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We draw some squares and apply some homology in the hope of classifying different flavors of
functors in a neat way. Our wishes are granted and we obtain homological measures of how much
a given map can fail to be: (1) a pseudofunctor (2) a discrete Conduché functor and (3) a discrete
fibration. By leveraging a known result of Bénabou, we furthermore obtain measures of how far
certain lax functors are from being pseudofunctors. Finally, we apply the tools developed to (1)
decorated Petri nets to classify how the execution of decorated nets differ, qualitatively, from the
execution of undecorated ones, and (2) to delta lenses to study how far they differ from c-lenses.

1 Introduction

1.1. This paper is built on a bunch of simple observations. Given a(ny flavor of) category C, we can
always consider the following diagram:

. . . C3 C2 C1 C0
s

t
#

#l

#r

Here C0 represents the objects of C, C1 represents its morphisms, and Cn represents n-tuples of

morphisms with matching domain and codomain (for example, (A
f−→ B,B

g−→C) could be an element of
C2). The arrows s, t represent the usual source and target assignments, whereas # represents composition.
Notice that there are n different composition mappings from Cn+1 to Cn, as we can choose to compose
any two adjacent morphisms in a n+1-tuple to obtain a n-tuple – for instance, we can map C3 to C2 by
sending the generic ( f ,g,h) to either ( f #g,h) or to ( f ,g #h).
1.2. In the most standard setting (to which we will stick in this paper), the one above is a diagram of
sets and functions1, but we may definitely opt for something more complicated. In the case of double
categories, for instance, it would be a diagram of categories and functors.
1.3. In any case, just looking at this diagram and asking some simple questions about its commutativity,
one finds interesting facts:

• The diagram C1 C0
s
t does not commute generally, and its equalizer is the set of loops of

C, that is, morphisms f : A → A with the same source and target.

1Note that we are assuming all categories considered henceforward to be small. We will denote categories as C and double
categories as C. If there is no ambiguity, we will freely exchange C with C, obtained from C by adding the needed trivial cells.
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• Similarly C2 C1 C0# s
t does not generally commute, and its equalizer is the set of

loop decompositions of C, that is, all the pairs of morphisms that give a loop when they are com-
posed (e.g. f : A → B and f ′ : B → A).

• The diagram C3 C2 C1##l

#r commutes when C is a category, and amounts to state the

familiar associativity condition ( f # g) # h = f # (g # h). When C is not a category – so for instance
a non-trivial 2-category or bicategory – the equalizer of this diagram is the subset of morphism
triples that are strictly associative.

1.4. Up to now, this is not incredibly interesting. But amazing things happen when we put two of these
diagrams together. Given a functor F : C→ D, we can consider:

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

sC

tC
#C

#l
C

#r
C

#l
D

sD

#r
D

#D
tD

F3 F2 F1 F0

Here F0 is F defined on objects, F1 is F defined on morphisms, whereas any other Fn acts on n-tuples
by applying F1 component-wise.
1.5. The purpose of this paper is focusing on these squares, in particular on the two rightmost ones, to
say things about F . Using tools borrowed from homology, we will also be able to measure how much a
functor fails to be ‘something’ – a discrete (op-)fibration, a pseudofunctor, ... – depending on context.
1.6. We shall note here that techniques to qualify obstructions to lax functors being strong have already
been proposed in [27], where some special kind of directed posets, heavily inspired by homotopy theory,
are introduced to detect failure of compositionality in the context of open systems.
1.7. This paper focuses on goal of qualifying obstructions to a range of properties a functor may satisfy,
while applying homology directly to the categorical setting. This refines and extends the intuition (also
motivating former work [27]) that topological holes and obstructions to category-theoretic composition-
ality shall be regarded as two sides of the same coin.
1.8. More generally, this work falls within the line of thought that compositionality, far from being a
universal notion, is to be understood as a spectrum of distinct, context-dependent nuances [6, 11].

2 The rightmost square

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D

F2 F1

#l
D

#r
D

F3

#l
C

#r
C

sC

tC

F0

sD

tD

2.1. We start by focusing at the rightmost square. Decoupling things a bit, we see how this actually
consists of two different squares, merged:
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C1 C0 C1 C0

D1 D0 D1 D0

tCsC

sD tD

F1 F0 F1 F0 (1)

2.2. Since functors preserve source and target of morphisms, it follows that if F : C → D is a functor,
then the two squares in Equation (1) commute. But there’s more:

Definition 2.3. A functor F : C→ D is a discrete fibration if for each y ∈ C0 and fD : x′ → F0(y), there
exists a unique fC : x → y such that F1( fC) = fD.

A functor F : C→ D is a discrete opfibration if for each x ∈ C0 and fD : F0(x)→ y′, there exists a
unique fC : x → y such that F1( fC) = fD.

Proposition 2.4. Let F : C → D be a functor. The right square in Equation (1) is a pullback square if
and only if F is a discrete fibration. Similarly, the left square in Equation (1) is a pullback if and only if
F is a discrete opfibration.

Proof. Let the right square be a pullback square. This means that

C1 ≃ D1 ×D0 C0 := {( fD,y) | fD ∈ D1,y ∈ C0, tD( fD) = F0(y)}

Let’s fix y ∈C0 and fD : x′ → F0(y) in D1 and prove that it admits a unique lift. Since C1 ≃D1×D0 C0, the
couple ( fD,y) uniquely corresponds to some morphism fC ∈ C1. If P1,P2 are the pullback projections,
P1( fD,y) = fD = F1( fC) and P2( fD,y) = y = tC( fC), so fC is the unique lift we were looking for.

Viceversa, if F is a discrete fibration, by definition every fC : x → y corresponds uniquely to some
( fD,y) such that tD( fD) = F0(y). Also, since F1( fC) = fD and tC( fC) = y, we derive that F1 and tC behave
exactly like the pullback projections.

Mutatis mutandis, the proof for opfibrations works morally the same and will be omitted for the sake
of brevity.

2.5. The content of Proposition 2.4 can be refined. Indeed, one can qualify ‘how much’ F fails to be a
discrete (op-)fibration. To do so, let us first rewrite the diagrams in Equation (1) as:

C1 C0 ×D1 D0 C1 C0 ×D1 D0
F0(sC,F1)

sD

(tC,F1) F0

tD

2.6. If F is a functor, these diagrams commute. Now we apply the left adjoint Set → AbGrp to them.
This means replacing all sets with the abelian groups freely generated by them, and all functions with the
corresponding homorphisms. Now homorphisms can be summed and inverted pointwise, and we write:

0 C1 C0 ×D1 D0 0 C1 C0 ×D1 D0
F0−sD(sC,F1) F0−tD(tC,F1)

Definition 2.7. Since the original diagram commutes, (sC,F1) equalizes F0 and sD, and so the composi-
tion above evaluates to 0, implying Im(sC,F1) ⊆ ker(F0 − sD). This places us into homology land, and
we define:
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H−1
fib := ker(sC,F1) H0

fib := ker(F0 − sD)/ Im(sC,F1)

H−1
opfib := ker(tC,F1) H0

opfib := ker(F0 − tD)/ Im(tC,F1).

2.8. These groups provide a qualitative description of the obstructions for the diagrams in Equation (1)
being a pullback. When they are trivial there are no obstructions, and putting this fact together with
Proposition 2.4, we get:

Proposition 2.9. Let F : C→ D be a functor. H−1
fib ,H

0
fib are trivial if and only if F is a discrete fibration.

Similarly, H−1
opfib,H

0
opfib are trivial if and only if F is a discrete opfibration.

Proof. Consider Eq(F0,sD). Since C1 equalizes F0 and sD, there is a unique map C1 → Eq(F0,sD). H0
fib is

trivial if and only if this map is surjective, whereas H−1
fib is trivial if and only if it is injective. So H−1

fib ,H
0
fib

are trivial if and only if C1 ≃ Eq(F0,sD), which by definition holds if and only if the corresponding square
in Proposition 2.4 is a pullback. But because of the very same Proposition 2.4, this is true if and only if
F is a discrete fibration. A similar argument holds for opfibrations.

3 The middle square

. . . C3 C2 C1 C0

. . . D3 D2 D1 D0

#C

#D

F2 F1

#l
D

#r
D

F3

#l
C

#r
C

sC

tC

F0

sD

tD

3.1. The middle square is probably the most interesting one in our endeavor. It takes a couple of mor-
phisms f : A → B and g : B → C in C2, and maps them to F1( f #C g) (right-down) and to F1 f #D F1g
(down-right), respectively. The square commutativity states the familiar condition F( f # g) = F f # Fg,
that is, the preservation of composition by a functor F : C→ D. We now prove that the pullback condi-
tions on the middle and right squares are related.

Proposition 3.2. If any of the squares in Equation (1) is a pullback, then the following is also a pullback:

C2 C1

D2 D1

#C

#D

F2 F1

Proof. Assume that the left square in Equation (1) is a pullback, and consider the diagram below. All
the squares commute. The squares in purple and green are pullbacks by hypothesis. We want to prove
that the red square is a pullback as well.
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C1 C0

C2 C1 D1 D0

C1 C0 D2 D1

D1 D0

tC

tD

F1 F0 tD

tC

πC
1

#C
F2

#D

sC

πD
1

sD
πD

0

πC
0

tC

F0F1

tD

F1

⌟

⌟

⌟

To do so, suppose to have some object P and morphisms P
f−→ C1,P

g−→ D2 such that f #F1 = g # (#D). We
need to prove that there is a unique morphism P → C2 commuting with the red square. First, consider:

f #F1 = g # (#D)⇝ f #F1 # tD = g # (#D) # tD⇝ f # tC #F0 = g #π
D
1 # tD

Hence we can apply the pullback property of the purple square to f # tC = g # πD
1 , and get a unique

morphism P α−→ C1 such that: α # tC = f # tc and α #F1 = g #πD
1 .

P C1 C0

C2 C1 D1 D0

C1 C0 D2 D1

D1 D0

tC

tD

F1 F0 tD

tC

πC
1

#C
F2

#D

sC

πD
1

sD
πD

0

πC
0

tC

F0F1

tD

F1

f g

α

β

γ

⌟

⌟

⌟

⌟

⌟

But now,

g #π
D
0 # tD = g #π

D
1 # sD = α #F1 # sD = α # sC #F0

And so we can apply the property of the green pullback to g #πD
0 and α # sC to obtain a unique morphism

P
β−→ C1 such that β #F1 = g #πD

0 and β # tC = α # sC.
Now, notice that the top square composed by πC

0 , tC,sC,π
C
0 is a pullback by construction of C2:

Focusing on the equation β # tC = α # sC, we see that we can apply the property of this pullback to α and
β to obtain a unique γ such that γ #πC

1 = α and γ #πC
0 = β .
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To finish, notice that also the frontmost square F1, tC,F0, tD is a pullback by hypothesis, which forces
γ # (#C) = f . Similarly, the square πD

0 , tD,sD,πD
1 is a pullback by construction of D2, forcing γ #F2 = g.

The proof when the right square in Equation (1) is a pullback is analogous.

3.3. Now, we investigate what it means for the middle square to be a pullback. Indeed, as in the case of
discrete (op-)fibrations, this corresponds to a well-known concept.

Definition 3.4. A functor F : C→D is a Conduché functor if for α : a → b in C1 and any factorisation

F0(a)
β−→ c

γ−→ F0(b) of F1(α), we have:

• There exists a factorisation a
β ′
−→ d

γ ′−→ b of α such that F1(β
′) = β and F1(γ

′) = γ .

• Any two such factorisations in C are connected by a zigzag of commuting morphisms which map
to the identity.

A Conduché functor is discrete if each factorisation is unique.

3.5. In a way very similar to the proof of Proposition 2.4, we can prove the following:

Proposition 3.6. Let F : C→ D be a functor. The middle square is a pullback square if and only if F is
a discrete Conduché functor.

3.7. Putting together Propositions 2.4, 3.2 and 3.6 we recover the fact that discrete Conduché functors
are a generalization of discrete (op-)fibrations: Every discrete (op-)fibration is also a strict Conduché
functor. The relevance of Proposition 3.2 is that it does not use the definition of discrete (op-)fibration
or of Conduché functor: it makes sense in any category with pullbacks, so, for instance, it would keep
holding if we would consider our diagrams to be internal in Cat.
3.8. As in the previous section, when the middle square is not a pullback we may want to investigate
‘how far’ F is from being a Conduché functor. Again, abelianizing the diagram this amounts to consider:

0 C2 C1 ×D2 D1
F1−#D(#C,F2)

Definition 3.9. Commutativity of the diagram implies that Im(#C,F2) ⊆ ker(F1 − #D) and so we can
define

H−1
Cond := ker(#C,F2) H0

Cond := ker(F1 − #D)/ Im(#C,F2)

3.10. In a way similar to Proposition 2.9, we can prove the following:

Proposition 3.11. Let F : C → D be a functor. H−1
Cond,H

0
Cond are trivial if and only if F is a Conduché

functor.

4 Applications: Petri nets

4.1. An application of the categorical tools introduced so far can be illustrated by an illuminating example
in the context of categorical semantics for Petri nets.
4.2. In the following, we will denote with S⊕ the set of multisets over a set S. Multiset sum will be
denoted with ⊕, and difference (only partially defined) with ⊖. S⊕ with ⊕ and the empty multiset is
isomorphic to the free commutative monoid on S.
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Definition 4.3 (Petri nets and their semantics). A Petri net N is defined by a couple of functions T
s,t−→ S⊕

for some sets T and S, called the set of places and transitions of the net, respectively. A marking for a
net T

s,t−→ S⊕ is an element of S⊕, representing a distribution of tokens in the net places. A transition u is
enabled in a marking M if M⊖ s(u) is defined. An enabled transition can fire, moving tokens in the net.
Firing is considered an atomic event, and the marking resulting from firing u in M is M⊖ s(u)⊕ t(u).

Given N, we can generate a free symmetric strict monoidal category, F(N), as follows:

• The monoid of objects is S⊗, the set of strings over S. Monoidal product of objects A,B, denoted
A⊗B, is given by string concatenation.

• Morphisms are generated by T : each u ∈ T corresponds to a morphism generator su u−→ tu, where
su, tu are obtained by choosing some ordering on their underlying multisets; morphisms are ob-
tained by considering all the formal horizontal and vertical compositions of generators, identities
and symmetries.

Similarly, we can generate a free commutative strict monoidal category C(N) – that is, a monoidal
category where symmetries are identities – by considering the set of multisets S⊕ as the monoid of
objects, and multiset sum as the monoidal product. Details of these constructions can be found in [1].

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

p1 t p2

v

up3 p4

t v

u

p1

p2

p3

p3

p2
p3

p4

p2

p4

p3

4.4. Petri nets are very well-known models of concurrent automata, and are widely used in computer
science. Given a net N, morphisms in the categories F(N) and C(N) correspond to executions of the net,
as shown in the picture above. The fundamental difference between the semantics F(N) and C(N) is that
the latter does not distinguish between tokens living in the same place, whereas the former does.
4.5. Petri nets can be made more expressive in various ways: For instance, one may consider guarded
nets where tokens are endowed with colors, and transition inputs/outputs perform extra tasks depending
on the color of the tokens. Sometimes, these extensions are strictly more expressive than the classic Petri
net formalism, sometimes they are not. Categorically, this process is described by endowing a net N
with some sort of functor F(N) → D or, depending on the choice of token philosophy, C(N) → D. In
practice, D is often taken to be Span, and the functor, which we usually denote with N♯, is taken to be
lax. For instance, guarded nets can be described as nets endowed with strict monoidal functors F(N)→
Span [20], whereas bounded nets – nets where a given place cannot contain more than a predetermined
number of tokens – can be described as lax-monoidal-lax functors C(N)→ Span [22]. Other flavors of
nets can also be represented in this way [17, 21].
4.6. To apply the results heretofore developed to Petri nets, we make use of the following fact:
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Lemma 4.7. [Due to Bénabou [2, 3]] Fix B. Any lax double functor B F−→ Span(Set) is a pseudofunctor
if and only if the projection

∫
F πF−→ B of its Grothendieck construction is a discrete Conduché functor.

Corollary 4.8. For any lax double functor B F−→ Span(Set), the groups

H−1
cond

(∫
F πF−→ B

)
H0

cond

(∫
F πF−→ B

)
measure obstructions to pseudofunctoriality of F .
4.9. Thanks to Lemma 4.7 and Corollary 4.8, we can measure how far a categorical decoration N♯ for a
Petri net N is from being lax. But what meaning does this have from the point of view of Petri nets?
4.10. In ¶ 4.5, we remarked how an extended Petri net formalism is sometimes exactly as expressive as
the classic Petri net one. This means that the extended formalism is nothing more than syntactic sugar,
and the extended Petri net can be internalized: That is, we can associate a traditional Petri net to it which
has the same executions.
4.11. Given a net N and a functor N♯, the process of internalization is described by taking its Grothendieck
construction

∫
N♯. When the domain of this functor is itself of the form F(M) or C(M) for some net M,

then the decoration semantics is internalizable: M has the same computational behavior of the decorated
net N. This has been proved to hold for different flavors of Petri nets [17, 20, 21, 22].

⇝

4.12. For example, take guarded nets. We decorate a ‘base net’ N with token colors and transition guards
by defining a strict monoidal functor N♯ : F(N)→ Span. Since F(N) is freely generated, this amounts
to map each place to a set of colors and each transition to a span, representing how colors are correlated
by transitions. This is the picture on the left above. When we internalize, we obtain a net M such that∫

N♯ = F(M). This is the net sitting on top of the original net N, on the right above. In practice, M is
obtained by promoting token colors and arcs in the left picture to places and transitions, respectively.
4.13. The functor N♯ : F(N)→ Span for guarded nets is always strict, and so the functor

∫
N♯ → F(N)

is always Conduché, but not always a fibration. This makes sense: By looking at the example picture
above, it is clear that the fibration condition isn’t always satisfied; take for instance the leftmost transition
in N and the yellow circled place in M: The discrete fibration condition requires a transition leading into
it, but we have none (failure of existence). In the case of the green circled place, we have more than one
(failure of unicity).
4.14. So, the homology groups defined in Definition 2.7 give us qualitative information about which token
colors are ‘problematic’ with respect to the (op)fibration condition failing, which in practice means that
non-equal token colors in the source of a transition get mapped into the same color by its target.
4.15. In the example of ¶ 4.13, the case made for the green-circled place would be picked up as a non-
trivial element of the homology group H−1

f ib

(∫
F πF−→ B

)
, whereas the case made for the yellow-circled

place would be picked up as a non-trivial element of the homology group H0
f ib

(∫
F πF−→ B

)
.
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4.16. Another interesting case is the one of bounded nets. Our semantics here is a lax functor N♯ :C(N)→
Span. This semantics is again internalizable, and so

∫
N♯ = F(M), as in the picture below. Basically, M

is obtained by adding a new ‘antiplace’ (colored red below) for each place in M. Given a place a, the
antiplace corresponding to it keeps track of how many tokens can still be added to it. So, for instance,
three tokens in the antiplace mean ‘3 more tokens can be added to a’. Transitions consuming tokens
from a place add tokens to the corresponding antiplace; transition outputting tokens into a place need to
consume an equivalent amount from the antiplace.

a b

s

t

ȧ

ā

ḃ

b̄

ṫ

ṡ
ṡ ṫ

ḃ

b̄
ȧ

ā

ḃ

ḃ

b̄
ȧ ̸=

ṫ ṡ

ȧ

ā

ḃ

b̄

ȧ

ȧ

ā

ḃ

s t

b

a
b

b

a
=

s t

b

a

b

a
= t s

a

b

a

b = t s

a

b
a

a

b

4.17. Since our functor N♯ is only lax, Lemma 4.7 tells us that the functor
∫

N♯ → C(N) is not always
Conduché. We can see this by examining the picture above on the right. In N (bottom), we have a partic-
ular execution, which can be written down in two equivalent ways because we are using the commutative
semantics. This execution, which is a morphism of C(N), corresponds to two different executions of M,
which are in turn morphisms in

∫
N♯ = C(M). The reason why this equality is not lifted to C(M) is that

in M all the places of N are doubled, so whereas we could exchange any place b with itself in C(N) using
commutativity, we cannot do the same in C(M), as ḃ and b̃, the place and antiplace corresponding to b,
are considered as different generators and cannot be swapped one for the other.
4.18. In this case, the obstructions to being Conduché witness histories that should ‘morally be the iden-
tified’ in the category C(M) of executions of the bounded net M, but are not. In a way, these can be
considered imperfections of the bounding technique. Thanks to Lemma 4.7, the groups in Corollary 4.8
give us qualitative information about these obstructions – again to existence and uniqueness.
4.19. In the particular example of ¶ 4.17, the execution described in the figure would be picked up as a
non-trivial element of the homology group H−1

cond

(∫
F πF−→ B

)
.

5 Applications: Delta lenses

5.1. In the context of applied category theory, optics [28, 10, 4] constitute one of the main topics of
research. Broadly speaking, the study of optics pertains the categorical characterization of ‘bi-directional
processes’, that is, all techniques dealing at the same time with the transformation of data from the whole
to the part, and from the part to the whole. Optics have received a lot of interest from the applied category
theory community since they are the underlying concept of a lot of different, apparently unrelated topics,
including categorical probability theory [31], open games [5], functional programming [28], dynamical
systems [26], automatic differentiation [14], machine learning and cybernetics [7, 12, 32].
5.2. Lenses [24] are a particular type of optics, and by far the most used and well-known ones. Simply
put, a lens is made of two parts: One is responsible for accessing a given part from an object constituting
the whole. We call this part get. The other, is responsible of pushing an update of the accessed part to the
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whole, and we call it put. This concept has been formalized in a broad variety of ways; the formalization
we are the most interested in in this section is called delta lenses, and is mainly due to [13, 25].

Definition 5.3 (From [9]). A delta lens (F,ϕ) : C→ D is given by a functor F : C→ D together with a
lifting operation

(c ∈ C,Fc
f−→ d ∈ D) 7−−−−−−−−−−→

(
c

ϕ(c, f )−−−→ cod(ϕ(c, f ))
)

Such that:

• Fϕ(c, f ) = f ;

• ϕ(c, IdFc) = Idc;

• ϕ(c, f #g) = ϕ(c, f ) #ϕ(cod(ϕ(c, f )),g).

5.4. The idea of a delta lens is the following: We interpret the category C as ‘the category of the wholes’,
and the category D as ‘the category of the parts’: For each object c ∈ C, Fc ∈D represents a part of c we
are focusing on. In this respect, F models the get side of the lens. Now, suppose to have a morphism

Fc
f−→ d in D. We interpret this as a process that changes the ‘zoomed in part’, Fc, in some way. The

lifting operation says that, for each change we apply to Fc, there should a way to ‘push this change

back to c’, hence obtaining a corresponding process c
ϕ(c, f )−−−→ cod(ϕ(c, f )) turning c into a ‘new whole’

cod(ϕ(c, f )). This is the put part of the lens.

C c cod(ϕ(c, f ))

D Fc df

ϕ(c, f )

F

5.5. The three axioms listed in Definition 5.3 are required to formally back up our intuition. The first
implies that, when zooming into the new cod(ϕ(c, f )) by applying F , we get exactly the part d resulting
by changing Fc with f ; The second says that if we do not change Fc, then we shouldn’t change c. The
third says that the ‘push’ side of the lens can be composed: If we edit Fc twice in sequence, then there is
no difference between lifting f #g all in one go or computing the liftings sequentially.
5.6. In [9], it is pointed out how delta lenses are a generalization of the concept of opfibration: ϕ guaran-

tees that, for each object c ∈ C and morphism Fc
f−→ d ∈ D, we get a corresponding lift in C; yet, this lift

may not be guaranteed to be unique. Indeed, we can precisely think of a delta lens as a functor F : C→D
with a chosen lift for each morphism of D.

d2

C d1

c cod(ϕ(c, f ))

D Fc df

ϕ(c, f )
F
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5.7. Delta lenses are part of the toolkit of categorical machine learning [12], and have been heavily
studied, with all sorts of connections between delta lenses, cofunctors, discrete and split opfibrations
having been explored from a formal standpoint [9, 23]. In particular in [9], a refinement of Lemma 4.7,
identifying delta lenses over D with lax double functors D→ Span that factorise in a particular way, has
been provided.
5.8. From our point of view, by applying the techniques heretofore developed we can make a timid
contribution to the field, measuring how much a given delta lens fails to be an opfibration – and, as a
consequence, of how much a delta lens fails to be a c-lens, a comparison already introduced in [23]. As
observed in ¶ 5.6, a delta lens (F,ϕ) : C→D always provides lifts for all morphisms in D and objects of
C. As such, by Proposition 2.9, H0

opfib (F,ϕ) is always trivial. On the other hand, H−1
opfib (F,ϕ) is generally

not-trivial, and measures how far we are from having a unique lift operation ϕ(−,−).
5.9. From an applicative point of view, a delta lens that is also an opfibration is a very rigid structure: In
a nutshell, it tells us that there is only one way to push an update of the part to the whole: The structure
describing the way a part is transformed canonically induces a transformation structure for the whole.
5.10. As for a delta lens (F,ϕ) : C→ D being a strict Conduché functor, we observe that because of the
third axiom in Definition 5.3, factorizations in D always lift to factorizations in C:

C c cod(ϕ(c,g)) cod(ϕ(c, f ))

D Fc x d

f

ϕ(c, f )
F

g h

ϕ(c,g) ϕ(cod(ϕ(c,g)),h)

5.11. Hence, as a consequence of Proposition 3.11, we have that H0
Cond (F,ϕ) is also trivial. As in ¶ 5.8,

the same does not hold for H−1
Cond (F,ϕ): The factorization lift of a morphism is not required to be unique.

5.12. We close this section whith a conjecture, which unfortunately we did not have enough time to
investigate thoroughly.

Conjecture 5.13. Let F : C → D be a functor. If H0
Opfib (F) ,H0

Cond (F) are trivial, then assuming the
axiom of choice F can be made into a pre-delta lens, that is, a delta lens that does not satisfy axiom 2 in
Definition 5.3.

Proof attempt. Given any morphism Fc
f−→ d ∈ D, denote with Sc, f the set of lifts of f . This set is

non empty because H0
Opfib (F) is trivial. Furthermore, every time f factorizes as g # h, the triviality of

H0
Cond (F) guarantees that every lift in Sc, f can be split – potentially in multiple ways – thus defining a

partial, surjective function:
Sc,g ×

⊔
codx|x∈Sc,g

(Scodx,h)−→ Sc, f

This information can be used to define a graph highlighting the coherence requirements between all of
the sets S, which are the vertexes of the graph.

We then define ϕ(c, IdFc) := Idc on identites. The hard part of the proof is using the graph, together
with the axiom of choice, to pick an element out of every Sc, f for f not an identity morphism. If the base
category is free this is easier, as we can decompose every f as a unique composition of generators. In
this case, the graph above has leaves – that is, vertexes with no arrows out of them – and we can define
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a lens by picking any element in the S laying on its leaves arbitrarily, and then defining the other nodes
inductively. The general case is much harder since the graph will have all sorts of cycles, and the choice
out of every S cannot be made so liberally.

6 Discussion and future work

Investigating failures of compositionality in category theory transcends mere theoretical relevance and
has the potential of impacting several real-world applications. With many modern ML systems being
inherently compositional and a growing scientific community focusing on their categorical formaliza-
tion [30], one is predictably interested in looking at where such compositionality fails. Formal tech-
niques to qualify such obstructions may hold promise in improving understanding of ML inner workings,
a process often hindered by their lack of interpretability [33]. For example, functoriality of clustering
algorithms has been found to be a very desirable property in computational topology. Under the view that
clustering is the statistical analogue of constructing connected components of a topological space, it has
been investigated how certain algorithms lose their functoriality under a different choice of morphisms
in the source category [8]. Such functorial perspective potentially helps to extend algorithms and qualify
modifications that break functoriality [29].

For these reasons, applying the techniques heretofore presented to the fields of categorical machine
learning [15, 16] and cybernetics [7] constitutes one of the main directions for future work, to which
Section 5 is a modest prelude.

Another direction of investigation is applying the techniques hereby developed to the field of fibra-
tional linguistics [18, 19].

Finally, another important – and perhaps more obvious – direction of future work consists in asking
the obvious question: ‘what about the other squares to the left?’ We conjecture that, by looking at the
diagram in ¶ 1.4, the next square proceeding to the left can be used to measure the laxity of a given functor
without necessarily going through Corollary 4.8. This is due the fact, observed in ¶ 1.3, that the diagram

C3 C2 C1##l

#r Commutes precisely when C is a category. Paired with the observations made
in ¶ 3.1, we conjecture that there should be a way to produce some homology group measuring laxness
of F directly, but this has proven to be an elusive task so far.
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[30] Dan Shiebler, Bruno Gavranović, and Paul Wilson. Category Theory in Machine Learning. 2021.
arXiv: 2106.07032 [cs.LG] (cit. on p. 12).

[31] Toby St. Clere Smithe. Bayesian Updates Compose Optically. 2020. arXiv: 2006.01631 [math.CT]
(cit. on p. 9).

[32] Toby St Clere Smithe. “Cyber Kittens, or Some First Steps Towards Categorical Cybernetics”.
In: Electronic Proceedings in Theoretical Computer Science 333 (Feb. 2021), pp. 108–124. DOI:
10.4204/eptcs.333.8. URL: http://dx.doi.org/10.4204/EPTCS.333.8 (cit. on p. 9).
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