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In this paper, we give generators and equations for Gaussian quantum processes with infinite squeez-
ing. We use complex affine Lagrangian relations as our semantics, rather than infinite dimensional
Hilbert spaces, which allows us to account for infinitely squeezed operations such as dirac deltas and
Frobenius algebras in a compositional matter. More specifically, we pick out a sub-category of positive
complex affine Lagrangian relations in order to establish a bijection with the syntax which we provide.

We represent Gaussian processes by tensor networks of white and grey undirected graphs, with m
inputs and n outputs, whose nodes are labeled by pairs a ∈ R,b ∈ C with Im(b)⩾ 0:

m ... n...
a,b

and m ... n...
a,b

, (1)

The equations for the language, as well as some derived generators (or syntactic sugar), are given in
the following figure :

=

=
z

z

z

z
=... ... ......

ca -ac=

a

c
a+ c=

=

==

==
=

......

......
...

...
...

...

=
......

......
...

...
...

... = =

With derived
generators:
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Figure 1: Equations for our graphical language. Here, a,c,z ∈R, b,d ∈C, θ ,ϑ ∈ [0,2π) with Im(b)⩾ 0,
Im(d)⩾ 0, z ̸= 0, θ /∈ {π/2,3π/2}.
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We emphasize that the fact that our generators are undirected graphs means that only the connectivity
of diagrams matters; for example, all of the three following circuits are equivalent:

= = (2)

In other words, we take the presentation for real affine Lagrangian relations given by Booth et al.
[1] and add a single generator 0, i : 0 → 1 which freely codiscards symplectic rotations as well as
non-zero effects. From a physical point of view, this new state corresponds to the quantum vacuum
state, representing the standard bivariate Gaussian distribution of positions and momentums in the phase
space. On the other hand, infinitely-squeezed eigenstates of the position and momentum displacement
operators p̂ and q̂ are represented by |p : p̂⟩ 7→ p,0 and |q : q̂⟩ 7→ q,0 . We can also translate a
universal gate set for Gaussian unitaries into our language; consisting of the displaced shear of position,
the Fourier transform and weighted CNOT [2] with a,b ∈ R:

exp
(
i(aq̂+bq̂2)

)
7→ a,b

exp
(

i
π

2
(q̂2 + p̂2)

)
7→ − exp(ia(q̂⊗ p̂)) 7→ a (3)

We can now give a straightforward graphical proof of the continuous-variable quantum teleportation
protocol [3] (to be compared with the graphical proof in finite dimensions eg. [4, §5.4]), where Alice
and Bob share a Gaussian Bell state with covariance of position 0 < ε ∈ R. Alice records the homo-
dyne measurement outcome (a,b) ∈ R2 in the Bell basis, and sends it to Bob, who performs the phase
correction p̂−bq̂−a. This is stated graphically and simplified as follows:

= = = = =
Bob

Alice -a,0

-b,0

a,0

b,00, iε
a,0

-b,0

a,0

b,0

0, iε a,0a,0

0, iε

a,0 a,0

0, iε a,0 0, iε a,0 -a, i/ε

The result is a quantum channel with an error; however, in the infinitely-squeezed limit of ε = 0

Alice teleports a perfect channel to Bob: ==
0, iε a,0 a,0 . In the literature, the infinitely-

squeezed Bell state is often haphazardly represented by the non-convergent integral
∫
R |p : p̂⟩⊗|p : p̂⟩d p.

However, we reiterate that this expression can be represented in our calculus by an unlabeled 2-legged
grey node; and it is interpreted soundly in our semantics by replacing the integral over position eigenstates
|p : p̂⟩ with the relational composition in the phase-space.

In the full paper, we discuss the relation to different works existing in the literature. For example we
show how our work extends Menicucci et al’s representation of Gaussian states of [5] in a compositional
matter. We also discuss the relationship to quantum optics, and in particular, the graphical language LOv
for passive quantum optics [6]. We also show how Stein and Samuelson’s prop of Gaussian relations [7]
can be presented by taking real affine relations and adding a generator which freely codiscards rotations
and nonzero effects; a result which was also independently discovered [8]!
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