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Abstract

Monads and comonads are important constructions from category theory which find widespread
application in computer science and other related disciplines. Distributive laws allow these constructions
to interact compositionally. Such laws are not guaranteed to exist, and even when they do, finding them
can be a difficult task. Inspired by recent results which establish conditions under which no distributive
laws can exist between pairs of monads, we present a family of no-go theorems for the existence of
distributive laws of a comonad over a monad. We begin by showing that, in the category of sets, every
polynomial functor has a unique Kleisli law over the non-empty powerset monad. We then show that
this Kleisli law only extends to a comonad-monad distributive law if the comonad is a linear polynomial
comonad, i.e. coreader comonad. Consequently, every other polynomial comonad does not distribute
over the powerset monad. Next, we generalise our results to a large class of monads, which we call
uniform choice monads. Examples of monads in this class include any multiset or distribution monad
parameterised by a suitable semiring and the filter monad. Finally, we give string-diagrammatic proofs
of ‘transfer theorems’, that allow us show when a distributive law of (co)monads over categories which
contain the category of sets as a (co)reflective subcategory restrict to related (co)monads over the category
of sets. Using these transfer theorems, we show that several game comonads, recently introduced in the
context of finite model theory, fail to distribute over variants of the powerset and distribution monads,
which are used to capture relaxations of the constraint satisfaction problem.

Possibilistic monads and polynomial comonads Amongst the many applications of monads is their
use in giving semantics for effectful computation [Mog89]. An effectful computation from inputs of type A
to outputs of type B is modeled as a morphism of type A→MB. For instance, if M is the powerset monad,
then a morphism A→MB is non-deterministic computation from inputs A to values in B. Similarly, if M
is the discrete probability distribution monad, a morphism A→MB computes from inputs in A probability
distributions over random variables in B. The Kleisli category of the monad M ensures that the non-
deterministic/probabilistic computations can be composed. On the other hand, comonads (W, ε, δ) whose
underlying functor is a polynomial endofunctor capture data structures which have ‘directed’ or contextual-
folding structure, i.e. they are equipped with coherent notions of ‘subshape’ and ‘root position’ [ACU14].
For polynomial comonads, a morphism of type WA → B represents a contextual fold of a data structure
filled with elements from A to compute a value in B. The coKleisli category of the comonad W ensures that
these contextual computations can be composed.

No-go theorems for mixed distributive laws Given a monad M and a comonad W , when can two
contextual nondeterministic computations WA→MB and WB →MC be composed? Power and Watanabe
in [PW02] demonstrated that the existence of a mixed distributive law κ : WM → MW gives a sufficient
(but not necessary) condition for obtaining a biKleisli category where morphisms of type WA → MB
are composed. A mixed distributive law κ : WM → MW of a comonad (W, ε, δ) over a monad (M,η, µ)
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is a natural transformation satisfying some coherence axioms with the M ’s unit η, W ’s counit ε, M ’s
multiplication µ, and W ’s comultiplication δ. Understanding when such mixed distributive laws exist is
important for understanding the limitations of compositionality in computation. Similar questions have been
asked for distributive laws of monads over monads. General-purpose techniques were developed to come up
with such laws (e.g. [BHKR13, MM07, MM08, Par20, DPS18]). However, recent research has also focused
on the non-existence of monad-monad laws [KS18, ZM22]. Inspired by these no-go theorems, the paper we
will present (attached below) contains a no-go theorem demonstrating that there is no distributive law of
type κ : WM →MW for all non-linear polynomial comonads W and all monads M which have a meaningful
notion of ’uniform sampling distribution’. The class of monads M includes a wide-class of distribution and
multiset monads parameterised by a semiring, and the filter monad. The proof of the no-go theorem exhibits
a mixture of various techniques including Plotkin-style naturality diagram chases, supported endofunctors,
and the algebraic notion of an n-ary open term of a monad.

Transfer theorems To widen the scope of applicability of our no-go theorem, the paper we will present
also includes a two part transfer theorem. This transfer theorem dictates conditions under which the existence
of a mixed distributive law in a category C implies the existence of a mixed distributive law in Set. The first
part of this theorem is a generalised comonad-monad variant of [MM07, Theorem 3.1.3], which considers
transfer theorems for monad-monad distributive laws defined on the same category. The additional ingredient
for this generalisation requires a Yang-Baxter equation to be satisfied. The second part of this theorem
demonstrates that given a ι a U coreflection including Set into C we can produce a mixed distributive
law of (co)monads over Set from a distributive law of (co)monads over C. We then apply this transfer
theorem to cases where C = R(σ) is the category of relational structures. In particular, we demonstrate
there cannot exist a distributive law of the Ehrenfeucht-Fräıssé or pebbling comonads [ADW17, AS20],
which capture equivalence in fragments of infinitary first-order logic, over the tree-duality and fractional
isomorphism monads [NDM12, Con22], which capture relaxations of constraint satisfaction problems.
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No Go Theorems: Directed Containers That Do Not Distribute
Over Distribution Monads

Abstract—Monads and comonads are important constructions from
category theory which find widespread application in computer science
and other related disciplines. Distributive laws allow these constructions
to interact compositionally. Such laws are not guaranteed to exist, and
even when they do, finding them can be a difficult task.

Inspired by recent results which establish conditions under which no
distributive laws can exist between pairs of monads, we present a family
of no-go theorems for the existence of distributive laws of a comonad
over a monad.

We begin by showing that in the category of sets every container
has a unique Kleisli law over the non-empty powerset monad. We then
show that this Kleisli law only extends to a comonad-monad distributive
law if the comonad is a coreader comonad. Consequently, every other
directed container does not distribute over the powerset monad. Next, we
generalise our results to a large class of monads, which we call uniform
choice monads. Examples of monads in this class include any multiset or
distribution monad parameterised by a suitable semiring. Finally, we
extend our results to the category of relational structures where we
show that several game comonads, recently introduced in the context
of finite model theory, fail to distribute over variants of the powerset
and distribution monads, which are used to capture relaxations of the
constraint satisfaction problem. Overall, our no-go results cover a diverse
range of (co)monads that are of interest in many areas of mathematics and
computer science, such as probability theory, programming languages,
and finite model theory.

I. INTRODUCTION

Monads and comonads are ubiquitous throughout mathematics
and theoretical computer science. Amongst the many applications of
monads is their use in giving semantics for effectful computation [35].
An effectful computation from inputs of type A to outputs of type B
is modeled as a morphism of type A→MB. In this paper we will be
concerned with monads M that model a form of nondeterminism, e.g.
possiblistic, probabilistic, or quantum. Nondeterministic computations
A → MB are composed in the Kleisli category associated to the
monad M . Similarly, comonads are used to give semantics for
contextual computations where inputs are paired with a context
in a larger data structure [37], [42]. Contextual computations from
inputs of type A to outputs of type B are modeled as morphisms
of type WA→ B where W is a comonad that models contexts in
a data structure, e.g. prefixes of a list, indices of a list, nodes in
a tree. Dual to the notion of a Kleisli category over a monad M ,
contextual computations WA → B are composed in the coKleisli
category associated to the comonad W . Given a monad M and a
comonad W , when can two contextual nondeterministic computations
WA→MB and WB →MC be composed? Power and Watanabe
in [40] demonstrated that the existence of a mixed distributive law
gives a sufficient (but not necessary) condition for obtaining a biKleisli
category where morphisms of type WA→MB are composed.

A mixed distributive law from a comonad W to a monad M is a
natural transformation κ : WM →MW satisfying the four axioms
in Definition II.15. An example for such a law is to take W to be the
prefix list comonad L+ and M to be the partiality monad, i.e. the
Haskell ‘Maybe’ monad [37]. Intuitively, this law takes a non-empty
list of potentially undefined values and returns either (1) undefined if
the last value of the list is undefined, or (2) the list of those values

that are defined. In a sense, the partiality monad is a rudimentary
form of nondeterminism–either a value is determined or undetermined.
As we will show, for certain other nondeterministic monads M no
such distributive law can exist. The motivation that led us to discover
this family of no-go theorems came from two different avenues of
research.

The first avenue comes from recent no-go theorems on a different
notion of distributive laws. Mixed distributive laws are one among
many different notions of distributive laws where the structure on W
and M are varied, e.g. monads over comonads, pointed endofunctors
over endofunctors, and many others detailed in [31]. Chief among
these notions is the monad-monad distributive law. A monad to monad
distributive law of type TS → ST provides a sufficient condition for
when two monads on functors S and T determine a monad structure
on the composed functor S ◦ T . Many general-purpose techniques
were developed to come up with such laws (e.g. [10], [33], [34], [38],
[14]). However, recent research has also shown the non-existence
of such laws [29], [45]. In particular, a result in [43] attributed to
Plotkin showed that the powerset monad does not distribute over the
distribution monad. Zwart and Marsden [44], [45] vastly generalise
this result to obtain sufficient conditions for the non existence of a
distributive law between pairs of monads. Unfortunately, the conditions
that appear in [45] rely on algebraic presentations of monads. Since
the analogous notion of coalgebraic presentations of comonads is
an active area of research [15], these conditions cannot be readily
adapted to studying mixed distributive laws. This paper is a first step
towards a general theory for demonstrating the non-existence of mixed
distributive laws.

The second avenue comes from applications of (co)monads to finite
model theory. In work by Abramsky et. al [4], [5], Spoiler-Duplicator
games, a key tool in finite model theory, are internalized as families
of indexed comonads over the category of relational structures R(σ)
for some relational signature σ. In model theory, a Spoiler-Duplicator
game is used to show when two relational structures satisfy the same
sentences in a logic graded by some resource associated to the game.
Consequently, by internalizing a game as a comonad, Abramsky et. al
provide categorical semantics to the corresponding logic. For example,
the k-pebble comonad Pk is obtained by putting a relational structure
on the non-empty list of previous Spoiler moves in a one-sided
variant of the k-pebble game. Parallel to the development of Spoiler-
Duplicator comonads, a paper by Abramsky et. al [3] demonstrates
that the notion of quantum homomorphism, phrased originally in terms
of non-local games from quantum information theory, is a morphism
in the Kleisli category of a graded quantum monad Qd over relational
structures. An open question that was first alluded to in [3], and later
explicated in [12] asks if a mixed distributive law exists between
Pk and Qd. A positive answer to this question would give rise to
a biKleisli category which could be used to define compositional
quantum winning strategies for Duplicator in the k-pebble game. This
open question will be addressed in a related paper that is currently
in preparation. The present paper is instead dedicated to detailing
the no-go theorems we discovered in the process of answering this



question.
Because Pk and Qd are complicated constructions, we decided to

first explore the question of whether mixed distributive laws exists
between simpler (co)monads which share some similarities with Pk
and Qd. To this end, we first considered the non-empty list comonad
L+ and the powerset monad P . In this case, L+ can be seen as a
version of Pk defined on Set rather than R(σ) and without the
complication of pebbles, while P can be seen as a possibilistic
version of Qd which does not assign probabilities or measurement
outcomes to these possibilities. We discovered that it is impossible to
construct a distributive law κ : L+P → PL+ between this pair of
(co)monads. This result will be the cornerstone upon which the other
no-go theorems in this paper are built.

The remainder of the paper is organised as follows: We introduce
the preliminary mathematical background in section II. Section III
contains our first contribution, a “Plotkin-style” argument which shows
that any container (equivalently, polynomial endofunctor) has a unique
Kleisli law over the non-empty powerset monad. We then show in
section IV that for a large class of comonads this law does not
extend to a comonad-monad distributive law over the (non-empty)
powerset monad. In particular, there is no distributive law of the
non-empty prefix list comonad over the (non-empty) powerset monad.
This is in contrast with a well-known distributive law of the list
monad over the (non-empty) powerset monad [33]. In section V we
extend our no-go result to monads which admit a sensible notion
of ‘uniform distribution’. We then determine conditions under which
the distribution and multiset monads DS and MS belong to this
class of monads. Finally, in section VI we prove a transfer theorem
which allows us to extend our results to the category of relational
structures. Using this theorem we prove that many of the game
comonads introduced to study finite model theory do not distribute
over variants of the powerset and distribution monads used to capture
relaxations of the constraint satisfaction problem.

II. PRELIMINARIES

In this section, we establish some notational preliminaries and
provide a short introduction to the relevant concepts in category
theory that we use.

A. Category theory

We assume familiarity with the standard category-theoretic notions
of category, functor, natural transformation, and adjunction (see e.g.
[39] for definitions). Given a category C, we will denote its class
of objects C0 and the class of morphisms C1. Given two objects
X,Y ∈ C0, the class of morphisms of type X → Y , is denoted
C(X,Y ).

The category of endofunctors with morphisms as natural trans-
formations will be denoted [C,C]. This category is strict monoidal
with the monoidal product given by functor composition and the
monoidal unit given by the identity functor. In particular, this means
that given natural transformations ν : F → G and ν′ : F ′ → G′, we
can ‘horizontally compose’ them to obtain a natural transformation
ν′ ?ν : F ′ ◦F → G′ ◦G defined as ν′ ?ν = ν′G◦F ′ν = G′ν ◦ν′F .
Note these two definitions are indeed equivalent by naturality of ν′

applied to ν’s components. Since we will not use any other aspect
of the monoidal structure on the category [C,C], we do not define
monoidal categories and refer the reader to chapter 1 in [23].

We write Set for the category of sets and functions. For a set X ,
|X| denotes the (potentially infinite) cardinality of X . For n ∈ N,
[n] = {1, . . . , n}.

B. Monads and comonads

We recall the definition of a monad on C is a triple (M,η, µ) where
M : C→ C is an endofunctor and ηM : IdC →M , µM : MM →M
are natural transformations. such that the following equations hold:
(1) : µ ◦Mµ = µ ◦ µ and (2) : µ ◦Mη = µ ◦ η = idM . We may
omit the superscripts and write η and µ whenever the functor M is
clear.

A monad map from (M,ηM , µM ) to (M ′, ηM
′
, µM

′
) is a natural

transformation ρ : M →M ′ such that ρ ◦µM = µM
′
◦ (ρ ? ρ); ρ ◦

ηM = ηM
′
. There is a category Mon(C) of monads and monads

maps on C. The category Mon(C) has a notion of subobject. A
monad M is a submonad of M ′ if there exists a monic monad
map ι : M → M ′. In many cases, we will not need to consider
the multiplication µM of a monad, and instead consider pointed
endofunctors (M,ηM ) where M is an endofunctor and η : idC →
M is a unit natural transformation. A map between two pointed
endofunctors ρ : M → M ′ is a natural transformation satisfying
ρ ◦ ηM = ηM

′
.

Dually, a comonad on C is a triple (W, εW , δW ) where W : C→ C
is an endofunctor and εW : W → IdC, δW : W →WW are natural
transformations such that the following equations hold: (1) : WδW ◦
δW = δWW ◦ δW and (2) : WεW ◦ δW = εWW ◦ δW = idW . We
may omit the superscripts and write ε and δ whenever the functor
W is clear.

C. Multiset and Distribution Monads

A semiring is given by the data S = (S, 0S , 1S ,+, ·) where
(S, 0S ,+) is an ‘additive’ commutative monoid and (S, 1S , ·) is a
‘multiplicative’ monoid where multiplication · distributes over addition
+, i.e. for all x, y, z x · (y + z) = x · y + x · z, (y + z) · x =
y · x+ z · x, and 0S · x = 0S = x · 0S . A semiring morphism is
a set function preserving the addition, multiplication, additive unit,
and multiplicative unit. The multiset monad over S is (MS , η, µ)
where MS : Set→ Set is the endofunctor such that:

• for a set X ,MS (X) is the set of all functions of type ϕ : X →
S where for all but finitely many x ∈ X , ϕ(x) = 0S and and

• for a function, f : X → Y , MS (f) : MS (X) → MS (Y )
maps ϕ to λy.Σx∈f−1(y)ϕ(x).

• The unit has components defined as ηX(x) = ∆x where
∆x(x) = 1S and ∆x(y) = 0S for y 6= x.

• The multiplication has components defined as µX(ϕ) =
λx.Σψ∈MS (X)ϕ(ψ) · ψ(x).

We define the support of a multiset ϕ ∈ MS (X) as the set
supp(ϕ) = {x ∈ X | ϕ(x) 6= 0S }. Elements ϕ ∈ MS (X)
can be written as finite formal sums ϕ = Σsixi with xi ∈ supp(ϕ)
and ϕ(xi) = si.

The distribution monad (DS , ηD, µD) over semiring S underlying
functor DS : Set→ Set where DS (X) is the subset of MS (X)
such that elements ϕ ∈MS (X) satisfy the normalisation condition∑
x∈X si = 1S . The unit and multiplication of (DS , ηD, µD) are

obtained by restricting the corresponding maps of the mulitset monad
to DS (X).

Example II.1. The ordinary multiset or ‘bag’ monadM is recovered
as MS =MN for the semiring of natural numbers (N, 0, 1,+, ∗).

Example II.2. The ordinary probability distribution monad D is
recovered as DS = DR≥0

for the semiring of non-negative real
numbers (R≥0, 0, 1,+, ∗).



Example II.3. Given a ring R, the free R-module and R-convex
space monad are recovered as MS and DS for ring S = R
considered as a semiring.

Example II.4. The multisetMS and distributionDS monads for the
min-plus semiring (R ∪ {∞},∞, 0,min,+) are useful for modeling
spaces in tropical geometry and logical queries with confidence
scores [21].

Example II.5. If S = (B,⊥,>,∨,∧) is the Boolean semiring, then
MS and DS are isomorphic to the finite powerset monad Pf and
finite non-empty powerset monad P+

f .

In the case where the addition operation + of S can be extended to
an arbitrary sum operation which also distributes over multiplication,
S is a complete semiring. As this sum operation is well-defined
for infinite subsets, we can remove the finite support restriction on
the functions in MS (X) and DS (X) to obtain analogous monads
M∞S and D∞S .

Example II.6. If S is the Boolean semiring B, then M∞S and D∞S
are isomorphic to the full powerset monad P and the full non-empty
powerset monad P+.

D. Directed Containers

All of the Set comonads we consider in this work have the property
that their underlying functor is a container [1]. Intuitively, a container
captures data structures which have a set of shapes and addressed
positions for the data stored within those shapes.

Formally, a container S /P , is a set S and a functor P : S → Set
where we consider S as a discrete category, i.e. P defines an S-
indexed family of sets. We consider S to be a set of shapes, and
for each s ∈ S, P (s) is the set of positions associated with a shape
s ∈ S. The induced endofunctor on S / P is [S / P ] : Set → Set
where
• for a set X , [S / P ]X = {(s, l) | s ∈ S, l : P (s)→ X}; and
• for a function g : X → Y , [S / P ]g : [S / P ]X → [S / P ]Y is

defined as (s, l) 7→ (s, g ◦ l).
We abuse terminology and say an endofunctor F : Set→ Set is a
container if F ∼= [S / P ] for some set S and functor P : S → Set.

Example II.7. For a fixed set S, the product by S endofunctor
S × (·) : Set → Set is a container such that for all s ∈ S, P (s)
is a singleton {>}. Dually, for a set T , the exponentiation by T
endofunctor (·)T is a container such that S = {⊥} is a singleton
and P (⊥) = T .

In fact, containers are equivalent to polynomial functors [30], i.e.
[S / P ] =

∑
s∈S(·)P (s).

Example II.8. The list endofunctor L is a container where S = N,
P (0) = ∅, and for every positive n ∈ S, P (n) = {1, . . . , n}. The
non-empty list endofunctor L+ is defined similarly where S = N+ is
the set of positive integers.

Example II.9. The rooted binary tree endofunctor B : Set→ Set
is a container where S is the set of full unlabelled binary trees and
P (s) is the set of internal nodes in tree s ∈ S. The rooted non-empty
binary tree endofunctor B+ : Set→ Set is obtained removing the
empty tree from S.

Ahman, Chapman, and Uustalu, showed that comonads whose
underlying endofunctor is a container are equivalent to containers
which are equipped with additional ‘directed’ structure [6]. Intuitively,
directed containers are containers where each position has an

associated ‘sub container’ and every such ‘sub container’ has a root.
Formally, a directed container consists of

• a container F = [S / P ];
• for each shape s ∈ S, a root position os ∈ P (s);
• for each position p ∈ P (s), a subshape s ↓ p ∈ S;
• for each position p′ ∈ P (s ↓ p) in the subshape s ↓ p, a

translation into a position p ⊕s p′ ∈ P (s) in the global shape
s ∈ S;

satisfying the equations

s ↓ os = s s ↓ (p⊕s p′) = (s ↓ p) ↓ p′ (1)

p⊕s os↓p = p = os ⊕s p (2)

(p⊕s p′)⊕s p′′ = p⊕s (p′ ⊕s↓p p′′). (3)

A directed container D = ([S /P ], o, ↓,⊕), has an induced comonad
([S / P ], ε, δ) of D where:

• The counit has components defined as εX(s, l : P (s)→ X) =
l(os)

• The comultiplication has components defined as
δX(s, l : P (s)→ X) = (s, λp.(s ↓ p, λq.l(p⊕s q)))

We will abuse terminology and say a comonad (W, ε, δ) is a directed
container if it is isomorphic to the induced comonad of a directed
container.

Example II.10. Extending example II.7, the coreader comonad
(S × (·), ε, δ) on a fixed set S has counit with components defined
as ε(s, x) = x and comultiplication with components defined as
δ(s, x) = (s, (s, x)). The identity comonad is recovered as the case
where S is a singleton. The coreader comonad on set S is isomorphic
to the induced comonad of a directed container on [S / P ] where for
every s ∈ S, P (s) is the singleton set {>}. As P (s) is trivial for
every s ∈ S, the directed container structure is such that os = >,
s ↓ > = s, and >⊕s > = >.

Example II.11. The cowriter comonad ((·)T , ε, δ) on a fixed monoid
(T, e, ∗) has counit defined as ε(f) = f(e) and comultiplication
defined as δ(f) = λmλn.f(m ∗ n). For a monoid (T, e, ∗), the
cowriter comonad is isomorphic to the induced comonad on the
directed container ([{⊥} / P ], o, ↓,⊕) where P (⊥) = T , o⊥ = e,
for every m ∈M , ⊥ ↓ m = ⊥, and ⊕⊥ = ∗.

Example II.12. The list container L from Example II.8 cannot be
extended to a directed container as P (0) = ∅ and so there is no
possible root o0 ∈ P (0). However, the non-empty list container L+

is commonly extended to a directed container in two non-isomorphic
ways. The first way induces the prefix list comonad with counit
defined as ε([x1, . . . , xn]) = xn and comultiplication defined as
δ([x1, . . . , xn]) = [[x1], [x1, x2], . . . , [x1, . . . , xn]].

In this case, for every shape n ∈ N+, on = n, for every position
i ∈ P (n) = {1, . . . , n}, n ↓ i = i, and for every i ∈ P (n), j ∈
P (n ↓ i), i⊕n j = j ∈ P (n). The suffix list comonad is isomorphic
to the prefix list comonad via the ‘reverse’ natural transformation.
The second non-isomorphic way induces the cyclic list comonad, see
e.g. [37, Example E.24] for details.

Example II.13. The non-empty binary tree container B+ can be
extended to a directed container [7]. This induces the comonad where
the counit sends an X-labelled tree t to the label at t’s root. The
comultiplication sends an X-labelled tree t to the B+(X)-labelled
tree t′ where node v of t′ is replaced with the X-labelled subtree tv
of t rooted at node v.



Example II.14. For every comonad (W, ε, δ), the composed functor
W ◦ S × (·) has a comonad structure. In the case of a set S =
[k] for some k ∈ N and W = L+ is the prefix list comonad, we
obtain a pebble list comonad (L+[k], ε, δ). This comonad has counit
with components defined as ε([(p1, a1), . . . , (pn, an)]) = an and
comultiplication δ([(p1, a1), . . . , (pn, an)] = [(p1, s1), . . . , (pn, sn)]
where for all i ∈ [n], si = [(p1, a1), . . . , (pi, ai)]. This comonad is
the pebbling comonad of [4] over Set.

E. Distributive Laws

Definition II.15. A mixed distributive law of comonad (W, ε, δ) over
monad (M,η, µ) is a natural transformation κ : WM → MW
satisfying the following diagrams:

W

WM MW

Wη ηW

κ

(4)

WM

MW M

κ εM

Mε

(5)

WMM MWM MMW

WM MWκ

Wµ

κM Mκ

µW (6)

WM MW

WWM WMW MWW

κ

Mδ

κWWκ

δM (7)

We call (4), (5), (6), (7) the unit, counit, multiplication, and
comultiplication axioms respectively. Note that a given natural
transformation can satisfy each axiom independently of the others.
Thus, one can consider relaxations of the above definition where some
of the diagrams are excluded. Many of these relaxations have been
studied in existing literature, e.g. see [27]. One relaxation that will be
important in our work is the case where κ is only required to satisfy
the unit axiom. We refer to this case as a pointed law.

Definition II.16. A pointed law of a functor W over the pointed
endofunctor (M,η) is a natural transformation κ : WM → MW
satisfying (4).

Note that there is no requirement in this definition for W to have
a comonad structure, we only require that it is an endofunctor and
M does not need to have an associated multiplication operation. If
we do require compatibility with the multiplication in (M,η, µ),
we obtain the definition for a Kleisli law [27]. A Kleisli law of an
endofunctor W over the monad (M,η, µ) is a natural transformation
κ : WM →MW satisfying (4) and (6).

In fact, Kleisli laws can be defined more generally when one has two
monads defined on different base categories together with a functor
between these categories. We can think of such laws as a generalised
notion of morphism between monads on different categories.

Definition II.17. Let (M,ηM , µM ), (M, ηM, µM) be monads defined
on categories C,D, and let U : D→ C be a functor. A Kleisli law
is a natural transformation λ : UM→MU satisfying the following
axioms:

λ ◦ UηM = ηMU

λ ◦ UµM = µMU ◦Mλ ◦ λM

We also require the dual concept of a coKleisli law.

Definition II.18. Let (W, εW , δW ), (W, εW, δW) be comonads de-
fined on categories C,D, and let U : D → C be a functor. A
coKleisli law is a natural transformation λ : WU → UW satisfying
the following axioms:

UεW ◦ λ = εWU

UδW ◦ λ = λW ◦Wλ ◦ δWU

III. CONTAINERS OVER POWERSET

In this section, we show that if a container F : Set→ Set has a
pointed law κ over (P, η), then κ sends elements in a container with
non-empty sets at every position to the set of all possible ways to
sample at each position. As a corollary, we prove that there exists
a unique pointed law of a container F over (P+, η+). As every
distributive law is also a pointed law, this theorem prunes the space
of possible distributive laws, and is therefore an important building
block for our no-go theorems.

Theorem III.1. If F = [S / P ] is a container and there exists
a pointed law κ : FP → PF , then for all sets X and ele-
ments (s, l : P (s)→ P+(X)) ∈ F (P+(X)) ⊆ F (P(X)),

κX(s, l) = {(s, j : P (s)→ X) | ∀p ∈ P (s), j(p) ∈ l(p)}. (8)

The uniqueness theorem is proved in three stages using a ‘Plotkin-
style’ argument. This style of argument involves, at each stage, chasing
specific elements along naturality squares for cleverly chosen functions.
We then draw conclusions either from the direct image or pre-image
of the element under a component of the pointed law. The first two
stages involve demonstrating that equation (8) holds for all elements
(s, l) which satisfy the following pairwise disjoint condition:

(PD) For all p, q ∈ P (s), if p 6= q, then l(p) ∩ l(q) = ∅.

The first stage uses the unit axiom and involves chasing the κ-
naturality square for a ‘collapse’ function c. In order to convey the
intuition of this first stage, we first sketch the case where F = L+.
Consider L = [X1, . . . , Xn] in L+P+(X) For Xi = {xi} singletons,
κX([{x1}, . . . , {xn}) = {[x1, . . . , xn]} follows directly from the
unit axiom. More generally, as each Xi is in P+X , we can choose
some yi ∈ Xi. We consider a “collapse the Xi” function c : X → X
which maps every xi ∈ X to yi and is the identity otherwise. c
is indeed a total function, i.e. single-valued, by the (PD) condition.
Chasing the κ-naturality square of c and utilizing the unit axiom
allows us to conclude that κX(L) ⊆ {[x1, . . . , xn] | ∀i ∈ [n], xi ∈
c−1(yi) = Xi}. Intuitively, this argument generalises to containers
as the way defined the collapse only depended on the set at each
position.

Lemma III.2 (Collapse). Suppose F and κ satisfy the hypotheses
of Theorem III.1, then for all sets X and (s, l) ∈ F (P+(X))
satisfying (PD), ∅ 6= κX(s, l) ⊆ {(s, j) | ∀p ∈ P (s), j(p) ∈ l(p)}.

Proof. The argument proceeds in two steps.

1) Unpacking the unit axiom, we show that equation (8) holds if
(s, l) is such that for all p ∈ P (s), there exists a xp ∈ X , l(p) =



{xp}. There is function j = λp.xp : P (s) → X . Consider the
singleton {(s, λp.xp)} ∈ P+(F (X))

{(s, λp.xp)} = ηF (X)(s, λp.xp) definition of η

= κX ◦ F (ηX)(s, λp.xp) unit axiom

= κX(s, ηX ◦ λp.xp) F on morphisms

= κX(s, λp.ηX(xp)) composition

= κX(s, λp.{xp}) definition of η

= κX(s, l) definition of l

2) For all (s, l) ∈ F (P+(X)) and p ∈ P (s), since l(p) 6= ∅, there
exists a yp ∈ l(p). We construct a ‘collapse the l(p)’ function
c : X → X . The definition of c : X → X is

c(x) =

{
yp if x ∈ l(p)
x otherwise

.

By the (PD) assumption, the function c is well-defined. Observe
that P+(c) ◦ l = λp.{yp}. Chasing (s, l) along the κ-naturality
square of c, we obtain

(s, l) κX(s, l)

(s, λp.{yp}) {(s, λp.yp)}

κX

F (P+(c)) P+(F (c))

κX

where the bottom arrow follows from the first step. Since
P+(F (c)) maps the set κX(s, l) to the singleton {(s, λp.yp)},
we can make two observations. The first observation is that since
P+(F (c))(κX(s, l)) 6= ∅, it must be the case that ∅ 6= κX(s, l).
The second observation is that for every (t, j) ∈ κX(s, l),
F (c)(t, j) = (s, λp.yp). Since the function F (c) preserves shape,
for every (t, j) ∈ κX(s, l), t = s. Moreover, from the definition
of P(F (c)), we conclude that

κX(s, l) ⊆ {(s, j) | ∀p ∈ P (s), j(p) ∈ c−1(yp) = l(p)}.

This second stage involves chasing the κ-naturality square of a
‘swap’ bijection b to obtain the opposite inclusion. In the case where
F = L+ and L = [X1, . . . , Xn] ∈ F (P+(X)) satisfying (PD),
by Lemma III.2, there must exist [z1, . . . , zn] ∈ κX(L) with zi ∈
Xi. For every [x1, . . . , xn] with xi ∈ Xi, consider the bijection
b : X → X which for each i swaps zi and xi. Chasing the κ-
naturality square of b and utilizing (PD) allows us to conclude that
κX(L) ⊇ {[x1, . . . , xn] | ∀i ∈ [n], xi ∈ Xi}.

Lemma III.3 (Swap). Suppose F and κ satisfy the hypotheses of
Theorem III.1, then for all sets X and (s, l) ∈ F (P+(X)) satisfying
(PD), κX(s, l) ⊇ {(s, j) | ∀p ∈ P (s), j(p) ∈ l(p)}.

Proof. For all (s, l) ∈ F (P+(X)) satisfying condition (PD), we
construct a ‘swap’ bijection b : X → X . Suppose (s, j) ∈ F (X)
such that j(p) ∈ l(p). We need to show that (s, j) ∈ κX(s, l).
By the previous case and the fact that κX(s, l) ∈ P+(F (X)) is
a non-empty subset of F (X), we know that there exists at least
one (s, j′) ∈ κX(s, l) such that j′(p) ∈ l(p). For every p ∈ P (s),
let sp : X → X be the permutation which swaps j′(p) ∈ l(p) and
j(p) ∈ l(p) while fixing every other element of X . As sp fixes the
set l(p) and, by the (PD) condition, leaves l(q) unchanged for all
q 6= p ∈ P (s), we can conclude that P+(sp) ◦ l = l and (s, l) =
F (P+(sp))(s, l). Hence, by the κ-naturality square of sp, we have
that P+(F (sp))(κX(s, l)) = κX(s, l). Therefore, we can compose

all these swapping bijections (in any order) {sp}p∈P (s) to obtain a
bijection b : X → X such that P+(F (b))(κX(s, l)) = κX(s, l) and
for all p ∈ P (s), b(j′(p)) = j(p). This means that:

(s, j′) ∈ κX(s, l)⇒ F (b)(s, j′) ∈ κX(s, l)

⇒ (s, b ◦ j′) ∈ κX(s, l)

⇒ (s, j) ∈ κX(s, l)

Since (s, j′) ∈ κX(s, l), we can conclude that (s, j) ∈ κX(s, l) as
desired.

The final stage of the proof of Theorem III.1 is a ‘relabel’ argument
which demonstrates that the condition (PD) does not constitute a loss
of generality. In the case where F = L+ and L = [X1, . . . , Xn] ∈
F (P+(X)) (the Xi are not necessarily pairwise-disjoint), we first
consider the set Y = [n]×X . There is a list L′ = [X ′1, . . . , X

′
n] ∈

F (P(Y )) where X ′i = {(i, xi) | xi ∈ Xi} ∈ P(Y ) satisfying (PD).
By construction, F (P(π2))(L′) = L where π2 : Y → X is the
projection onto the second component. Since L′ satisfies (PD), we
can use Lemma III.2, Lemma III.3 and the naturality square of π2 to
compute that

κX(L) = κX(FPπ2(L′))

= PFπ2(κY (L′))

= PFπ2({[(1, x1), . . . , (n, xn)] | ∀i ∈ [n], xi ∈ Xi})
= {[x1, . . . , xn] | ∀i ∈ [n], xi ∈ Xi}.

Generalising this argument to arbitrary container completes the proof
of Theorem III.1.

Proof. Suppose (s, l : P (s)→ P+(X)) ∈ F (P+(X)) and let Y =
P (s)×X . We factor l as l = P+(t) ◦ z where z : P (s)→ P+(Y )
is defined as z(p) = {(p, x) | x ∈ l(p)} and t : Y → X is the
projection onto the second component. By construction (s, z) satisfies
the (PD) condition, so applying Lemma III.2 and Lemma III.3

κY (s, z) = {(s,m) | ∀p ∈ P (s),m(p) ∈ z(p)}
= {(s,m) | ∀p ∈ P (s)∃x ∈ l(p),m(p) = (p, x)}

Since every (s, j : P (s)→ X) such that j(p) ∈ l(p) can be factored
as j = t◦m for (s,m) ∈ κY (s, z) with m(p) = (p, j(p)), we obtain

κX(s, l) = {(s, j) | ∀p ∈ P (s), j(p) ∈ l(p)}

as desired.

It is easy to check that κ+ : FP+ → P+F with components
having the same elementwise definition as κ in Equation (8) satisfies
diagram (4) yielding the following consequence from the proof of
Theorem III.1.

Corollary III.4. For every container F = [S / P ], there exists a
unique pointed law κ+ : FP+ → P+F of F over (P+, η+), where
κ+(s, l) = κ(s, l) defined in (8).

Remark III.5. Equation (8) is sometimes referred to as the Jacobs law
[9], though its definition appears in Barr [8]. For every weak-pullback
preserving functor T : Set → Set, the Jacobs law determines
the unique ‘monotone’ Kleisli law κ : TP+ → P+T [26], [41],
[11]. As containers are weak-pullback preserving, it might ostensibly
appear that Corollary III.4 is a consequence of this fact. However by
restricting to containers, Corollary III.4 strengthens this consequence
by showing that κ+ is the unique law of F over (P+, η+, µ+) sine
conditione rather than merely the unique monotone law. There are
weak-pullback preserving functors T which are not containers, such



as the powerset endofunctor, for which the Jacobs law is not the only
Kleisli law of T over monad (P+, η+, µ+), e.g. see [18, Example
2.14].

Since it may be difficult to parse the equation (8) for an arbitrary
container, the following examples provide additional intuition for how
this transformation works.

Example III.6. Given a set S, for the product endofunctor F =
S × (·) of example II.7, the pointed laws κ : FP → PF and
κ+ : FP+ → P+F have components satisfying κX(s, Y ) =
κ+
X(s, Y ) = {(s, y) | y ∈ Y ⊆ X} for all Y 6= ∅.

Example III.7. For the infinite streams endofunctor L∞ = (−)N, a
special case of example II.7, the pointed law κ : L∞P → PL∞ has
components satisfying κX((X1, X2, . . . )) = {(x1, x2, . . . ) | xi ∈
Xi} for all streams (X1, X2, . . . ) such that every Xi 6= ∅.

Example III.8. For the non-empty list container of example II.8,
the pointed law κ : L+P → PL+ has components satisfying
κX([X1, . . . , Xn]) = {[x1, . . . , xn] | xi ∈ Xi} for all lists
[X1, . . . , Xn] such that every Xi 6= ∅.

As each of these example illustrates, the action of κ on a container
with non-empty sets is to output the set of all containers which sample
an element from each position. This allows us to easily compute the
(possibly infinite) cardinality of the subset κ(s, l) ∈ P(F (X)).

Lemma III.9. If F = [S / P ] is a container and κ : FP → PF
satisfies equation (8) for (s, l) ∈ FP+(X) ⊆ FP(X), then
|κX(s, l)| =

∏
p∈P (s) |l(p)|.

Proof. Follows from a simple counting argument. For each position
p ∈ P (s), sample an element from l(p). Each sampling is independent.

Remark III.10. The proof of Theorem III.1 also applies to pointed
laws κ : FPf → PfF and κ : FP+

f → P+
f F of containers F

over finite powerset (Pf , η) and finite non-empty powerset (P+
f , η),

respectively. However, unlike with full non-empty powerset, the
analogue of Corollary III.4 for (P+

f , η) does not always hold. For
containers [S / P ] where there exists an s ∈ S such that P (s) is
infinite, a pointed law κ : FP+

f → P
+
f F satisfying equation (8) does

not exist as the set κX(s, l) would be necessarily infinite.

IV. DIRECTED CONTAINERS OVER POWERSET

In this section, we investigate, given a directed container (W, ε, δ),
when does the pointed law κ : WP → PW of W over (P, η) extend
to a distributive law of (W, ε, δ) over (P, η, µ).

For instance, the pointed law κ+ : S×P+(·)→ P+(S × (·)) de-
scribed in example III.6 does extend to a comonad-monad distributive
law of the coreader comonad of example II.10 over the non-empty
powerset monad. Moreover, it follows from the counit axiom (5) of
Definition II.15 that any element (s,∅) ∈ S×P(X) must be mapped
by a distributive law κ : S×P(·) → P(S × (·)) to ∅ ∈ P(S×X).
By Theorem III.1, it must be the case that κ is equal to κ+ for
elements (s, Y ) with Y 6= ∅, obtaining a uniqueness result.

Proposition IV.1. For a fixed set S, the coreader comonad W =
(S × (·), ε, δ) has a unique distributive law κ : WP → PW
over the powerset monad (P, η, µ) and a unique distributive
law κ+ : WP+ → P+W over the non-empty powerset monad
(P+, η+, µ+).

This distributive law appears as [40, Example 7.6]. However, as
we will see at the end of this section, the coreader comonad is the

only directed container where a distributive law over the powerset
monad exists. To illustrate the issue, we first show that the pointed law
κ : L+P → PL+ in Theorem III.1 does not extend to a comonad-
monad distributive law of the the prefix list comonad (L+, ε, δ) over
the powerset monad (P, η, µ).

Theorem IV.2. There is no distributive law κ : L+P → PL+ of
(L+, ε, δ) over (P, η, µ).

Proof. Suppose for contradiction there exists a distributive law
κ : L+P → PL+. As κ must satisfy the unit axiom (4), κ is a
pointed law of L+ over (P, η). Theorem III.1 implies that for lists
which contain only non-empty sets, the components of κ satisfy
equation (8).

Considering the list L = [{a, b}, {b}] ∈ L+(P(X)) for X =
{a, b}, we obtain the following inequality contradicting the comulti-
plication axiom:

PδX ◦ κX(L) = {[[a], [a, b]], [[b], [b, b]]}
6= {[[a], [a, b]], [[b], [a, b]], [[a], [b, b]], [[b], [b, b]]}
= κL+X ◦ L

+κX ◦ δPX(L)

Interestingly, chasing the list L′ = [{b}, {a, b}] rather than L
would have shown that PδX ◦ κX(L′) = κL+X ◦L+κX ◦ δPX(L′).
The contrast between these two cases is because the set {a, b} is
placed in a root position in L′ whereas {a, b} is in a non-root
position in L. The existence of a non-root position in a shape s ∈ S
of a directed container is the key property that forbids the pointed
law κ : WP → PW satisfying equation (8) from extending to a
distributive law of (W, ε, δ) over (P, η, µ).

We use CW to denote the class of directed containers (W, ε, δ)
with W = [S / P ] such that there exists an s ∈ S with |P (s)| ≥ 2.

Since every distributive law κ : WP → PW must satisfy the unit
axiom, then by Theorem III.1, for elements (s, l) ∈ WP+(X) ⊆
WP(X), κ satisfies equation (8). However, a simple diagram chase of
κ applied to a specific (s, l) ∈WP+(X) for W ∈ CW demonstrates
that κ cannot satisfy diagram (7). Let (℘, η, µ) be either either the
powerset monad (P, η, µ), non-empty powerset monad (P+, η+, µ+),
finite powerset monad (Pf , η, µ), or finite non-empty powerset monad
(P+

f , η
+, µ+).

Theorem IV.3. If (W, ε, δ) ∈ CW , then it has no distributive law
κ : W℘→ ℘W over (℘, η, µ).

Proof. Suppose for contradiction, there exists a distributive law
κ : WP → PW . By Theorem III.1, κ must satisfy (8). We show that
κ satisfying equation (8) does not satisfy the comultiplication axiom
(7).

If |P (s)| ≥ 2, then there exists a position v ∈ P (s) such that
v 6= os. Consider a set X with cardinality of 2 and (s, l) ∈W (P(X))
where l(v) = X ∈ P(X) and for all other q 6= v ∈ P (s), l(q) is a
singleton. We have that

|P(δX) ◦ κX(s, l)| = |κX(s, l)| =
∏

p∈P (s)

|l(p)| = |l(v)| = 2

where the first equality follows from δ being injective and second
equality from Lemma III.9. We know that δ is injective since the
axioms of a comonad imply that δ is a split monomorphism and
monomorphisms in Set are injective functions.



By contrast, consider (s,m) = W (κX) ◦ δP(X)(s, l). From
the definition of δ and Lemma III.9, we have that |m(p)| =∏
q∈P (s↓p) |l(p⊕s q)|. Applying Lemma III.9 again, we obtain that

|κW (X) ◦W (κX) ◦ δP(X)(s, l)| =
∏

p∈P (s)

|m(p)|

=
∏

p∈P (s)

∏
q∈P (s↓p)

|l(p⊕s q)|

≥ |l(v ⊕s os↓v)||l(os ⊕s v)|
= |l(v)||l(v)| = 4

where the substitutions v = v ⊕s os↓v = os ⊕s v are equation (2).
By our supposition, κ satisfies the comultiplication axiom, so

2 = |P(δX) ◦ κX(s, l)| = |κW (X) ◦W (κX) ◦ δP(X)(s, l)| ≥ 4.

Contradiction, 2 6≥ 4. The proofs for the non-empty powerset monad,
finite powerset monad, and finite non-empty powerset monad are
similar.

It is worth noting that the above proof only involves the unit and
comultiplication axioms of a distributive law. Thus, we have actually
proven as stronger statement.

Theorem IV.4. If (W, ε, δ) ∈ CW , then there is no natural transfor-
mation κ : W℘→ ℘W which simultaneously satisfies the unit and
comultiplication axioms.

If a directed container W is not in CW , then by the existence of a
root os ∈ P (s) for every s ∈ S, we have that |P (s)| is non-empty and
|P (s)| = 1. However, directed containers which satisfy this condition
are isomorphic to the coreader comonads described in Example II.10.
This allows us to phrase Theorem IV.3 positively and characterise
coreader comonads in terms of distributive laws.

Theorem IV.5. Let (W, ε, δ) be a directed container with W =
[S / P ].
W = S × (·) is the coreader comonad on S if and only if there

exists a distributive law κ : WP+ → P+W .

Proof. ⇒ Suppose W = S × (·) is the coreader comonad. Let
κ : WP+ → P+W be the natural transformation with components
defined as

κX(s, Y ) := {(s, t) | t ∈ Y }

for every Y ∈ P+(X) and s ∈ S. It is easy to check that κ satisfies
the diagrams (4),(5),(6),(7).
⇐ Conversely, suppose that there exists a distributive law

κ : WP+ → P+W . By Theorem IV.3, W 6∈ CW . Negating the
definition of the class CW , for all s ∈ S, |P (s)| < 2. By W
being a directed container, for every s ∈ S, there is root position
os ∈ P (s), so P (s) is non-empty. Therefore, |P (s)| = 1, so we can
take P (s) = {>}. This is precisely the definition of the coreader
comonad given in Example II.10.

V. DIRECTED CONTAINERS OVER UNIFORM CHOICE MONADS

In this section, we widen the scope of Theorem IV.3 by showing
no distributive law of the form ρ : WM → MW exists for any
comonad W ∈ CW and any monad, in fact pointed endofunctor,
M : Set→ Set which has meaningful notion of ‘uniform distribution
of size ≥ 2’. In order to formally define this class of monads M , we
take inspiration from the equational presentations of monads which
arise from universal algebra. From this perspective, we define, given
an endofunctor M : Set → Set, a n-ary term for M as a natural
transformation β : IdSet × · · · × IdSet →M where the domain of

β is the endofunctor on Set mapping a set X to its n-th power
Xn = X × · · · ×X . Beyond this algebraic portion of the definition,
we also need to restrict to monads M which have a meaningful notion
of support, i.e. there exists a natural transformation supp : M → P .
With these notions in place, we can now define what it means for
any pointed endofunctor (M,η) to have a ‘uniform distribution’.

Definition V.1. Given a pointed endofunctor (M,η) with a natural
transformation supp : M → P , a n-ary term β : IdSet × · · · ×
IdSet →M for M is a n-uniform choice term if

1) β is idempotent: For all X ∈ Set and x ∈ X ,

β(x, . . . , x) = η(x);

2) β is commutative: For all X ∈ Set, x1, . . . , xn ∈ X , and
permutations π : [n]→ [n],

β(x1, . . . , xn) = β(xπ(1), . . . , xπ(n));

3) supp preserves β: For all X ∈ Set and x1, . . . , xn ∈ X ,

supp(β(x1, . . . , xn)) = {x1, . . . , xn}.

We will say (M,η) is a n-uniform choice pointed endofunctor
if there exists a natural transformstion supp : M → P and a n-
uniform choice term β for (M,η). We will say a monad (M,η, µ) is
a n-uniform choice monad if (M,η) is a n-uniform choice pointed
endofunctor. Since the the powerset monad (P, η, µ) has support
idP : P → P and a n-uniform choice term βP(x1, . . . , xn) =
{x1, . . . , xn} for every n > 0, the terminology for condition 3
in Definition V.1 is justified. In fact, for every n-uniform choice
monad M , it follows that supp : M → P is a pointed endofunctor
morphism:

supp(η(x)) = supp(β(x, . . . , x)) = {x} = ηP(x). (9)

Moreover, every pointed endofunctor (M,η) such that the natural
transformation supp : M → P is a pointed endofunctor morphism
is a 1-uniform choice endofunctor where β = η.

For a n-uniform choice monad (M,η, µ) with n-uniform choice
term β and X ∈ Set0, we define the set of uniform terms as

Uβ(X) := {β(x1, . . . , xn) | ∀x1, . . . , xn ∈ X} ⊆M(X).

The set Uβ(X) generalises the set of uniform distributions on
n elements. To illustrate, take M to be the discrete probability
distribution monad and define β as

β(x1, . . . , xn) =
∑
i∈[n]

1

n
xi.

In this case, the set Uβ(X) is precisely the uniform distributions on
subsets of X with cardinality n.

We proceed by first proving a generalisation of Theorem III.1,
demonstrating that every pointed law ρ : FM →MF of a satisfies
an analogue of equation (8) on supports when restricted to uniform
distributions.

Theorem V.2. If F = [S/P ] is a container, (M,η, µ) is a n-uniform
choice monad, and there exists a pointed law ρ : FM →MF , then
for all sets X and elements (s, l : P (s)→ Uβ(X)) ∈ F (Uβ(X)) ⊆
F (M(X)),

supp(ρX(s, l))

= {(s, j : P (s)→ X) | ∀p ∈ P (s), j(p) ∈ supp(l(p))}.
(10)

From Theorem V.2, we can conclude an analogue of Lemma III.9.



Lemma V.3. If F = [S / P ] is a container and ρ : FM → MF
satisfies equation (10) for (s, l) ∈ F (Uβ(X)) ⊆ F (M(X)), then
|supp(ρ(s, l))| =

∏
p∈P (s) |supp(l(p))|.

Proof. Follows from a simple counting argument. For each position
p ∈ P (s), sample an element from supp(l(p)). Each sampling is
independent.

The proof of Theorem IV.3 derived the contradiction 2 ≥ 4 by
chasing element (s, l) ∈ W (P+(X)) where |l(v)| = 2 for some
v 6= os ∈ P (s) around diagram (7) using κ from equation (8). Inspired
by this argument, we chase an element (s, l) ∈ W (US (X)) ⊆
W (DS (X)) where l(v) is a uniform distribution for a v 6= os ∈ P (s)
such that |supp(l(v))| ≥ 2. We define our class CM to be those
distribution monads that allow us to build this counterexample.

We use CM to denote the class of n-uniform choice monads
(M,ηM , µM ) where n ≥ 2.

Theorem V.4. If (W, ε, δ) ∈ CW and (M,η, µ) ∈ CM , then there is
no distributive law ρ : WM →MW of (W, ε, δ) over (M,η, µ).

Proof. Suppose for contradiction, there exists a distributive law
ρ : WM → MW . By M ∈ CM , M has a n-uniform choice term
β for n ≥ 2. Consider the set X = {x1, . . . , xn, x} ∈ Set0. By
Theorem V.2, ρX must satisfy (10) for every (s, l) ∈ W (Uβ(X)).
We show that ρ satisfying equation (10) does not satisfy the
comultiplication axiom (7).

As W ∈ CW , we have that |P (s)| ≥ 2. Hence, there exists a
position v ∈ P (s) such that v 6= os. Let l(v) = β(x1, . . . , xn) and
for all q 6= v ∈ P (s), l(q) = η(x). By construction, |supp(l(v))| =
n and for all q 6= v ∈ P (s), |supp(l(q))| = 1.

|supp ◦M(δ) ◦ ρ(s, l)|
= |P(δ) ◦ supp ◦ ρ(s, l)| supp-naturality of δX
= |supp(ρ(s, l))| δX injective

=
∏

p∈P (s)

|supp(l(p))| Lemma V.3

= |supp(l(v))| = n |supp(l(q)| = 1 for q 6= v

By contrast, consider (s,m) = W (ρX) ◦ δM(X)(s, l) and note by
the functorial action of W ,

(s, supp ◦m) = W (suppX ◦ ρX) ◦ δM(X)(s, l).

From the definition of δ and Lemma V.3, we have that
|supp(m(p))| =

∏
q∈P (s↓p) |supp(l(p ⊕s q))|. Applying Lemma

V.3 again, we obtain that

|supp ◦ ρW (X) ◦W (ρ) ◦ δM(X)(s, l)|

=
∏

p∈P (s)

|supp(m(p))| =
∏

p∈P (s)

∏
q∈P (s↓p)

|supp(l(p⊕s q))|

≥ |supp(l(v ⊕s os↓v))||supp(l(os ⊕s v))|
= |supp(l(v))||supp(l(v))| = n2

where the substitutions v = v ⊕s os↓v = os ⊕s v are equation (2).
By our supposition, ρ satisfies the comultiplication axiom, so

M(δ) ◦ ρ(s, l) = ρ ◦W (ρ) ◦ δM(X)(s, l)

Composing with the support map on both sides of this equation, we
obtain that the cardinality of supp ◦M(δX) ◦ ρX(s, l) is equal to
the cardinality of supp ◦ ρW (X) ◦W (ρX) ◦ δM(X)(s, l). However,

|supp ◦M(δX) ◦ ρX(s, l)| = n; and

|supp ◦ ρW (X) ◦W (ρX) ◦ δM(X)(s, l)| ≥ n2.

Contradiction, n ≥ 2 implies that n 6≥ n2.

Once again, we have actually proven a stronger result.

Theorem V.5. If (W, ε, δ) ∈ CW and (M,η, µ) ∈ CM , then there is
no natural transformation ρ : WM → MW which simultaneously
satisfies the unit and comultiplication axioms.

To illustrate the generality and limitations of Theorem V.4, we
recall the following examples from the discussion after Definition V.1.

Example V.6. The ordinary discrete probability distribution monad
D of Example II.2 is in CM . This monad has a natural transformation
supp : D → P which maps a probability distribution to its underlying
support, i.e. supp(ϕ) = {x | ϕ(x) 6= 0}, and a 2-uniform choice
term β : IdSet × IdSet → D defined as

β(x1, x2) =
1

2
x1 +

1

2
x2.

Example V.7. Every variation of the powerset ℘ monad, e.g. full,
finite, non-empty, has a transformation supp : ℘→ P given by the
inclusion into the full powerset functor. Moreover, for every n > 0, ℘
has a n-uniform choice term β : IdSet × · · · × IdSet → ℘ defined
as

β(x1, . . . , xn) = {x1, . . . , xn}.

Thus, we recover Theorem IV.3 as an application of Theorem V.4.

Both these examples are part of wider class of distribution and
multiset monads over semirings S which fall under the scope of
Theorem V.4. In particular, Example V.6 is the case where S is the
semiring of non-negative reals (R≥0, 0, 1,+, ∗) and Example V.7 is
the case where S is the Boolean semining ({0, 1}, 0, 1,∨,∧).

We enumerate sufficient conditions for when a distribution DS and
multiset monadMS over a semiring S is in the class of monads CM
To state these conditions, recall that the initial object in the category
of semirings is the semiring of natural numbers. Therefore, for every
semiring S , there is a unique semiring morphism >S : N → S
where >S (n) is mapped to the n-fold sum of 1S .
(S1) S is zero-sumfree: If a+ b = 0S , then a = 0S and b = 0S .
(S2) S has a natural non-trivial unit nS : There exists some n ≥ 2

such that nS = >S (n) is a unit. i.e. there exists t ∈ S such
that nS t = tnS = 1S . If such a t ∈ S exists, then t is unique
and so we can denote t as 1

nS
.

We prove the following lemmas which connect these conditions on
S to the Definition V.1 of n-uniform choice monad.

Lemma V.8. Let M = DS or M = MS for some semiring S .
S is zero-sumfree, i.e. satisfies Condition (S1) if and only if suppM

is a natural transformation.

Lemma V.9. Let M = DS or M = MS . If S has a natural
non-trivial unit nS , i.e. satisfies Condition (S2), then β : IdSet ×
· · · × IdSet →M defined as:

β(x1, . . . , xn) =
∑
i∈[n]

1

nS
xi

is a n-ary idempotent and commutative open term. In particular, if
S is zero-sumfree, then β is a n-uniform choice term.



Theorem V.10. If S satisfies conditions (S1)- (S2), then DS ∈ CM
and MS ∈ CM . If S is also complete, then D∞S ∈ CM and
M∞S ∈ CM .

As a corollary, we obtain an instance of the V.4 and for multiset
and distribution monads.

Corollary V.11. If (W, ε, δ) ∈ CW and S satisfies conditions (S1)-
(S2), then there is no distributive law ρ : WM →MW where M =
DS or M =MS .

Example V.12. The multiset MS and distribution DS monads
over the (sub)-semiring of non-negative rationals of the form n

3k
for

n, k ∈ N are in CM . In this case, since 2 is not a unit, there are
no uniform distributions ϕ ∈ DS (X) such that |supp(ϕ)| = 2
However, for every k ∈ N, 3k is a unit and so DS (X) has uniform
distributions ϕ such that |supp(ϕ)| = 3k.

Example V.13 (Non-Example). For every ring R, the free R-module
monad MR and distribution monad DR of Example II.3 are not
zero-sum-free and therefore not in CM .

Example V.14 (Non-Example). There are semirings which are zero-
sum-free, but fail to satisfy the condition (S2). For instance, the
semiring of naturals (N, 0, 1,+, ∗) does not satisfy condition (S2).
Therefore, although CM has many multiset monads over other
semirings S , CM does not contain the ordinary multiset/bag monad
M =MN. Moreover, DN over the semiring (N, 0, 1,+, ∗) of natural
numbers only has distributions which are singletons and is, in fact,
isomorphic to the identity monad.

Example V.15 (Non-Example). For a example of a zero-sum-free
semiring S which does not satisfy condition (S2), but where DS

is not the identity monad, consider S = N[x, y]/(x+ y = 1). This
semiring is the quotient of the free commutative semiring on the
set {x, y} by the equation x + y = 1S . The additional equation
x+ y = 1S ensures that DS is not the identity monad by allowing
for non-singleton distributions, i.e. ax+ by ∈ DS ({a, b}). However,
this is the only non-singleton distribution in DS ({a, b}) and neither
x nor y are inverses to >S (n) for some n ≥ 2. Thus, S does not
satisfy condition (S2) and DS 6∈ CM .

VI. NO-GO THEOREMS IN R(σ)

In this section we extend our results to the category of relational
structures, R(σ). In order to achieve this, we prove a two part transfer
theorem which dictates conditions under which the existence of a
mixed distributive law in R(σ) implies the existence of a mixed
distributive law in Set.

We recall that a relational vocabulary σ is a finite set of relation
symbols R, each with a specified positive integer arity. A σ-
structure A is given by a set A, the universe of the structure,
and for each R in σ with arity n, a relation RA ⊆ An. A
homomorphism h : A → B is a function h : A → B such that,
for each relation symbol R of arity n in σ, for all a1, . . . , an in A:
RA (a1, . . . , an)⇒ RB(h(a1), . . . , h(an)). We write R(σ) for the
category of σ-structures and homomorphisms. For ease of presentation,
we focus on the case where σ contains only a single relation R.

The class of comonads we are interested in are the game comonads
whose study aims to apply ideas from category theory to (finite) model
theory [2].

Example VI.1. The Ehrenfeucht-Fraı̈ssé comonad (Ek, ε, δ) sends
a relational structure A to a new structure EkA with universe
EkA = L+

k A. The components of the counit and comultiplication

have the same elementwise definition as the prefix list comonad i.e.

ε
Ek
A = ε

L+
k

A , δ
Ek
A = δ

L+
k

A . REkA is the set of tuples (l1, . . . , ln)
which are pairwise comparable by prefix order, and such that
RA (ε

Ek
A l1, . . . , ε

Ek
A ln).

Example VI.2. The pebbling comonad (Pk, ε, δ) sends a relational
structure A to a new structure Pk(A ) with universe L+[k](A).
Counit and comultiplication have the same elementwise definition
as the pebble list comonad. RPkA is the set of tuples (l1, . . . , ln)
such that (1) The li are pairwise comparable by prefix order, (2) The
pebble index of the last move in each li does not appear in the suffix
of li in lj for any lj , and (3) RA (ε

Pk
A l1, . . . , ε

Pk
A ln).

Note that if we consider the action of Pk on the underlying
universe of relational structures, we recover the pebble list comonad
of Example II.14.

The class of monads we consider are those whose actions on the
universe is dictated by one of the monads CM defined earlier.

Example VI.3. We refer to the monad (T, η, µ) taken from [36,
Chapter 9] as the tree duality monad since T-algebras correspond to
tree dual structures. The functor T sends a relational structure A to
a new structure TA with universe PA. Counit and comultiplication
have the same elementwise definition as the powerset monad, i.e.
ηTA = ηPA, µ

T
A = µPA . RTA is the set of tuples of subsets

(X1, ..., Xn) such that for all j ∈ [n] and for every choice xj ∈ Xj
there exists xk ∈ Xk for all k ∈ [n]\{j} such that (x1, ..., xn) ∈ RA.

Our next example is a monad whose Kleisli morphisms capture
the basic linear programming relaxation of the constraint satisfaction
problem [13].

Example VI.4. The BLP monad (D, η, µ) has functor D which
sends a relational structure A to a new structure DA with
universe DA. Counit and comultiplication have the same el-
ementwise definition as the distribution monad, i.e. ηDA =
ηDA , µ

D
A = µDA . Finally we have RDA is interpreted as the

set {(
∑
aaa∈RA γ(aaa).aaa[1] . . . ,

∑
aaa∈RA γ(aaa).aaa[m]) | γ : RA →

[0, 1],
∑
aaa∈RA γ(aaa) = 1}

For the remainder of this section let us assume we are working in
the following setup:

1) There exists categories C,D with a coreflective adjunction L :
C→ D a U : D→ C between them. We write α, β for the unit
and counit of this adjunction.

2) (W, εW, δW), (W, εW , δW ) are comonads over D,C respectively.
3) (M, ηM, µM), (M,ηM , µM ) are monads over D,C respectively.
We are now ready to prove our transfer theorems.

Theorem VI.5. Assume the following:
1) There exists a coKleisli law w : WU → UW.
2) There exists a Kleisli law m : UM→MU .
3) ρ : WM → MW and ρ′ : WM → MW are natural transfor-

mations satisfying the following “Yang-Baxter” condition:

Mw ◦ ρ′U ◦Wm = mW ◦ Uρ ◦ wM

Then we have:
1) If ρ is a distributive law, m is epic, and w is monic, ρ′ is a

distributive law.
2) If ρ′ is a distributive law, m is monic, and w is epic, ρ is a

distributive law.

Remark VI.6. This theorem can be seen as a generalised comonad-
monad variant of [33, Theorem 3.1.3], which considers transfer



theorems for monad-monad distributive laws defined on the same
category. We can recover the theorem of [33] by simply considering
the case where the functor U above is the identity.

Theorem VI.7. Assume the following:
1) There exists a split epic natural transformation w : WU → UW.

We write w− for the section of w.
2) There exists a split monic natural transformation m : UM →
MU . We write m− for the retraction of m.

3) ρ : WM→ MW is a natural transformation.
Then, ρ together with the natural transformation ρ′ : WM →MW

defined as ρ′ = MWα−1◦Mw−L◦mWL◦UρL◦wML◦Wm−L◦
WMα, satisfy the following “Yang-Baxter” equation:

Mw ◦ ρ′U ◦Wm = mW ◦ Uρ ◦ wM

A proof of both theorems using string diagrammatic techniques
akin to [24] is provided in the appendix.

Let us now consider what happens when we enforce the condition
C = Set. We show that we can combine the two theorems above
with our earlier results to obtain sufficient conditions under which
no distributive law exists between a class of comonads CW(D) and a
class of monads CM(D) defined on D.

CW(D) denotes the class of comonads (W, εW, δW) on D with an
isomorphic coKleisli law w : WU → UW for some W ∈ CW .

CM(D) denotes the class of monads (M, ηM, µM) on D with an
isomorphic Kleisli law m : UM→MU for some M ∈ CM .

Theorem VI.8. If (W, εW, δW) ∈ CWD and (M, ηM, µM) ∈ CMD,
then there is no distributive law ρ : WM → MW of (W, ε, δ) over
(M,η, µ).

Proof. Assume for the sake of contradiction that a distributive law
ρ does exist. We can use Theorem VI.7 to construct a natural
transformation ρ′ : WM → MW which satisfies the Yang-Baxter
condition. It follows from Theorem VI.5 that ρ is a distributive law
of (W, ε, δ) over (M,η, µ). However, we know by Theorem V.4 that
no such law exists.

Note that it is necessary for w and m to be isomorphisms in order
for the above argument to work. This is because any monic and split
epic morphism must be an isomorphism (similarly for any epic and
split monic morphism).

As before, our techniques have actually proven a stronger statement.

Theorem VI.9. If (W, εW, δW) ∈ CWD and (M, ηM, µM) ∈ CMD,
then there is no natural transformation ρ : WM → MW which
simultaneously satisfies the unit and comultiplication axioms.

The above result is the most general no-go theorem in this paper.
Our earlier no-go results are all covered by the special case where D =
Set. By varying D we can observe the non-existence of distributive
laws between further comonads, as exemplified below.

Example VI.10. Let us consider the case where D = R(σ). Here
there exists a forgetful functor U : R(σ) → Set which sends a
relational structure to its underlying universe. This functor has a left
adjoint L : Set→R(σ) which sends a set to a relational structure
with empty relations. The adjunction L a U is colelective. All of
the comonads over R(σ) that we introduced earlier in this section
belong to the class CW(R(σ)). Likewise, all of the monads belong to
the class CM(R(σ)). To see this in the case of (Pk, ε, δ) for instance,

consider the pebble list comonad (L+[k], ε, δ) ∈ CW , together with
the natural transformation w : UPk → L+[k]U whose components,
as set functions, are the identity. It is easy to verify that w is an
isomorphic coKleisli law.

VII. CONCLUSIONS AND FUTURE WORK

We have proven that there can be no comonad-monad distributive
law WM → MW for a suitable class of comonads CW ⊆
Com(Set) and a suitable class of monads CM ⊆ Mon(Set).
The class of comonads CW is all directed containers except the
coreader comonad. The class of monads CM is any monad which
admits a sensible notion of “uniform distribution”. We then proved
a transfer theorem which allowed us to extend our results to classes
of (co)monads defined over any category D which admits Set as a
coreflective subcategory. This transfer theorem may be of independent
interest to researchers working on (co)monad theory. Overall, our
results show the non-existence of mixed distributive laws between a
large number of (co)monads used in areas such as probability theory,
programming languages, and finite model theory. As such, we hope
that they will be of relevance to researchers working in these areas.

There are many avenues for future work. We list some of them
below:
• Axiomatic account: [45] determined axioms for when two

algebraic theories do not yield a composite algebraic theory. Since
algebraic theories correspond to finitary monads over Set, the
axioms provide a framework for determining the non-existence
of monad-monad distributive laws. Do similar (co)alegebraic
axioms exist for determining the non-existence of comonad-
monad distributive laws? This would involve formulating and
working with coalgebraic presentations of directed containers
and algebraic presentations of monads.

• Extension to other categories: We believe that the transfer theo-
rems derived in section VI have applications beyond what we have
considered in this paper. Take for instance the Vietoris monad V ,
and Radon monad R [18] defined on the category of compact
Hausdorff spaces. These can be seen as topological analogues of
P , and DR≥0

respectively. Can we use a monad-monad variant
of our transfer theorem to prove a no-go theorem between these
monads? Such a result would make use of the well-known fact
that there is no distributive law λ : PDR≥0

→ DR≥0
P [45].

Another interesting direction to pursue is the extension of our
comonad-monad no-go results to other categories. For instance,
quasi-Borel spaces QBS introduced in [22] have recently gained
much attention in the context of probabilistic programming. The
monad of probability measures on QBS generalises the well-
known Giry monad [17], and acts as an analogue of DS over
this category. Comonads in QBS are not well-studied, thus it
would be interesting to see if any of the directed containers we
have considered admit analogues in QBS and whether our no-go
theorems extend to this category.

• Weak Distributive Laws: There is substantive literature [16],
[19], [20], [18] showing that one can recover many of the
desirable properties of a composite monad by constructing a
natural transformation which only satisfies a subset of the monad-
monad distributive law axioms. In the case of comonad-monad
laws we ask if similar relaxations can be used to recover features
of a biKleisli category.

• Monad-Comonad Distributive Laws: Unlike the comonad-monad
case we can construct valid monad-comonad distributive laws for
many of the (co)monads we considered. For instance, even though
there is no distributive law of the form κ : L∞P+ → P+L∞,



it is easy to check that γ : P+L∞ → L∞P+ as defined below
is a distributive law.

γX{(a1, a2, . . .), (b1, b2, . . .), . . . , (z1, z2, . . .)}
= ({a1, b1, . . . , z1}, {a2, b2, . . . , z2}, . . .)

Such laws give rise to categories of bialgebras, a construction
which has applications in mathematics and computer science
(see e.g. [32], [28]). The following is an open question:
Question VII.1. For which M ∈ CM and W ∈ CW does there
exist a distributive law γ : MW →WM?
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[9] Mikołaj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic monadic
second order logic, 2022.

[10] Marcello M. Bonsangue, Helle Hvid Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting distributive laws. In Reiko Heckel and Stefan
Milius, editors, Algebra and Coalgebra in Computer Science, pages
95–109, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[11] A Carboni, GM Kelly, D Verity, and RJ Wood. A 2-categorical approach
to change of base and geometric morphisms ii. Theory and Applications
of Categories, 4(5):82–136, 1998.

[12] Adam O Conghaile. First year report: Game comonads, descriptive
complexity & finite model theory, 2019.

[13] Adam Peter Connolly. Game comonads and beyond: compositional
constructions for logic and algorithms. PhD thesis, University of
Cambridge, 2022.

[14] Fredrik Dahlqvist, Louis Parlant, and Alexandra Silva. Layer by layer–
combining monads. In International Colloquium on Theoretical Aspects
of Computing, pages 153–172. Springer, 2018.

[15] Fredrik Dahlqvist and Todd Schmid. How to write a coequation ((co)
algebraic pearls). In 9th Conference on Algebra and Coalgebra in
Computer Science (CALCO 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

[16] Richard Garner. The vietoris monad and weak distributive laws. Applied
Categorical Structures, 28(2):339–354, oct 2019.
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APPENDIX

A. Proofs of Transfer Theorems

In this appendix we shall prove theorems VI.5 and VI.7. We will make use of string diagrams in these proofs. We shall assume basic
familiarity with string diagrams, at the level of [25]. We begin with a proof of theorem VI.5:

Proof. We prove the (co)multiplication, and (co)unit axioms for the first part of the theorem. The proof for the second part the theorem is
analogous.
• Multiplication:
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The result follows from m being epic and w being monic.



• Comultiplication:
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The result follows from m being epic and w being monic.
• Unit:
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• Counit:
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The result follows from m being epic.

Next we prove theorem VI.7.

Proof.
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APPENDIX

PROOFS FOR SECTION V (DIRECTED CONTAINERS OVER UNIFORM CHOICE MONADS)

Theorem V.2. If F = [S / P ] is a container, (M,η, µ) is a n-uniform choice monad, and there exists a pointed law ρ : FM →MF , then
for all sets X and elements (s, l : P (s)→ Uβ(X)) ∈ F (Uβ(X)) ⊆ F (M(X)),

supp(ρX(s, l))

= {(s, j : P (s)→ X) | ∀p ∈ P (s), j(p) ∈ supp(l(p))}.
(10)

The proof mirrors collapse-swap-relabel argument of the uniqueness proof of Theorem III.1. Thus, we prove analogues of Lemmas III.2
and III.3. Condition 1 that β is idempotent is key to demonstrating the ‘collapse’ argument in Lemma A.1. Condition 2 that β is commutative
is key to demonstrating that the ‘swap’ argument in Lemma A.2.

Similar to Theorem III.1, we first consider elements (s, l) ∈ FM(X) where the following pairwise disjoint condition holds:
(PDS) For all p, q ∈ P (s), if supp(l(p)) ∩ supp(l(q)) 6= ∅, then p = q.

Lemma A.1 (Collapse). If F , M , and ρ satisfy the hypotheses of Theorem V.2 and (s, l) ∈ FU(X) ⊆ FM(X) satisfies condition (PDS),
then

supp(ρ(s, l)) ⊆ {(s, j) | ∀p ∈ P (s) ∈ supp(l(p))}.

Proof. The argument proceeds in two steps.
1) Unpacking the unit axiom, we will show that equation (10) holds if (s, l) is such that for all p ∈ P (s), there exists a xp ∈ X ,
l(p) = η(xp). There is function j = λp.xp : P (s)→ X . Consider the singleton {(s, λp.xp)} ∈ P(F (X)). For clarity of notation, we
use η for the unit of M and ηP for the unit of P .

{(s, λp.xp)} = ηP(s, λp.xp) definition of ηP

= supp(η(s, λp.xp)) equation (9)

= supp(ρ(F (η)(s, λp.xp))) unit axiom

= supp(ρ(s, λp.η(xp))) F functorial action

= supp(ρ(s, l)) definition of l

From the above equation and {(s, λp.xp)} = {(s, j) | ∀p ∈ P (s), j(p) ∈ supp(l(p))}, we obtain that the desired result.
2) For all (s, l) ∈ F (U(X)) and p ∈ P (s), by the definition of U(X), l(p) = β(xp1, . . . , x

p
n) for some xp1, . . . , x

p
n ∈ X , and supp(l(p)) =

{xp1, . . . , xpn} 6= ∅. Hence, for every p ∈ P (s), we can choose a yp = xp1 ∈ supp(l(p)) in order to construct a ‘collapse the supp(l(p))’
function c : X → X . The definition of c : X → X is

c(x) =

{
yp if x ∈ supp(l(p))

x otherwise
.

By the (PDS) assumption, the function c is well-defined. Next, we prove that M(c) ◦ l = λp.η(yp). Suppose p ∈ P (s):

M(c) ◦ l(p) = M(c)(β(xp1, . . . , x
p
n)) l(p) ∈ U(X)

= β(c(xp1), . . . , c(xpn)) β-naturality square of c

= β(yp, . . . , yp) definition of c

= η(yp) β idempotent

Chasing (s, l) along the ρ-naturality square of c composed with the supp-naturality square of F (c), we obtain

(s, l) ρ(s, l) supp(ρ(s, l))

(s, λp.η(yp)) η(s, λp.yp) {(s, λp.yp)}

ρ

F (M(c)) M(F (c))

supp

℘(F (c))

ρ supp

where the bottom left arrow follows from the first step. Since ℘(F (c)) maps the set supp(ρ(s, l)) to the singleton {(s, λp.yp)},
we can conclude that for every (t, j) ∈ supp(ρ(s, l)), F (c)(t, j) = (s, λp.yp). Since the function F (c) preserves shape, for every
(t, j) ∈ supp(ρ(s, l)), t = s. Moreover, from the definition of ℘(F (c)), we conclude that

supp(ρ(s, l)) ⊆ {(s, j) | ∀p ∈ P (s), j(p) ∈ c−1(yp) = supp(l(p))}.

Lemma A.2 (Swap). If F , M , and ρ satisfy the hypotheses of Theorem V.2 and (s, l) ∈ FU(X) ⊆ FM(X) satisfies condition (PDS), then

supp(ρ(s, l)) ⊇ {(s, j) | ∀p ∈ P (s) ∈ supp(l(p))}.

Proof. For all (s, l) ∈ F (U(X)) satisfying condition (PDS), we construct a ‘swap’ bijection b : X → X . By the assumption that
(s, l) ∈ F (U(X)), for all p ∈ P (s), there exists xp1, . . . , x

p
n ∈ X such that l(p) = β(xp1, . . . , x

p
n) and supp(l(p)) = {xp1, . . . , xpn}.

Suppose (s, j) ∈ F (X) such that j(p) = xpz ∈ supp(l(p)), we need to show that (s, j) ∈ supp(ρ(s, l)). By the previous case and the



fact that supp(ρ(s, l)) ∈ ℘(F (X)) is a non-empty subset of F (X), we know there exists at least one (s, j′) ∈ supp(ρ(s, l)) such that
j′(p) = xpz′ ∈ supp(l(p)). For every p ∈ P (s), let sp : X → X be the permutation which swaps xpz , x

p
z′ ∈ supp(l(p)) and (z z′) : [n]→ [n]

be the permutation which swaps z, z′ ∈ [n]. By construction, for all j ∈ [n], sp(xpj ) = xp(z z′)(j). Next, we prove that M(sp) ◦ l = l. Suppose
p ∈ P (s):

M(sp) ◦ l(p) = M(sp)(β(xp1, . . . , x
p
n)) l(p) ∈ U(X)

= β(sp(x
p
1), . . . , sp(x

p
n)) β-naturality square of sp

= β(xp(z z′)(1), . . . , x
p
(z z′)(n)) definition of sp

= β(xp1, . . . , x
p
n) β commutative

= l(p) l(p) ∈ U(X)

Thus, the function sp fixes l(p) and by the (PDS) condition leaves l(q) unchanged for all q 6= p, so F (M(sp))(s, l) = (s, l). Hence, we can
conclude from the ρ-naturality square of sp:

ρ(F (M(sp))(s, l)) = M(F (sp))(ρ(s, l))

ρ(s, l) = M(F (sp))(ρ(s, l))

Therefore, we compose all these swapping bijections {sp}p∈P (s) (in any order) to obtain a bijection b : X → X such that M(F (b))(ρ(s, l)) =
ρ(s, l) and b ◦ j′ = j. By the supp-naturality square of F (b), we obtain that:

supp(ρ(s, l)) = supp(M(F (b))(ρ(s, l)))

= ℘(F (b))(supp(ρ(s, l)))

Unpacking the definition of ℘(F (b)) and using the above equality, we obtain that

(s, j′) ∈ supp(ρ(s, l))⇒ F (b)(s, j′) ∈ supp(ρ(s, l))

⇒ (s, b ◦ j′) ∈ supp(ρ(s, l))

⇒ (s, j) ∈ supp(ρ(s, l))

Since (s, j′) ∈ supp(ρ(s, l)), we can conclude that (s, j) ∈ supp(ρ(s, l)) as desired.

Finally, we complete the proof of Theorem V.2 by repeating a version of the ‘relabel’ argument of Theorem III.1 which demonstrates that
assuming (PDS) does not constitute a loss of generality.

Proof of Theorem V.2. Suppose (s, l) ∈ FU(X) where for all p ∈ P (s), there exists xp1, . . . , x
p
n ∈ X such that l(p) = β(xp1, . . . , x

p
n). We

factor l = M(t) ◦ z where z : P (s)→M(P (s)×X) is defined as

z(p) = β((p, xp1), . . . , (p, xpn))

and t : P (s)×X → X is the projection onto the second component. By construction, (s, z) ∈ FU(P (s)×X) satisfies condition (PDS), so
applying Lemmas A.1 and A.2, we obtain the equation

supp(ρ(s, z)) = {(s,m) | ∀p ∈ P (s),m(p) ∈ supp(z(p))} (11)

Through diagram chasing, we obtain the desired equality:

supp(ρ(s, l))

= supp(ρ(s,M(t) ◦ z)) l = M(t) ◦ z
= supp(ρ(F (M(t))(s, z))) definition of F

= supp(M(F (t))(ρ(s, z))) ρ-naturality square of t

= ℘(F (t))(supp(ρ(s, z))) supp-naturality square of F (t)

= ℘(F (t))({(s,m) | ∀p ∈ P (s),m(p) ∈ supp(z(p))}) equation (11)

= {F (t)(s,m) | ∀p ∈ P (s),m(p) ∈ supp(z(p))} definition of ℘

= {(s, t ◦m) | ∀p ∈ P (s),m(p) ∈ supp(z(p))} definition of F

= {(s, t ◦m) | ∀p ∈ P (s),m(p) ∈ {(p, xp1), . . . , (p, xpn)}} z(p) = β((p, xp1), . . . , (p, xpn))

= {(s, j) | ∀p ∈ P (s), j(p) ∈ {t(p, xp1), . . . , t(p, xpn)}} j = t ◦m
= {(s, j) | ∀p ∈ P (s), j(p) ∈ {xp1, . . . , x

p
n}} definition of t

= {(s, j) | ∀p ∈ P (s), j(p) ∈ supp(β(xp1, . . . , x
p
n))} supp preserves β

= {(s, j) | ∀p ∈ P (s), j(p) ∈ supp(l(p))} definition of l(p)

Lemma V.8. Let M = DS or M =MS for some semiring S . S is zero-sumfree, i.e. satisfies Condition (S1) if and only if suppM is a
natural transformation.



Proof. By contrapositive, assume that S is not zero-sumfree, then there exists r, t ∈ S such that r + t = 0S , but r 6= 0S or t 6= 0S .
Note that it follows from the semiring axiom 0S + a = a = a + 0S , that r 6= 0S ⇔ t 6= 0S . Thus, both r 6= 0S and t 6= 0S . Let
X = {x, y, z}, A = {a, b} and f : X → A defined as x, y 7→ a and z 7→ b. Consider the distribution ϕ = r · x+ t · y + 1S · z ∈ DS (X).
As r + t = 0S , ϕ satisfies the normalisation condition and is indeed a distribution in DS (X). We obtain the following inequality:

(suppA ◦ DS (f))(r · x+ t · y + 1S z)

= suppA((r + t) · a+ 1S · b) definition of DS (f)

= suppA(1S · b) r + t = 0S

= {b} definition of supp

6= {a, b} a 6= b

= P(f)({x, y, z}) definition of P(f)

= (P(f) ◦ suppX)(r · x+ t · y + 1S · z) definition of supp, r 6= 0S

Therefore, suppA ◦ DS (f) 6= P(f) ◦ suppX , the supp-naturality square of f does not commute. Hence, the family of maps suppX is
not a natural transformation.

Conversely, suppose S is zero-sumfree and that f : X → Y ∈ Set1. We must show that suppY (DS (f)(ϕ)) = P(f)(suppX(ϕ)) for
all ϕ ∈ DS (X). Suppose ϕ =

∑
i∈I sixi ∈ DS (X) for indexing set I . By definition of DS (f), DS (f)(ϕ) =

∑
y∈f(X)(

∑
j∈Jy sj)y

where Jy = {i ∈ I | xi ∈ f−1(y)} ⊆ I and f(X) is the image of f . Since S is zero-sumfree, the sums
∑
j∈Jy sj are non-zero whenever

y = f(xi). Hence, we can compute suppY (DS (f)(ϕ)) = {f(xi) | ∀i ∈ I}. By definition of P(f), {f(xi) | ∀i ∈ I} = P(f)({xi | ∀i ∈
I}) = P(f)(suppX(ϕ)) as desired.

Lemma V.9. Let M = DS or M =MS . If S has a natural non-trivial unit nS , i.e. satisfies Condition (S2), then β : IdSet×· · ·×IdSet →
M defined as:

β(x1, . . . , xn) =
∑
i∈[n]

1

nS
xi

is a n-ary idempotent and commutative open term. In particular, if S is zero-sumfree, then β is a n-uniform choice term.

Proof. To verify that β is idempotent, suppose X ∈ Set0 and x ∈ X , then:

β(x, . . . , x) =
∑
i∈[n]

1

nS
x definition of β

=
1

nS
(
∑
i∈[n]

1Sx) distribution axiom of S

=
1

nS
(
∑
i∈[n]

1S )x collect coefficents of x

=
1

nS
nSx definition of nS

= 1Sx nS is a unit

= η(x) definition of η

To verify β is commutative, suppose X ∈ Set0 and x1, . . . , xn ∈ X , then:

β(xπ(1), . . . , xπ(n)) =
∑
i∈[n]

1

nS
xπ(i)

=
1

nS

∑
i∈[n]

xπ(i)

=
1

nS

∑
i∈[n]

xi

=
∑
i∈[n]

1

nS
xi

= β(x1, . . . , xn)

Finally, if we assume that S is zero-sumfree, then nS 6= 0S and 1
nS
6= 0S . Thus,

supp(β(x1, . . . , xn)) = supp(
∑
i∈[n]

1

nS
xi) = {x1, . . . , xn}.

Hence, in the case where S is zero-sumfree, β is a n-ary uniform choice term.
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