thus, parametrised
optics appear in two different ways in our construction, with one becoming part of the other. As we
show, many of the major classes of algorithms in RL can be seen as different extremal cases of this
general setup: dynamic programming, Monte Carlo methods, temporal difference learning, and deep
RL. We see this as strong evidence that this approach is a natural one and believe that it will be a
fruitful way to think about RL in the future.

1 Introduction

Reinforcement learning (RL) refers to a class of methods in machine learning for optimising a long-run
reward during interaction with an unknown environment. It is considered one of the major pillars of
machine learning, along with deep learning (neural networks and differentiable programming), unsu-
pervised learning (statistical clustering methods, which includes topological data analysis [Ghr08]) and
variational learning (Bayesian inference and related probabilistic methods). It can be seen as an exten-
sion of dynamic programming methods in optimal control theory [Ber19], which drops the assumption
that a model of the environment is known. RL, combined with deep learning methods to produce deep
RL, notably achieved state of the art success in practical game playing, with AlphaGo [SSS+17] defeating
the human Go champion in 2016 and AlphaStar [VBC+19] achieving Grandmaster status in the real time
strategy game StarCraft II.

In this paper we show that several major algorithms of reinforcement learning fit into the framework
of categorical cybernetics, that is to say, parametrised bidirectional processes [CGHR22]. This branch of
applied category theory has already been applied to deep learning [CGG+22, Gav24], variational learning
[BHS23, Smi23] and game theory [GHWZ18, BHZ23]. It is also a close relative of the categorical
systems theory of Myers, Spivak and others [Mye23, NS24].

We build on our previous work [HS23] in which we show that value iteration, a fundamental method
common to both dynamic programming and RL, can be represented (in the technical sense) by precom-
position with a certain optic. Specifically, for each policy c we define an optic B(c) :

((
R

)
→

((
R

)
, where

(is the set of states of a Markov decision process. This has the property that for any value function
value function + : (→ R, represented as an optic + :

((
R

)
→ �, + ◦B(c) is a better value function. This

precomposition with B(c) is called a Bellman operator.
The outline of the main construction in this paper is: (1) We extend B to a parametrised optic

representing a more general class of Bellman operators that apply to action-value functions and depend

2 Reinforcement Learning in Categorical Cybernetics

on a sample as a parameter. (2) We apply K, a representable contravariant functor that already plays a
foundational role in compositional game theory, obtaining a parametrised functionB=K(B) that applies
the Bellman iteration. (3) This parametrised function becomes the backward pass of another parametrised
optic that represents the model, which interacts with an environment via an agent. Thus, parametrised
optics appear in two different ways in our construction, with one becoming part of the other. This stays
within the existing ingredients of categorical cybernetics, but combines them in a way that has not been
seen elsewhere.

As we show, many of the major classes of algorithms in RL can be seen as extremal cases of this
general setup: dynamic programming, Monte Carlo methods, temporal difference learning, and deep
RL. We see this as strong evidence that this approach is a natural one and believe that it will be a fruitful
way to think about RL in the future. Although we focus on single-agent RL, the compositionality of our
methods makes them naturally well-suited to multi-agent RL, which is a close relative of game theory.

2 Background: Reinforcement learning

Algorithms in RL specify how agents learn optimal behaviours through interaction with their environ-
ment. This interaction provides feedback to actions, and is the key feature that differentiates it with re-
spect to supervised and unsupervised learning. The fundamental goal of RL is to enable agents to make
sequential decisions in dynamic environments to maximize long-term cumulative rewards. This process
involves the agent taking actions, observing the resulting states and rewards, and using this information
to update its decision-making strategy over time.

Our approach to study these algorithms is structural, and the main structural distinction is between
the agent and the environment. The environment represents the external system with which the agent
interacts, and is assumed be a Markov decision process. To quickly recall, a Markov process (MP)
consists of a set of states (and a stochastic transition function C : (→ �(, where � is some probability
monad over Set. A Markov reward process (MRP) is a Markov process with an additional utility function
that outputs rewards D : (→ �R. A Markov decision process (MDP) is a MRP with a set � of actions,
whose transition and utility functions use the action taken at each state, as in 〈C, D〉 : (×�→� (()×� (R).
An agent’s goal is to maximize the expected long-run reward

∑
W8A8 , where 0 < W ≤ 1 is a hyperparameter

called the discount factor which controls the agent’s “patience”, or preference between rewards in the
present and rewards in the future.

The environment’s response to an agent’s action is given by transition dynamics that can be assumed
to have the Markov property, and the environment’s state is known to the agent. When the agent only has
access to a partial observation of the state, we speak of a partially observable MDP (POMDP).

The agent has as core components the policy, the reward, the value function and the internal model.
A policy c : (→)� or scheduler defines its strategy mapping states to actions. The policy is either
single-valued or deterministic () = 1 the identity functor), many-valued () = P the powerset functor,
like argmax) or probabilistic () = � the distribution functor, like Y-greedy), with probabilistic being the
most common. The reward is the immediate response of the environment after an action, and the maxi-
mization of its expected cumulative sum is the goal of the agent under the reward hypothesis [SSPS21].
A value function estimates this expected long-term reward associated with following a particular pol-
icy. Usually one works with either a state value function + : (→ R or a state-action value function
& : (× �→ R, where + (B) estimates the long-run reward of following a certain policy from each state,
and&(B, 0) estimates the long-run reward of taking each action in each state and then following a certain
policy after that. Both policies and value functions are characterised as solutions of functional equations

J. Hedges & R. Rodrı́guez Sakamoto 3

known as Bellman equations, using the temporal ‘self-similarity’ of MDPs.
When (and � are finite sets the function& is typically implemented as a mutable lookup table called

a Q-table or Q-matrix. A model is an approximation or representation of the environment’s dynamics,
allowing the agent to simulate or predict future states and rewards. One surrogate objective of an agent
is to improve its model. Not all agents have models, so there’s a distinction between model-based and
model-free methods.

Methods whose policies for environment interaction cbeh (“behaviour policy”) are different to the
ones for model improvement ctgt (“target policy”) are called off-policy, while on-policy methods only
have one policy. Finally, another distinction is drawn between online and offline or batch RL methods,
where the former family learns while interacting with the environment, while the latter learns from pre-
recorded experiences.

RL encompasses many algorithms and methodologies, including dynamic programming, Monte
Carlo methods, temporal difference learning, deep reinforcement learning, and more. This diversity
of methods employs experimental and formal justifications to tackle weak spots in this learning theory
such as the credit-assignment problem, the exploration-exploitation tradeoff and coping with state that
is hidden or too big to represent explicitly. Many of these were problems already identified in preceding
fields such as psychology and neuroscience [KLM96].

2.1 Dynamic programming

Dynamic programming (DP) methods are an idealized class of model-based algorithms that do not need
to interact with the environment because they have a perfect model of it as an MDP. They are not usu-
ally used in their classical formulation that we describe next in practical settings because of the perfect
model assumption and their high computational expense, and serve rather as a theoretical baseline to
approximation methods and other RL techniques.

The idea behind DP is to treat the Bellman equation for the optimal value of a policy and the Bellman
equation for the optimal policy of a value function as update operators on a space of value functions.

The search for an optimal policy happens entirely within the agent’s model, interleaving two feedback
operations called the value improvement and policy improvement steps which treat the Bellman equations
as update rules. This process of updating previous estimates is called bootstrapping.

• Value improvement or policy evaluation updates the value function + : (→ R pointwise by
traversing the state space (and updating the state’s estimated value + (B) with the expected dis-
counted value after one simulation step:

+ (B) ← E 0∼c (B)
(B′,A)∼C (B,0)

[A +W+ (B′)] =
∑
0∈�

c(B, 0)
∑
B′∈(
A ∈R

C (B, 0, B′, A) (A +W+ (B′)) (1)

Here we are interchangeably considering a stochastic function 5 : - → �. as a function 5 : - ×
. → [0,1]. The sum over R makes sense when � is finite support probability distributions, and in
more general settings is replaced with an integral. We write Bval(+, c) (B) = E[A + W+ (B′)] for the
operator Bval : R(× �(→ R(. We will discuss Bellman operators in Section 5.

• Policy improvement updates the policy function c : (→ � pointwise by traversing the state space
(and updating the action taken in the state c(B) with argmax0E(B′,A)∼C (B,0) [A +W+ (B′)]. Similarly,
we write Bpol(+) (B) = argmax0EB′,A∼C (B,0) [A +W+ (B′)] for the operator Bpol : R(→ �(.

Depending on the sequencing of these two steps, we have three classic algorithms, where we write
(−)† for the (in practice approximate) fixpoint of the operator andBpol(+, c) = (+,Bpol(+)) andBval(+, c) =

4 Reinforcement Learning in Categorical Cybernetics

(Bval(+, c), c) for the embeddings of the two Bellman operators as maps R(× �(→ R(× �(: policy
iteration (PIT) as (Bpol ◦Bval

†
)†, value iteration (VIT) as (Bpol ◦Bval)† and generalized policy itera-

tion (GPI) as (Bpol
<
◦Bval

=
)† for <,= > 0.

2.2 Monte Carlo

Monte Carlo (MC) methods are antithetical to DP, because they don’t assume any prior knowledge of
the environment’s dynamics. Without this knowledge, the way to learn the value function and obtain
a optimal policy is to estimate it from sample trajectories. Averaging over many trajectories should
converge to the expected value.

The agent’s internal model consists of a value function & : (× �→ R, from which a policy like
the Y-greedy c : (→ �� is derived: c(B) = argmax0&(B, 0) with probability 1− Y and uniformly ran-
dom between all actions with probability Y. The value function improvement is pointwise, but unlike
DP, MC improves &(B, 0) by averaging over many returns that start at (B, 0). Given a single episode
(B, 0,A, B′, 0′, A ′, . . .) starting at (B, 0), the update target becomes � =

∑
C W
CAC , and the value function

updates as
&(B, 0) = (1−U)&(B, 0) +U� (2)

where the learning rate U : [0,1] is a step size hyperparameter. Note that the lack of bootstrapping is
shown by the fact that � does not contain any reference to the value function.

2.3 Temporal difference learning

Temporal difference learning (TD) is a class of methods that learn from both the interaction with the
environment (MC’s sampling) and from previous estimates of the value function (DP’s bootstrapping).

Given a finite episode (B, 0,A, . . . , B=, 0=) starting at (B, 0), we can modify the target for (2) to consist
of the discounted sum of the =− 1 returns and an estimated long-run value of the last state-action pair.
We write =-TD for the class of TD methods whose trajectories contain = return values.

Example 2.1 (SARSA [Sut95]). SARSA is a 1-TD on-policy control method, which updates the (B, 0)-
indexed Q-value with the target � = A + W&(B′, 0′). The name originates from the model feedback
consisting of a 1-step episode (B, 0,A, B′, 0′). Some variants of SARSA include =-SARSA, with � =∑=−1
C=1 W

CAC + W=&(B=, 0=), and Exp-SARSA, with � = A + WE0∼ctgt (B)&(B, 0), which is off-policy because
the last action is determined in expectation by a target policy ctgt.

Example 2.2 (Q-learning [WD92]). In Q-learning, given the current state B the agent performs an action
0 ∼ cbeh(B) using a policy derived from its internal Q-table, for example an Y-greedy policy, and gets from
the environment the reward A and the next state B′. The feedback to the model is the tuple (B, 0,A, B′). The
model then updates its Q-table with its target policy � = A +W&(B, ctgt(B)) = A +Wmax0′∈�&(B′, 0′). It is
an off-policy method because the last action used to compute the update is ctgt(B′) = argmax0′∈�&(B′, 0′)
and not cbeh(B′).

Q-learning is the first appearance of a major subtlety of RL: the distinction between actions that the
agent actually performs during an interaction with its environment, and actions which are “internal” or
“simulated”. The actions that the agent actually performs in Q-learning are always drawn from the policy
cbeh, whereas the action argmax0′∈�&(B′, 0′) is used only when computing updates. We can consider
this to be a separate target policy, ctgt(B′) = argmax0′∈�&(B′, 0′).

J. Hedges & R. Rodrı́guez Sakamoto 5

2.4 Approximation methods

The methods seen so far are usually denoted tabular methods, because they work around an encoding
of value and/or policy functions as lookup tables, taking into account that the state and action spaces
(, � are finite sets of manageable cardinality. Approximation methods tackle the state space explosion
problems that arise when these sets become too big, e.g. the curse of dimensionality in continuous state
space settings or even in situations where the observation of an image as a pixel space begs for lossy
encodings. Among splines, hierarchical methods, memory-based methods, linear methods with (kernel)
features and others, we focus on supervised-learning function approximation methods or gradient-based
methods, which are known as deep reinforcement learning.

Deep Q-networks (DQN) [MKS+13] are a notable method in this area. One can motivate them by
observing the Q-table update &, (B, 0,A, B′) ↦→ & ′ of Q-learning as a sampled discrete (semi)gradient1

update. Let L = (&(B, 0) −�)2 be a loss function, which quantifies the discrepancy between the Q-value
and the sample target. The update equation (2) becomes & = & − U

2 m& (B,0)L. A DQN parametrises
the Q-table as a function Θ× (× �→ R. For performance considerations, the function is curried into
DQN :Θ×(→ (�→ R), which is implemented as a neural network with |(| inputs and |�| outputs with
values in R. The encoding of the Q-learning method as a neural network leverages all of the powerful
techniques of deep learning.

In DQN, the policy is still obtained as a function of the now approximate Q-function. Policy gradient
(PG) methods [SMSM99] bypass the generation of a value altogether, by directly outputting an action
distribution PG :Θ×(→��. One can see DQNs as a special PG method by transforming the Q-function
into an action probability via the Boltzmann distribution, also known as softmax.

3 Background: categorical cybernetics

In this section we quickly recall the main ideas of categorical cybernetics, mostly from [CGHR22].

3.1 Actegories

Given a monoidal category M and a category C, an action of M on C, also called an actegory, is a
functor • :M×C → C together with coherent isomorphisms � • - � - and (" ⊗ #) • - � " • (# • -)
[CG23]. Every monoidal category has a self-action given by ⊗ : C×C → C.

If M and C are monoidal categories and � :M → C is a strong monoidal functor, then " • - =
� (") ⊗ - is an actegory. A coherent action of one symmetric monoidal category on another, called a
symmetric actegory, is necessarily of this form. For example, the self-action of a symmetric monoidal
category is a symmetric actegory given by the identity functor C → C. All actegories in this paper will
be symmetric.

An enrichment of a category C in a monoidal categoryM is a functor [−,−] : Cop ×C →M plus
additional data and conditions [Kel82]. There is a tight connection between actegories and enrichments:
if • is any actegory such that every −• - :M→ C has a right adjoint [-,−] : C →M (called a closed
actegory) then [−,−] is an enrichment, and conversely if [−,−] is an enrichment such that every [-,−]
has a left adjoint −• - (called a copowered or tensored enrichment) then • is an action. For example,
if C is any category with all coproducts then it has a tensored enrichment in Set and therefore an action
• : Set×C → C given by " • - =∑

" - .

1Semi-gradient because the Q-function is contained in the target yet it is considered constant in the gradient computation
[SB20, Sec.9.3][Bar93].

6 Reinforcement Learning in Categorical Cybernetics

3.2 Parametrisation

Given an actegory • :M×C → C, a parametrised morphism 5 : - → . in C is a pair of an object
" :M and a morphism 5 : " •-→. . The identity parametrised morphism is given by � :M and id- :
� •- � -→ - . The composite of (", 5 : " •-→.) and (#,6 : # •. → /) has parameter # ⊗" and

morphism (# ⊗") •- �−→ # • (" •-)
• 5
−−−−→ # •.

6
−→ / . A reparametrisation from (", 5 :" •-→.)

to (#,6 : # • -→ .) is a morphism ℎ : "→ # in C such that 5 = 6 ◦ (ℎ • -).
Given an actegory • :M×C → C, we have a bicategory whose objects are objects of C, 1-cells

are parametrised morphisms and 2-cells are reparametrisations. This may be referred to by ParaM (C),
Para•(C) or simply Para(C) when unambiguous. We believe that when • is a symmetric monoidal
actegory, Para•(C) is a symmetric monoidal bicategory [HS19] but this has not yet been proven.

When we have an action • :M×C → C and a symmetric lax monoidal functor , :M→ Set (or
sometimes Cat), and we extend • to an action of the category of elements

∫
, by precomposing with

the discrete fibration c :
∫
, →M to obtain (",F) • - = " • - . When, is lax monoidal with laxator

∇ : , (-) ×, (.) →, (- ⊗.),
∫
, gains a symmetric monoidal product (-,F-) ⊗ (.,F.) = (- ⊗

.,F-∇F.). We write Para,M (C) for Para∫
, (C), and call this weighted parametrisation [Gav24].

Dually, a coparametrised morphism 5 : -→. is a pair of an object " :M and a morphism 5 : -→
" •. . There is a category CoPara•(C) of objects, coparametrised morphisms and reparametrisations.

Given a category C enriched in a monoidal category M, an externally parametrised morphism
5 : - → . of C is a pair of an object " ofM and a morphism 5 : " → [-,.] ofM [Smi23]. There
is once again a bicategory ParaM (C) of externally parametrised morphisms. In the case of a tensored
enrichment this bicategory is equivalent to the previous one, but there are also interesting cases when
they differ. Coparametrised morphisms cannot be defined for an enrichment that is not tensored.

3.3 Optics

" ′
.

. ′- ′

-

"

/

/ ′

- - ′. . ′/ / ′

"

" ′

Figure 1: Alternative
notations for optic com-
position

Given a monoidal categoryM acting on categories C andD, and given objects
-,. of C and - ′,. ′ ofD, a mixed optic

(-
- ′

)
→

(.
. ′

)
is an equivalence class of

triples of an object " :M, a coparametrised morphism 5 : -→" •. of C and
a parametrised morphism 5 ′ : " •. ′→ - ′ of D. The equivalence classes are
generated by reparametrisations and satisfy the universal property of a coend,∫ " :M C(" • -,.) ×D(" •. ′, - ′). There are two different string diagram
notations for an optic (figure 1). The first considers them as morphisms of a
monoidal category, composing left-to-right, with causality flowing clockwise
from top-left. The second considers them as colours of an operad, composing
outside-in, with causality flowing left-to-right.

There is a category OpticM (C,D) whose objects are pairs and whose
morphisms are optics. When both actions are symmetric, or equivalently are
defined by a span of symmetric monoidal functors C ←M →D, then OpticM (C,D) is a symmetric
monoidal category, with the tensor product on objects being pairwise.

In the common case thatM = C = D acts on itself by monoidal product, we write Optic(C). The
tensor product of Optic(C) is pairwise monoidal product. When the monoidal unit of C is terminal
(which includes all Markov categories) then we have natural isomorphisms Optic(C)

(
�,

(-
- ′

))
� C(�, -)

and Optic(C)
((-
- ′

)
, �

)
� C(-, - ′). We call morphisms in latter case continuations, and define the

representable functor K =Optic(C)(−, �) : Optic(C)op→ Set.

J. Hedges & R. Rodrı́guez Sakamoto 7

There are two common cases when the coend in the definition of optics can be eliminated using the
ninja Yoneda lemma [Ril18, Lor21]. Firstly, whenM = C = D acts on itself by cartesian product then
there is a natural isomorphism Optic

((-
- ′

)
,
(.
. ′

))
� C(-,.) × C(- ×. ′, - ′). This is usually known as

a Lens. Although this case is much easier to understand, there are significant conceptual advantages to
the more general definition [Gav22]. Secondly, whenM = C = D acts on itself by a closed monoidal
product then there is a natural isomorphism Optic

((-
- ′

)
,
(.
. ′

))
� C(-,. ⊗ [. ′, - ′]). Both of these cases

can be generalised to requiring a condition on only one side.
For the cartesian self-action of Set, Optic(Set) coincides with the category of monomial endofunc-

tors and natural transformations. Any cartesian self-action in a category with finite limits can be gen-
eralised to dependent lenses (also known as morphisms of containers [AAG03]), which in the locally
cartesian closed case are equivalent to polynomial endofunctors [NS24]. Finding the best of both worlds
between the monoidal and cartesian cases is known as dependent optics [Ver23] and is only partially
understood. There are reasons to want to use dependent optics in this paper because it is common that
the available actions of a reinforcement learning agent depends on the current state of the Markov chain
[BJI+17], but we only consider the simply-typed case in this paper for simplicity.

3.4 Parametrised optics

When a category of optics is symmetric monoidal, it admits a self-action. In [CGHR22] it was identi-
fied that the resulting category Para(Optic) of parametrised optics is extremely rich, and provides a
general-purpose foundation for the study of controlled processes. The study of this is known as categor-
ical cybernetics, which includes compositional game theory [Dal19], deep learning [CGG+22], com-
positional Bayesian inference [BHS23] and variational learning [Smi23], and applications in software
engineering such as open servers [VC22].

4 States, contexts and iteration

An optic (whether parametrised or not) is a process consisting of a forward pass followed by a backward
pass. In many applications, including those in this paper, this process is iterated through repeated in-
teraction with an outside environment. In the case of supervised learning, this could simply be samples
drawn from a dataset. In this section we will develop a general theory of iterated optics.

.-

"

.-

"

F F

Figure 2: Morphism in
Para, (C) (right) and
its equivalence class in
c∗0(Para, (C)) (left).

Let C be a symmetric monoidal category and , : C → Set a symmetric
lax monoidal functor. Consider the bicategory Para, (C) generated by the
action of

∫
, on C given by (",F) • - = " ⊗ - . A parametrised morphism

-→. of C weighted by, consists of a morphism " ⊗ -→. together with
an element F ∈, ("), as depicted in figure 2(right).

Any bicategory can be turned into a 1-category by change of enrichment
basis along the connected components functor c0 : Cat→ Set. This operation
quotients together 1-cells that are related by any 2-cell. (c0 is right adjoint
to the free functor Set→ Cat, and it is more common to change basis along
the left adjoint, which instead quotients out only invertible 2-cells.) The 1-
category c∗0(Para, (C)) has morphisms that are equivalence classes identify-
ing all ways of making the cut in figure 2(right). This satisfies an important universal property: it is
the symmetric monoidal category that results from freely extending C with a state F : � → - for each

8 Reinforcement Learning in Categorical Cybernetics

element F ∈ � (-), for all objects - [HT12]2.
Let C be a symmetric monoidal category. We define a symmetric lax monoidal functor I : Optic(C) →

Set, called the iteration functor [Hed24]. On objects, we set I
(-
- ′

)
=

∫ " :C C(�, " ⊗-)×C(" ⊗- ′, " ⊗
-). Given an element (",G0, 8) ∈ I

(-
- ′

)
we call " the state space, G0 : � → " ⊗ - the initial state and

8 : " ⊗ - ′→ " ⊗ - the iterator.
Given an optic 5 = (#, 5 , 5 ′) :

(-
- ′

)
→

(.
. ′

)
in Optic(C), we get a function I(5) : I

(-
- ′

)
→ I

(.
. ′

)
given

by taking (",G0, 8) to the state space " ⊗ # , the initial state �
G0−→ " ⊗ -

" ⊗ 5
−−−−−→ " ⊗ # ⊗. , and the

iterator
" ⊗ # ⊗. ′

" ⊗ 5 ′
−−−−−→ " ⊗ - ′ 8−→ " ⊗ -

" ⊗ 5
−−−−−→ " ⊗ # ⊗.

This can be easily checked to be functorial (see proposition A.1 in the appendix).
When C = Set and similar cases, given an element 8 = (", (<0, G0), 8) ∈ I

(-
- ′

)
and a function : : -→

- ′, we can define an infinite sequence 〈: |8〉 : -l by the corecursive formula

〈: |", (<0, G0), 8〉 = G0 : 〈: |",8(<0, : (G0)), 8〉

This defines a dinatural transformation 〈−|−〉 : K
(-
- ′

)
× I

(-
- ′

)
→ -l . In the general case, this can be

accomplished using the machinery of monoidal streams [LFR22].
We also have an evident laxator ∇ : I

(-
- ′

)
× I

(.
. ′

)
→ I

(- ⊗.
- ′⊗. ′

)
defined up to symmetries by

(",G0, 8)∇(" ′, G ′0, 8
′) = (" ⊗" ′, G0 ⊗ G ′0, 80 ⊗ 8

′
0)

The resulting symmetric monoidal category OpticI(C) = c∗0
(
ParaI(Optic(C))

)
extends Optic(C) with

states �→
(-
- ′

)
defined by elements of I

(-
- ′

)
. A typical morphism is depicted at the end of [Hed24].

Given a symmetric monoidal category C, a comorphism -→. , which could also be called a context
for morphisms - → . , is a state � →

(-
- ′

)
of Optic(C). When C is itself a category of optics, this is

known as double optics and is a central idea of Bayesian open games [BHZ23]. These can be depicted
as combs with 1 hole and bidirectional wires, or combs with 2 holes and only forwards wires.

Given a symmetric monoidal category C, a functor Optic(C) → Set can be equivalently defined as
a Tambara comodule: a profunctor , : C × Cop → Set equipped with a natural family of functions
, (" ⊗ -," ⊗.) → , (-,.). This is a dualisation of the fundamental theorem of Tambara theory
[PS08, CEG+24]. Given this data, a generalised comorphism - → . can be defined as an element of
,

(-
- ′

)
, that is, a state of Optic, (C) = c∗0

(
Para, (Optic(C))

)
. This construction appears in [Hed23].3

Putting this together, we can define an iteration context for optics
(-
- ′

)
→

(.
. ′

)
as a (representable)

state of Optic(OpticI(C)). This defines a functor Ienv : Optic2(C) → Set depicted in figure 3(above),
and by pulling the state variable of 8 through : we can define it equivalently by a coend over C rather
than over OpticI(C):

Ienv

((
-

- ′

)
,

(
.

. ′

))
�

∫ "," ′:C
C(�, " ⊗ -) ×C(" ⊗.," ′ ⊗. ′) ×C(" ′ ⊗ - ′, " ⊗ -)

This can be equivalently depicted as a 3-hole comb in figure 3(below), and we can unroll this = steps to
produce a 2=-hole comb, including an l-comb [LFR22] for the limiting case.

2Thanks to Nathan Corbyn for bringing this reference to our attention.
3The first author has been working on the theory of generalised contexts for several years, but has yet to find a compelling

application outside of categorical cybernetics.

J. Hedges & R. Rodrı́guez Sakamoto 9

5 Bellman operators

-

- ′
.

. ′

"

" ′

:
G0

8

G0

" " ′

- . . ′ - ′ -

"

: 8

Figure 3: Iteration
contexts as states of
Optic2(C) (above) and
3-hole combs (below).

A Bellman operator is a self-mapping of a function space of either state-
value functions or state-action-value functions, which iteratively improves
the estimation of values. For dynamic programming, the most basic Bellman
operator Bc = Bval(−, c) : R(→ R(is defined by

Bc (+) (B) = E(A ,B′)∼C (B, c (B)) [A +W+ (B′)]

The functional equation + = Bc (+) is called a Bellman equation, and its
solution + characterises the long-run values of the policy c. Provided (is
finite and 0 < W < 1,Bc is a contraction mapping on the supremum metric of
R(, and therefore iterating Bc from any initial estimate of + will converge
to the unique solution of the Bellman equation.

In [HS23] we showed that Bc has the form Bc = K(ℓc),
where ℓc =

(ℓ 5
ℓ1

)
:

((
R

)
→

((
R

)
is the mixed optic in the category

OpticKl(�) (Kl(�),EM(�)) defined by ℓ 5 : (→ � ((× R) which maps
B ↦→ C (B, c(B)) and ℓ1 : � (R) ×R→R which maps A, E ↦→ E[A] +WE. Here �
is the finite support probability monad on Set, whose Eilenberg-Moore category is convex sets [Fri09],
with Kl(�) acting on EM(�) via the embedding of free algebras as algebras � : Kl(�) ↩→ EM(�),
which is a strong monoidal functor.

That is to say, if we represent a value function + : (→ R by a costate of optics + :
((
R

)
→

(1
1
)
, then

the costate + ◦Bc :
((
R

)
→

(1
1
)

similarly represents B(+) : (→ R. This is a refinement of the usual view
of Bellman operators as endomorphisms of function spaces.

Strictly speaking it would be preferable to use a category of optics whose forward objects are finite
sets and backward objects are complete metric spaces, using a suitable probability monad such as Kan-
torovich [FP19], in order to guarantee convergence in all cases. However we leave the details of this for
future work. For the general theory of RL one can work with Markov categories [Fri20], and especially
representable Markov categories [FGPR23] to handle the interplay between distributions and samples.

This type of Bellman operator updates an entire value function at once, as is most common in basic
dynamic programming. However in reinforcement learning it is far more common to update a Q-matrix
one entry at a time, with a sample determining which state-action pair is to have its value updated.
Bellman operators of that form do not directly factor through K. However we can fix this with a small
change in perspective: we consider Bellman operators that return a delta or change to a Q-matrix, apply
K to that, and then apply the change to obtain a new Q-matrix in the world of functions rather than optics.
This same change of perspective is required anyway to describe deep RL where the delta is replaced with
a cotangent vector, so it is an interesting observation that the category theory suggests the same for the
more discrete setting of tabular RL.

One may ask whether Bpol arises also as the image under K of a certain optic, and the answer is
negative. This was an ambiguous point in [HS23] where the policy improvement step could not be stated
as an optic, even though both Bval and Bpol are treated as similar contraction operators in the dynamic
programming literature. We can now give a more explicit answer; Bpol involves two coevaluation maps
(_), so it is not in the image of an optic under the continuation functor (see figure 4).

10 Reinforcement Learning in Categorical Cybernetics

'′(
′

'(

ev
_

(

'
�

'

�(ev
(′

'′ W
'

(

⊕C

'′(
′

�'
_

�

'

'

ev
(′ '′ W

'(

arg
max

_
�(

(

�

⊕C

Figure 4: Bval (left) and Bpol (right) in the free autonomisation of Set [Del20] (see also [BS10]).

5.1 Parametric Bellman operators

Since the category Lens=Optic(Set) is enriched in Set, we can form its category of externally parametrised
morphisms, ParaSet(Lens). A morphism

(-
- ′

)
→

(.
. ′

)
of this category consists of a parameter set %, a

forwards pass function %× -→ . and a backwards pass function %× - ×. ′→ - ′.
The simplest Bellman operator for RL, the one for SARSA, is a morphism in this category of type

B :
(1
(×�×R

)
→

((×�
R

)
, with parameter set Υ = (× �×R× (× �, where the backward pass function is

A, E ↦→ A +WE (figure 5).

+

(�R(�

(

�

RR

(
� ↦−→K �

(�R (�R(�

R(×�

Figure 5: Target computation in
SARSA as a parametrised lens, and
its K-image in Set.

We lift the functor K : Lensop → Set to the functor
ParaSet(K) : ParaSet(Lensop) → ParaSet(Set). Applying this
functor to B results in a function

ParaSet(K) (B) : Υ×R(×�→ (× �×R
((B, 0,A, B′, 0′),&) ↦→ (B, 0,A +W&(B′, 0′))

Here we very informally think of (× � × R as a ‘discrete
cotangent vector’ at & ∈ R(×�. Slightly more precisely, the ac-
tual cotangent space is R(×�, with (× �×R representing a scaled
basis vector via the embedding (× � ×R ↩→ R(×�, (B, 0,A) ↦→

(B′, 0′) ↦→
{
A if B = B′, 0 = 0′

0 otherwise
. This differential geometry per-

spective is heavily inspired by Myers’ categorical systems theory [Mye23] and related unpublished work
in progress of Capucci, and we leave it for future work to make its application to reinforcement learning
precise.

We do not provide a general definition of Bellman operators, and consider this a representative ‘def-
inition by example’. In general, Bellman operators will be optics from value functions to deltas of value
functions, parametrised by a sample which is data received from the environment.

In methods where the sample requires the operator to make use of the continuation only once, this
parametric operator can be represented as a lens. SARSA is an example of this, where the usage of &
by the target is linear in the sense of linear type theory. Setting aside the convergence properties of the
Bellman operator, we treat it from this point on as a morphism � : Υ×R(→ R(in Set. This morphism
becomes a central part of our formalization of an RL model, explained next.

6 Models, agents and environments

A model for an RL method contains the data to generate the policy from certain inner parameters and
the data to update those parameters based on bootstrapping and/or samples. It matches the structure of a
lens from model parameters to agent interface, which we annotate in figure 6(a).

The forward map uses parameters of the method to generate a policy for the agent’s interaction
with the environment. In Q-learning for example, which is a TD method (figure 6(b)), % : R(×�→

J. Hedges & R. Rodrı́guez Sakamoto 11

(P�)(takes the current Q-table & : R(×� and returns the greedy policy c : (P�)(defined by c(B) =
argmax0&(B, 0).

The backward map takes the return from the agent and the current parameters to generate an update
target as a (often discrete) cotangent vector for the parameters. The return usually takes the form of
some product of types ((states), � (actions) and R (rewards). In SARSA (figure 6(b)), � takes a
sample (B, 0,A, B′, 0′) (right input) and the bootstrapped Q-table (upper input) to calculate the target
A + W&(B′, 0′), which is the direction of the cotangent vector at (B, 0). In DP (figure 6(d)), there is no
return from the agent, and the update target is the output of the Bellman operator Bval as a section of the
cotangent bundle: for every state B ∈ (, Bval(+) (B) defines the direction that + (B) must change to.

Certain DP methods like GPI or asynchronous DP [Ber82] benefit from treating the two Bellman
operators as separate backward morphisms (figure 6(e)). This also illustrates actor-critic (AC) methods
[KT01] (figure 6(f)), which keep two separate functions, the actor % : Θ× (→ ��, similar to a policy
gradient network, and the critic + : Ω→ (→ R, which learns a baseline value function. This learned
baseline serves to reduce the high variance of data samples seen in PG methods. Being a deep RL method,
the actor map % : \ ↦→ c\ is a neural network, and the associated backward map Lac : Θ×Ω× (�R→
ΔΘ is defined by the improvement of expected return (\,l, B, 0,A) ↦→ (A −+l (B))∇\ logc\ (B, 0) with a
baseline given by +l . The critic map + : l ↦→ +l has as the backward map Lcr : Ω× (�R(→ ΔΩ the
reduction of policy update variance (l, B, 0,A, B′) ↦→ A +W+l (B′) −+l (B).

policyparams

samplechange

%

�

bootstrap

Θ

ΔΘ

(��)(

Υ

(0)
(��)(R(×�

(�R(�Δ(R(×�)

%

�

(1)
(��)(R(×�

(�R=Δ(R(×�)

%

�

(2)

(��)(R(

�Δ(R()

%

B

(3) (��)(�(

�
Δ(�()

%

Bpol

R(

Δ(R() Bval

(4)
(��)(Θ

(�R(
ΔΘ

%
Ω

ΔΩ

(5)

Lcr
Lac

Figure 6: Lenses for (0) a generic RL model, (1) TD, (2) MC, (3) DP, (4) GPI and (5) Actor-Critic
methods. The drawing of the backward map as a morphism with an input from the top is merely a stylistic
choice, where it should be understood as a morphism with two inputs, the bootstrap and the sample.

This model lens embeds into Optic(C) which is extended to OpticI(C) by an iteration functor I
which we define next. The left interface to the model optic is closed by two pieces of data: An initial state
@0 : �→" ⊗Θ and an update rule 8 : " ⊗ΔΘ→" ⊗Θ that acts as the iterator. In gradient-free methods,
the update is generally pointwise as in (2). Conversely, gradient-based methods use neural network
optimizers like stochastic gradient descent, Adam and other variations as the update rule [CGG+22].

The right interface of a model parametrises an agent, which is a morphism
((
�

)
→

(�
�

)
in Para(Optic(C)).

This parametrised morphism will itself interact with an environment that is an iteration context. The co-
end in the environment is taken over states of the Markov chain.

Offline methods, unlike online methods, interact with the agent only in a trivial way by showing it
experiential samples. This is shown by the types " = (× �×� and " ′ = �, by which the continuation
ignores the agent’s action and just projects the action and feedback as a response to the agent. Moreover,
the iterator type C(" ′ ⊗ �, " ⊗ () � C(�, " ⊗ () coincides with the initial state, which reflects the fact
that the environment samples experiences (B, 0, 5) from a distribution defined by a dataset (figure 8(a,b)).

To clarify the interplay between these the three structures described in this section, we look at the

12 Reinforcement Learning in Categorical Cybernetics

ev

�(

Agent

�

R

R(×�)∗(B,0) ((×�)
Model

ev
Agent

�′

Environment

(′
(� R (′ �′

c

�(�

(

G0

8
:

�

:

ev

�(

Agent

�

R

R(×�)∗(B,0) ((×�)
Model

Environment

(′

(� R (′

c

(

G0

8
:

� ′

ev

ev

�(

Agent

�

'

R(×�)∗(B,0) ((×�)
Model

Environment

(′

(� ' (′

c

(

G0

8
:

� ′

c′ ev

Figure 7: SARSA is on-policy (left two). Q-learning is off-policy (right).

role played by internal and external policies in on- and off-policy methods. First, figure 7(left) shows the
full representation of SARSA. It consists of a model optic parametrising two copies of an agent that are
composed with a 2-hole environment. The policy evaluated by both instances is the same, and the return
to the model consists of (B, 0,A) from the first agent optic and (B′, 0′) from the second. SARSA is an
on-policy method, as the policy deployed to obtain 0′ ∼ c(B′) is the same as the one used to compute the
first action 0 ∼ c(B). Calculating the target � from the sample (B, 0,A, B′, 0′) is equivalent to calculating
� from (B, 0,A, B′) and its internal policy c, even though the model does not know the environment’s
dynamics : . This is why the same method can be equivalently specified by the middle diagram.

On the other hand, Q-learning (figure 7(right)) is an off-policy method, because the last action is
computed by an internal policy c′ = argmax different from the one being deployed.

: 8G0

" " ′

(� � (

"

(0)

?G0

(×�×�

(�×� (

(×�×�
G0

(1)

:G0

"

(� � (

"

G0

(2)

:

� �

(3)

Figure 8: Online (a) and offline (b) RL environments. Contextual (c) and multi-armed (d) bandit envi-
ronments. Omitted arrows are the unit. The offline continuation is a projection ? of �×�.

6.1 Prediction and bandit problems

The presented framework handles RL prediction problems for free in all the previous methods by triv-
ialising the set � = 1, which pinpoints the idea that a prediction algorithm is a control algorithm where
there’s no choice of actions. For example, MC prediction of the long-term value of states from =-long
episodes becomes an optic

(R(
) ∗B (

)
→

(�
(R=

)
, and 1-TD prediction becomes

(R(
) ∗B (

)
→

(�
(R(

)
. The forward

maps for both are trivial since the agent has no policy to execute, perhaps better called observer rather
than agent here. The corresponding environments have the type of a MRP.

Moreover, bandit problems emerge by trivialising " ′ = � (figure 8(c,d)). In particular, contextual
bandits involve finding the best action in � associated to a particular state in " for which only partial
information of type (is given, yielding feedback in �. This action does not affect further distributions
of states, so the object between the continuation and the update rule is trivial. Multi-armed bandit prob-
lems are a further special case, characterized by environments whose only non-trivial morphism is the
continuation : : �→ �.

J. Hedges & R. Rodrı́guez Sakamoto 13

References

[AAG03] Michael Abbott, Thorsten Altenkirch & Neil Ghani (2003): Categories of containers. In: Proceedings
of FoSSACS 2003, Lecture Notes in Computer Science, Springer.

[Bar93] E. Barnard (1993): Temporal-difference methods and Markov models. IEEE Transactions on Systems,
Man, and Cybernetics 23(2), pp. 357–365, doi:10.1109/21.229449.

[Ber82] D. Bertsekas (1982): Distributed dynamic programming. IEEE Transactions on Automatic Control
27(3), pp. 610–616, doi:10.1109/tac.1982.1102980.

[Ber19] Dimitri P. Bertsekas (2019): Reinforcement Learning and Optimal Control. Athena Scientific opti-
mization and computation series, Athena Scientific.

[BHS23] Dylan Braithwaite, Jules Hedges & Toby St Clere Smithe (2023): The compositional structure of
Bayesian inference. In: Proceedings of Mathematical Foundations of Computer Science 2023, Leib-
niz Proceedings in Informatics 272.

[BHZ23] Joe Bolt, Jules Hedges & Philipp Zahn (2023): Bayesian open games. Compositionality 5(9).

[BJI+17] Nicola Botta, Patrik Jansson, Cezar Ionescu, David R. Christiansen & Edwin Brady (2017): Sequen-
tial decision problems, dependent types and generic solutions. Logical Methods in Computer Science
13(1).

[BS10] John Baez & Mike Stay (2010): Physics, topology, logic and computation: A Rosetta Stone. In: New
structures for physics, Springer.

[CEG+24] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore &
Mario Román (2024): Profunctor optics, a categorical update. Compositionality 6(1).

[CG23] Matteo Capucci & Bruno Gavranović (2023): Actegories for the working amthematician.
ArXiv:2203.16351.

[CGG+22] Geoffrey Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Categorical
foundations of gradient-based learning. In: Proceedings of ESOP 2022, Lecture Notes in Computer
Science 13240.

[CGHR22] Matteo Capucci, Bruno Gavranović, Jules Hedges & Eigil Rischel (2022): Towards foundations of
categorical cybernetics. In: Proceedings of Applied Category Theory 2021, Electronic Proceedings
in Theoretical Computer Science 372.

[Dal19] Davidad Dalrymple (2019): Dioptics: a common generalization of open games and gradient-based
learners. Unpublished paper available at https://research.protocol.ai/publications/

dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/

dalrymple2019.pdf.

[Del20] Antonin Delpeuch (2020): Autonomization of Monoidal Categories. In: Proceedings of Applied
Category Theory 2019, Electronic Proceedings in Theoretical Computer Science.

[FGPR23] Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2023): Representable Markov
categories and comparison of statistical experiments in categorical probability. Theoretical computer
science 961.

[FP19] Tobias Fritz & Paolo Perrone (2019): A probability monad as the colimit of spaces of finite samples.
Theory and applications of categories 34(7), pp. 170–220. arXiv:1712.05363.

[Fri09] Tobias Fritz (2009): Convex spaces I: Definitions and examples. ArXiv:0903.5522.

[Fri20] Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics 370, p. 107239, doi:10.1016/j.aim.2020.107239.
Available at http://arxiv.org/abs/1908.07021. ArXiv: 1908.07021.

[Gav22] Bruno Gavranović (2022): Space-time tradeoffs of lenses and optics via higher category theory.
ArXiv: 2209.09351.

https://doi.org/10.1109/21.229449
https://doi.org/10.1109/tac.1982.1102980
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf
https://research.protocol.ai/publications/dioptics-a-common-generalization-of-open-games-and-gradient-based-learners/dalrymple2019.pdf
https://arxiv.org/abs/1712.05363
https://doi.org/10.1016/j.aim.2020.107239
http://arxiv.org/abs/1908.07021

14 Reinforcement Learning in Categorical Cybernetics

[Gav24] Bruno Gavranović (2024): Fundamental components of deep learning: A category-theoretic ap-
proach. Ph.D. thesis, University of Strathclyde.

[Ghr08] Robert Ghrist (2008): The persistent topology of data. Bulletin of the American Mathematical Society
45.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional game theory. In:
Proceedings of Logic in Computer Science 2018, ACM.

[Hed23] Jules Hedges (2023): The game semantics of game theory. In: Samson Abramsky on Logic and
Structure in Computer Science and Beyond, Outstanding contributions to logic 25, Springer.

[Hed24] Jules Hedges (2024): Iteration with optics. Blog post available at https://cybercat.institute/
2024/02/22/iteration-optics/.

[HS19] Linde Hansen & Mike Shulman (2019): Constructing symmetric monoidal bicategories functorially.
ArXiv:1910.09240.

[HS23] Jules Hedges & Riu Rodrı́guez Sakamoto (2023): Value iteration is optic composition. In: Pro-
ceedings of Applied Category Theory 2022, Electronic Proceedings in Theoretical Computer Science
380.

[HT12] Claudio Hermida & Robert D Tennent (2012): Monoidal indeterminates and categories of possible
worlds. Theoretical computer science 430.

[Kel82] G.M. Kelly (1982): Basic concepts of enriched category theory. Lecture Notes in Mathematics 64,
Cambridge University Press.

[KLM96] L. P. Kaelbling, M. L. Littman & A. W. Moore (1996): Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research 4, pp. 237–285, doi:10.1613/jair.301.

[KT01] Vijay Konda & John Tsitsiklis (2001): Actor-Critic Algorithms. Society for Industrial and Applied
Mathematics 42.

[LFR22] Elena di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal streams for dataflow pro-
gramming. In: Proceedings of Logic in Computer Science 2022, ACM.

[Lor21] Fosco Loregian (2021): (Co)end calculus. Cambridge University Press.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra & Martin Riedmiller (2013): Playing Atari with Deep Reinforcement Learning,
doi:10.48550/ARXIV.1312.5602.

[Mye23] David Jaz Myers (2023): Categorical systems theory. Draft book.

[NS24] Nelson Niu & David Spivak (2024): Polynomial functors: A mathematical theory of interaction. Draft
book.

[PS08] Craig Pastro & Ross Street (2008): Doubles for monoidal categories. Theory and applications of
categories 21(4).

[Ril18] Mitchell Riley (2018): Categories of optics. ArXiv:1809.00738.

[SB20] Richard S. Sutton & Andrew G. Barto (2020): Reinforcement Learning: An Introduction. MIT Press.

[Smi23] Toby St Clere Smithe (2023): Mathematical foundations for a compositional account of the Bayesian
brain. Ph.D. thesis, University of Oxford.

[SMSM99] Richard S. Sutton, David McAllester, Satinder Singh & Yishay Mansour (1999): Policy gradient
methods for reinforcement learning with function approximation. In: Proceedings of the 12th Interna-
tional Conference on Neural Information Processing Systems, NIPS’99, MIT Press, Cambridge, MA,
USA, pp. 1057–1063.

[SSPS21] David Silver, Satinder Singh, Doina Precup & Richard S. Sutton (2021): Reward is enough. Artificial
Intelligence 299, p. 103535, doi:10.1016/j.artint.2021.103535.

https://cybercat.institute/2024/02/22/iteration-optics/
https://cybercat.institute/2024/02/22/iteration-optics/
https://doi.org/10.1613/jair.301
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.1016/j.artint.2021.103535

J. Hedges & R. Rodrı́guez Sakamoto 15

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel & Demis Hassabis (2017): Mastering the
game of Go without human knowledge. Nature 550.

[Sut95] Richard S. Sutton (1995): Generalization in reinforcement learning: successful examples using
sparse coarse coding. In: Proceedings of the 8th International Conference on Neural Information
Processing Systems, NIPS’95, MIT Press, pp. 1038–1044.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Bud-
den, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps & David Silver (2019): Grand-
master level in StarCraft II using multi-agent reinforcement learning. Nature 575.

[VC22] André Videla & Matteo Capucci (2022): Lenses for composable servers. ArXiv:2203.15633.
[Ver23] Pietro Vertechi (2023): Dependent optics. In: Proceedings of Applied Category Theory 2022, EPTCS.
[WD92] Christopher J. C. H. Watkins & Peter Dayan (1992): Q-learning. Machine Learning 8(3-4), pp.

279–292, doi:10.1007/bf00992698.

A Appendix

Proposition A.1. The iterator I : Optic(C) → Set is functorial.

Proof. Let 5 = (#, 5 , 5 ′) :
(-
- ′

)
→

(.
. ′

)
and 6 = (%,6,6′) :

(.
. ′

)
→

(/
/ ′

)
be two morphisms in Optic(C).

Preservation of identity is shown by:

I(�,1- ,1- ′) : (",G0, 8) ↦→ (" ⊗ �, G0; (� ⊗ 1-), (" ⊗ 1- ′); 8; (" ⊗ 1-))

Preservation of composition is shown by the isomorphic images of I(#, 5 , 5 ′); I(%,6,6′), which maps

(",G0, 8) : I
(-
- ′

)
to the state space " ⊗ # ⊗ %, the initial state �

G0−→ " ⊗ -
" ⊗ 5
−−−−−→ " ⊗ # ⊗.

" ⊗# ⊗6
−−−−−−−→

" ⊗ # ⊗ % ⊗ / and the iterator

"⊗# ⊗%⊗/ ′
" ⊗# ⊗6′
−−−−−−−−→"⊗# ⊗. ′

" ⊗ 5 ′
−−−−−→"⊗- ′ 8−→"⊗-

" ⊗ 5
−−−−−→"⊗# ⊗.

" ⊗# ⊗6
−−−−−−−→"⊗# ⊗%⊗/

which defines the element in I
(/
/ ′

)
, and I(# ⊗ %, (5 ;# ⊗ 6), (# ⊗ 6′; 5 ′)), which maps (",G0, 8) to the

same state space, the initial state G0; (" ⊗ (5 ;# ⊗6)), and the iterator (" ⊗ (# ⊗6′); 5 ′); 8; (" ⊗ (5 ;# ⊗
6)). �

https://doi.org/10.1007/bf00992698

	Introduction
	Background: Reinforcement learning
	Dynamic programming
	Monte Carlo
	Temporal difference learning
	Approximation methods

	Background: categorical cybernetics
	Actegories
	Parametrisation
	Optics
	Parametrised optics

	States, contexts and iteration
	Bellman operators
	Parametric Bellman operators

	Models, agents and environments
	Prediction and bandit problems

	Appendix

