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The theory of Markov categories [4,7] is an abstract framework for probability theory, which has
recently gained prominence. It is distinct from traditional measure-theoretic treatments and applicable
also to other theories of uncertainty. A Markov category is one that satisfies several basic properties
of concrete categories with Markov kernels as morphisms. The string-diagrammatic language available
allows an explicit account of conditional independence of probabilistic processes. Adding additional
axioms with clear interpretation (e.g. conditionals, representability, . ..) provides all the structure needed
to express and prove categorical versions of classical results in probability theory and statistics [1, 5,8~
11,13,14]. The fact that this approach axiomatizes how probabilities behave instead of defining what
probabilities are makes it ‘synthetic’.

In the present work, we extend the existing theory by stating and proving a synthetic version of the
Aldous—Hoover theorem, which is arguably the deepest result of probability theory that has been
developed synthetically so far. Before we turn to its statement, let us provide a bit of background first.
The de Finetti theorem asserts that if the joint probability distribution of an infinite sequence of
random variables remains unchanged under finite permutations, then these variables are conditionally
independent given an appropriate random variable. This theorem holds substantial technical and philo-
sophical significance: For example, it extends the law of large numbers to such permutation-invariant
sequences; and it plays a significant role in the longstanding debate on the subjective vs. objective view
of probability.

What happens when we have an infinite matriz of random variables instead of a mere infinite se-
quence? This is what the Aldous—Hoover theorem [2,12] addresses. This more recent result of measure-
theoretic probability is an analogue of the de Finetti theorem for matrices that display permutation
invariance, now with respect to permuting rows and columns separately. If one thinks of the matrix en-
tries as the colors of edges in an infinite complete bipartite graph, then the theorem characterizes these
distributions as mixtures of distributions constructed as follows: assign to each vertex independently a
random ‘label’, and then assign to each edge a color that depends only on the labels of its endpoints.
This formulation also underlines connections to the theory of random graphs and networks [6].

In this work, our main new result is a generalization of the Aldous—Hoover theorem to Markov
categories, based on axioms related to those appearing in our earlier proof of the de Finetti theorem [8].
To state it, we first need to mention a new information flow axiom, which we also introduce in the present
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For the Markov categories that describe measure-theoretic probability, this axiom reduces to saying that
whenever (f — g)? is p-almost surely equal to 0, then f is p-almost surely equal to g, which is evidently
true. Just like the classical Aldous—Hoover theorem deals with matrices of random variables that satisfy
the relevant permutation invariance, our synthetic generalization applies to morphisms p : I — XNxN
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that are invariant under permutations of either of the two indexes:
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for all finite permutations ¢ : N — N. Here, X°*4 and X'9%? stand for the permutations of rows
and columns respectively. We call such morphisms row-and-column-exchangeable. The result is now as
follows:

Theorem 1 (synthetic Aldous—Hoover theorem). Let C be a Markov category with conditionals, count-
able Kolmogorov products, and satisfying implication (1). Then a morphism p : I — XN js row-and-
column-exchangeable if and only if it can be written in the form
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for some morphisms f, g, h and q and suitable objects on the intermediate wires.
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Here, the red rectangles represent plate notation, which is a shorthand for drawing infinite copies
of wires and feeding each copy into a copy of the same subdiagram inside the box. This notation extends
the existing plate notation for Bayesian networks [3] to string diagrams.? So in the string diagram above,
f and g are copied N times (with one copy for each column and row respectively), while h is copied N x N
times (with one copy for each entry of the matrix). In terms of the random graph picture mentioned
above, f generates a label for each ‘row’ vertex i, while g generates a label for each ‘column’ vertex j,
and h generates a color for each edge (7, j) based on the labels of its endpoints.

We prove this theorem by several suitable applications of our synthetic de Finetti theorem?® together
with (1) to derive a number of conditional independence relations, and then use standard implications
between conditional independence relations in order to prove compatibility with the relevant causal
structure by an argument reminiscent of the d-separation criterion [9]. When instantiated in measure-
theoretic probability (meaning in the Markov category BorelStoch), our Theorem 1 recovers the classical
Aldous-Hoover theorem.
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