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I expand on an observation made at the end of [15] and further discussed online [16]—that the
category of learners [7] has a pleasant symmetric formulation when the morphisms are considered
up to a certain coarser equivalence than the one originally used. A quotient of this modified category
gives a construction of the free compact closed category on a symmetric monoidal category.

1 Extensional Learners

Learners are a categorical construction used in a compositional approach to supervised learning and
backpropagation [7, 2]. First, we recall the their definition.

Definition 1.1 ([7, Definition 2.1]). For A and B sets, a learner A p→B is a set P together with functions
I : P×A → B and U : P×A×B → P and r : P×A×B → A, considered up to isomorphism of parameter
sets: two learners (P, I,U,r) and (P′, I′,U ′,r′) are identified whenever there is a bijection f : P → P′ with

I′( f (p),a) = I(p,a)

U ′( f (p),a,b) = f (U(p,a,b))

r′( f (p),a,b) = r(p,a,b)

Learners expose their parameter sets P to the outside world, and two learners with non-isomorphic
parameter sets are considered different even if they ‘behave the same’ on all input data A and B. Cribbing
some terminology from type theory, we will label these learners intensional: their identity depends on
the specific choice of parameter set even if it is not observable through their input-output behaviour.
(Unfortunately this clashes with the meaning of intensional/extensional used in [10].)

Proposition 1.2 ([7, Proposition 2.4]). Intensional learners in any category with finite products form a
symmetric monoidal category IntLearnC.

The underlying data of a learner A p→B with fixed parameter set P has an appealing symmetric de-
scription, via the chain of isomorphisms

C(P×A,B)×C(P×A×B,P)×C(P×A×B,A)
∼= C(P×A,B)×C(P×A×B,P×A)

∼=
∫ Q:C

C(P×A,Q)×C(P×A,B)×C(Q×B,P×A)

∼=
∫ Q:C

C(P×A,Q×B)×C(Q×B,P×A)
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The quotient up to isomorphism of P can then be expressed as an additional coend over the core of C:

IntLearn(A,B) =
∫ P:Core(C) ∫ Q:C

C(P×A,Q×B)×C(Q×B,P×A)

Three generalisations immediately suggest themselves:

• Replace the former coend with one over all of C rather than only the isomorphisms;

• Replace × with an arbitrary symmetric monoidal product ⊗; and,

• Allow the occurrences of A and B to be different objects, as in the category of optics [15, 1].

We arrive at our generalised definition of learner.

Definition 1.3. For objects A,A′,B,B′ of a symmetric monoidal category C, an extensional learner
(A,A′) p→(B,B′) is an element of

LearnC((A,A′),(B,B′)) :=
∫ P,Q:C

C(P⊗A,Q⊗B)×C(Q⊗B′,P⊗A′)

The extensional learner represented by a pair of maps f : P⊗A → Q⊗B and g : Q⊗B′ → P⊗A′ will be
written ( f | g) : (A,A′) p→(B,B′).

Because these are our focus, we omit ‘extensional’ and call these simply learners.
The definition unwinds to a coarser notion of equivalence on the data of intensional learners. Two

learners (P, I,U,r) and (P′, I′,U ′,r′) are identified by this new definition when there is a (not-necessarily-
bijective) function f : P → P′ and an intermediate function Û : P′×A×B → P such that

I′( f (p),a) = I(p,a)

r′( f (p),a,b) = r(p,a,b)

Û( f (p),a,b) =U(p,a,b)

U ′(p′,a,b) = f (Û(p′,a,b))

That is, the relationship of f to I and r is the same as before, but for U we require a diagonal filler in
the diagram

P×A×B P

P′×A×B P′

U

f×A×B f

U ′

Û

Lemma 1.4. Intensionally equivalent learners are extensionally equivalent.

Proof. The bijection f : P→P′ satisfies the first two equations of extensional equivalence by assumption.
For the intermediate function Û : P′×A×B → P, take Û(p′,a,b) :=U( f−1(p′),a,b), then

Û( f (p),a,b) =U( f−1( f (p)),a,b) =U(p,a,b)

f (Û(p′,a,b)) = f (U( f−1(p′),a,b)) =U ′( f ( f−1(p′)),a,b) =U ′(p′,a,b)
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Remark 1.5. The extensional relation is similar the notion of 2-morphism between learners given in
[7, Definition 7.1], which only requires that the outer square in the above diagram commutes. The
intensional relation identifies two learners when there is a 2-isomorphism between them.

In [6], Fong and Johnson consider two intensional learners identical when there is a 2-morphism such
that f is only surjective, and not necessarily a bijection. This is a coarser notion of equivalence still: for
example, it identifies all intensional learners 1 p→1.

Proposition 1.6. Learners form a category LearnC, where the identity learner (A,A′) p→(A,A′) is (idI⊗A |
idI⊗A′), and the composite of (l1 | r1) : (A,A′) p→(B,B′) and (l2 | r2) : (B,B′) p→(C,C′) with representatives

l1 : P1 ⊗A → Q1 ⊗B

r1 : Q1 ⊗B′ → P1 ⊗A′

l2 : P2 ⊗B → Q2 ⊗C

r2 : Q2 ⊗C′ → P2 ⊗B′

is given by

P2

P1

A
l1

Q1

Q2

C
l2

Q1

Q2

C′
r2

P2

P1

A′
r1

.

Proof. Similar to [15, Proposition 2.0.3]. The unit laws for composition follow quickly from the unit
laws in C. Associativity of composition follows (for the left component) from the isotopy of the following
string diagrams:

P2

P1

A
l1 l2

P3

Q3

D
l3

Q2

Q1

P2

P1

A
l1 l2

P3

Q3

D
l3

Q2

Q1

The right component is symmetric.
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Remark 1.7. Intensional learners manifestly do not form a locally small category: any choice of param-
eter set P determines a learner (1,1) p→(1,1) with U := pr1, and any two sets with different cardinalities
determine two intensionally inequivalent learners. The situation is not improved with the extensional re-
lation: these learners remain unequal and LearnC is not locally small. (Compare ordinary lenses, which
can be described in a similar coend style but always form a locally small category.) For a symmetric
monoidal category, the collection of learners (I, I) p→(I, I) is the trace of C in the sense of [4], which can
be difficult to calculate even in simple cases.

The category LearnC accepts an obvious functor ι :C→LearnC, sending f : A→B to (I⊗ f | idI⊗I) :
(A, I) p→(B, I). And, it also accepts a functor from OpticC, which sends an optic ⟨l | r⟩ : (A,A′) p→(B,B′)
to the learner with components

I ⊗A → A l−→ M⊗B

M⊗B′ r−→ A′ → I ⊗A′

The observation that lenses include into learners as those with trivial parameter set was made in [7], and
this fact is made especially clear by the characterisation IntLearnC

∼= Para(LensC) given in [2].

Proposition 1.8. LearnC is symmetric monoidal, with action on objects given by (A,A′)⊗ (B,B′) :=
(A⊗B,B′⊗A′) and action on morphisms

(lL | rL)⊗ (lR | rR) : (AL,A′
L)⊗ (AR,A′

R)→ (BL,B′
L)⊗ (BR,B′

R)

given by

BR

PR

PL

AR

AL

QL

QR

lR

lL

BL

A′
L

QL

QR

B′
L

B′
R

PR

PL

rL

rR

A′
R

Proof. Similar to [15, Theorem 2.0.12], but using a version of the ‘switched’ tensor from [15, Definition
2.1.1]. The key facts to check are that the action on morphisms does not depend on the choice of repre-
sentative and that ⊗ is functorial. The first is clear from the above diagrams: for example, a morphism on
the QL string between lL and rL can be slid from lL to rL in the string diagram (using the coend relation
to hop the gap), and similarly for the three strings for QR, PL and PR.

Functoriality of ⊗ follows from the equality of the following diagrams, depicting the left component
of the morphisms

((lL2 | rL2)◦ (lL1 | rL1))⊗ ((lR2 | rR2)◦ (lR1 | rR1))

and

((lL2 | rL2)⊗ (lR2 | rR2))◦ ((lL1 | rL1)⊗ (lR1 | rR1))

respectively. (Imagine dragging the lL1 node below the PR2 string to the left, and the lL2 node below the
QR1 string to the right.)
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PL2

PL1

AL

QL1

QL2

CL

PR2

PR1

AR

QR1

QR2

CR

lL1

lR1

lL2

lR2

PR1

PL1

AR

AL

PR2

PL2

lR1

lL1 lL2

lR2

QL1

QR1

BL

BR

QL2

QR2

The latter diagram is almost exactly the correct one, other than the outer twists on the pairs (PL1,PR2)
and (QR2,QL1). These are cancelled with similar twists in the right component using the coend relations.

As in the Optic setting, the structure morphisms (including the symmetry isomorphism) are con-
structed as the image of the structure morphisms of C×Cop, and functoriality of the inclusion guarantees
that the equations of a symmetric monoidal category hold.

2 Duality

For extensional learners, there is an obvious involution (−)∗ : Learn → Learnop that comes into view
by virtue of the new symmetrical formulation: just switch the two components!

Proposition 2.1. There is a (strict) involutive symmetric monoidal functor (−)∗ : Learn → Learnop

given by (A,A′)∗ := (A′,A) and (L | R)∗ := (R | L).

Proof. On objects, we have(
(A,A′)⊗ (B,B′)

)∗
= (A⊗B,B′⊗A′)∗ = (B′⊗A′,A⊗B) = (B′,B)⊗ (A′,A) = (B,B′)∗⊗ (A,A′)∗

Preservation of identity, composition and tensor of morphisms is clear by observing that their definitions
are exactly symmetric between each component.
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The resulting strictness of this functor is why it is convenient to switch the objects in the right
component of (A,A′)⊗ (B,B′) :≡ (A⊗B,B′⊗A′).

Remark 2.2. Let us calculate how this duality acts on intensional learners. Stepping through the
equivalence between intensional learners and their coend formulation, the dual of a learner (P, I,U,r) :
(A,A′) p→(B,B′) is a learner (P∗, I∗,U∗,r∗) : (B′,B) p→(A′,A) with parameter set P∗ := P×A, and

I∗ : (P×A)×B′ → A′

I∗((p, pa),b′) := r(p, pa,b′)

U∗ : (P×A)×B′×A → (P×A)

U∗((p, pa),b′,a) := (U(p, pa,b′),a)

r∗ : (P×A)×B′×A → B

r∗((p, pa),b′,a) := I(U(p, pa,b′),a)

If we do this twice, we return to a learner (A,A′) p→(B,B′) with parameter set P∗∗ := P×A×B′, and

I∗∗ : (P×A×B′)×A → B

I∗∗((p, pa, pb′),a) := I(U(p, pa, pb′),a)

U∗∗ : (P×A×B′)×A×B′ → (P×A×B′)

U∗∗((p, pa, pb′),a,b′) := (U(p, pa, pb′),a,b′)

r∗∗ : (P×A×B′)×A×B′ → A′

r∗∗((p, pa, pb′),a,b′) := r(U(p, pa, pb′),a,b′)

Under intensional equivalence this is not equal to the original learner, but under extensional equivalence
it is: use U : P×A×B′ → P as the function f between parameter sets, and the identity id : P×A×B′ →
P×A×B′ as the diagonal filler Û . This double-dual learner is extensionally identical to the original
learner, but intensionally it is ‘running one training datum behind’: when fed a new element of A×B′, it
updates P using the pair remembered in the parameter set and stores the provided element of A×B′ for
next time.

An object (A,A′) and its counterpart (A′,A) are related by cup and cap morphisms:

Definition 2.3. For any object (A,A′), define the cup

η(A,A′) : (I, I) p→(A,A′)⊗ (A,A′)∗ = (A⊗A′,A⊗A′)

as the learner with P := A⊗A′ and Q := I and the obvious maps

(A⊗A′)⊗ I → I ⊗ (A⊗A′)

I ⊗ (A⊗A′)→ (A⊗A′)⊗ I

and define the cap

ε(A,A′) : (A′⊗A,A′⊗A) = (A,A′)∗⊗ (A,A′) p→(I, I)

as the learner with P := I and Q := A′⊗A and the obvious maps

I ⊗ (A′⊗A)→ (A′⊗A)⊗ I

(A′⊗A)⊗ I → I ⊗ (A′⊗A).
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These maps are dual, in that:

(η(A,A′))
∗ = ε(A,A′)∗ (ε(A,A′))

∗ = η(A,A′)∗

All signs are pointing to (A,A′)∗ being the actual monoidal dual of (A,A′). Tragically,

Proposition 2.4. LearnC is typically not compact closed.

Proof. Consider an object of the form (A, I). After cancelling some monoidal units, the composite
learner

(A, I) p→(A, I)⊗ ((A, I)∗⊗ (A, I)) p→((A, I)⊗ (A, I)∗)⊗ (A, I) p→(A, I)

corresponding to the snake equation for (A, I) has P := A and Q := A, and components

A⊗A
sA,A−−→ A⊗A

A⊗ I id−→ A⊗ I.

This is typically not equal to the identity learner; a priori there are no non-trivial maps involving A
whatsoever, as can be seen by setting C to be a commutative monoid considered as a discrete category.

As an intensional learner, the above learner is similar to the identity map but with its output “delayed
one step”, and has P := A with maps

I : A×A → A

I(p,a) := p

U : P×1×A → P

U(p,b,a) := a

r : P×1×A → 1

Learners do have the following weaker structure, much like the teleological categories discussed in
[9, Section 5] and [15, Section 2.1] but with cups as well as caps.

Proposition 2.5. The families of morphisms

η(A,A′) : (I, I) p→(A,A′)⊗ (A,A′)∗

ε(A,A′) : (A,A′)∗⊗ (A,A′) p→(I, I)

are monoidal, and are extranatural with respect to morphisms in the image of ι : C×Cop → LearnC.
Furthermore, s(A,A′),(A,A′)∗η(A,A′) = η(A,A′)∗ and ε(A,A′)s(A,A′),(A,A′)∗ = ε(A,A′)∗ , where s(A,A′),(A,A′)∗ denotes
the symmetry morphism.

Proof. The definitions of η and ε are so simple that these are all easily checked by direct calculation.

We have a canonical decomposition of any learner using these morphisms, in the same style as [15,
Proposition 2.1.10].

Lemma 2.6. Every learner (l | r) : (S,S′) p→(A,A′) is equal to the learner described by the diagram
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S

S′∗

l

r∗
A′∗

A

recalling that we silently include objects and morphsisms of C in LearnC using ι .

Proof. This can be checked by direct calculation, cancelling all the occurrences of the monoidal unit
created by the use of ι .

The snake equations are precisely what is missing for LearnC to be compact closed.

Definition 2.7. The category AtempC of atemporal learners is the quotient of LearnC obtained by
identifying the snake diagram

(A,A′) p→((A,A′)⊗ (A,A′)∗)⊗ (A,A′) p→(A,A′)⊗ ((A,A′)∗⊗ (A,A′)) p→(A,A′)

with the identity morphism for every object (A,A′).

Trivialising just one of the snake diagrams also trivialises the other: the dual snake diagram is the
image of this one under the strictly monoidal functor −∗.

Proposition 2.8. AtempC is compact closed.

Proof. The only missing property is extranaturality of the cup and cap with respect to all morphisms in
AtempC. The snake equations holding implies that η and ε are extranatural with respect to each other:

=

and similarly with the roles reversed.
From Lemma 2.6, it follows that η and ε are natural with respect to every map in AtempC. Decom-

posing a map as via the Lemma, we can then see:

S

S′∗

l

r∗

A′
A∗

=

S

S′∗

l

r∗

A′
A∗

=
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S

S′∗

l

r∗

A′

A∗

=

S

S′∗

l∗

r
A′

A∗

=

S
S′∗

l∗

rA′

A∗

=

S
S′∗

l∗

r
A′

A∗

The unit is similar.

3 Free Compact Closure

We conclude by showing that this AtempC is the free compact closed category on a symmetric monoidal
category C.

There is an existing construction of the free compact closed category given by composing three sim-
pler constructions: [13] constructs the free feedback monoidal category on a monoidal category before
quotienting it to form the free traced monoidal category. Then [12] constructs the free compact closed
category on a traced monoidal category. In the literature one also finds the free compact closed category
on a bare category [14], and the free compact closed category on a closed monoidal category [3], but
these are less comparable to the construction given here.

As a first step, any functor from C into a compact closed category factors through AtempC.

Theorem 3.1. Suppose C is a symmetric monoidal category an D is a compact closed category. For any
symmetric monoidal functor F : C→D, there is a factorisation

C D

AtempC

ι

F

F̂

Here we follow the shape of the argument in [12, Section 5].

Proof. Any object (A,A′) of AtempC is isomorphic to

(A,A′)∼= (A′, I)∗⊗ (A, I) = (ιA′)∗⊗ ιA

which forces us to define F̂(A,A′) := (FA′)∗⊗FA. On a morphism (l | r), define F̂(l | r) as indicated in
the diagram
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FS

FS′∗

Fl

Fr∗
FA′∗

FA

This is well defined with respect to the quotient on LearnC, because the snake equations already hold in
D. The functor F̂ behaves nicely with the inclusion ι : C×Cop → AtempC, because F̂(ι( f ,g)) = g∗⊗ f
for any two morphisms of C.

There are now several things to check. First, that F̂ is a functor. Preservation of identity follows
because the cup and cap for the unit object in D are the unitors. Preservation of composition is the
equivalence of the following diagrams:

FA

FA′∗

Fl1

Fr1
∗

Fl2

Fr2
∗

FC′∗

FC

=

FA FC
Fl1 Fl2

FC′∗FA′∗

Fr2
∗Fr1

∗

We must equip F̂ with the structure of a monoidal functor. For the structure isomorphism φ :
F̂(AL,A′

L)⊗ F̂(AR,A′
R)→ F̂(AL ⊗AR,A′

R ⊗A′
L), we take the composite

F̂(AL,A′
L)⊗ F̂(AR,A′

R)

= (FAL ⊗FA′
L
∗)⊗ (FAR ⊗FA′

R
∗)

→ (FAL ⊗FAR)⊗ (FA′
L
∗⊗FA′

R
∗)

→ (FAL ⊗FAR)⊗ (FA′
R ⊗FA′

L)
∗

→ F(AL ⊗FAR)⊗ (F(A′
R ⊗A′

L))
∗

= F̂(AL ⊗AR,A′
R ⊗A′

L)

= F̂((AL,A′
L)⊗ (AR,A′

R))

That this gives a monoidal functor follows from the equivalence of the diagrams
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FBRFAR

FAL

FlR

FlL

FBL

FA′
L
∗ FB′

L
∗

FB′
R
∗

FrL
∗

FrR
∗

FA′
R
∗

=
FAL

FA′
L
∗

FlL

FrL
∗

FB′
L
∗

FBL

FAR

FA′
R
∗

FlR

FB′
R
∗

FBR

FrR
∗

The functor is also symmetric monoidal, as the symmetry morphisms of AtempC are inherited from the
symmetry morphisms of C×Cop via ι .

Let SymMong denote the 2-category of symmetric monoidal categories, monoidal functors and
monoidal natural isomorphisms, and let Comp denote the 2-category of compact closed categories,
monoidal functors and monoidal natural transformations. Recall that no condition on monoidal functors
between compact closed categories is necessary: duals are always preserved up to canonical isomor-
phism. We also do not need to explicitly restrict the 2-cells in Comp to be invertible, because any such
monoidal natural transformation is invertible:
Proposition 3.2. [11, Proposition 7.1] Any monoidal natural transformation α : F → G in Comp has
an inverse given by

GA → (G(A∗))∗
(αA∗ )

∗
−−−→ (F(A∗))∗ → FA

at each object A.
Theorem 3.3. AtempC is the free compact closed category on a symmetric monoidal category C. That is,
Atemp : SymMong → Comp assembles into a 2-functor that is left biadjoint to the inclusion Comp →
SymMong, with the unit of the biadjunction having component ι : C→ AtempC at C.

Proof. Suppose D is compact closed. For two symmetric monoidal functors F,G : AtempC → D, the
restriction map along ιC gives a map

Comp(AtempC,D)(F,G)→ SymMong(C,D)(F ◦ ι ,G◦ ι)

We claim that this restriction map is a bijection.
Given a monoidal isomorphism β : F ◦ ι → G◦ ι , define the monoidal isomorphism β : F → G whose

component at (A,A′) is

F(A,A′) = F(ιA⊗ (ιA′)∗)→ FιA⊗F(ιA′∗)

→ FιA⊗ (FιA′)∗
βA⊗(β−1

A′ )
∗

−−−−−−→ GιA⊗ (GιA′)∗

→ GιA⊗G(ιA′∗)→ G(ιA⊗ ιA′∗) = G(A,A′)

Eliding the structural morphisms, this corresponds simply to the following diagram in D:
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FA

FA′∗ GA′∗

GAβA

β
−1
A′

∗

Monoidalness of β follows immediately from the monoidalness of β . For naturality, suppose we have a
morphism (l | r) : (A,A′)→ (B,B′) in AtempC. Naturality of β with respect to (l | r) corresponds to the
equivalence of the following diagrams:

FA

FA′∗

Gl

Gr∗

GB′∗

GB

βP

β
−1
P

∗

βA

β
−1
A′

∗

=

GB

GB′∗

Fl

Fr∗

FA′∗

FA

βQ

β
−1
Q

∗

βB

β
−1
B′

∗

using monoidalness and naturality of β to pass it through l and r. The extraneous βP and βQ are cancelled
with their inverses by passing them around the cup and cap.

Finally, we must show that this process is inverse to restriction along ι . It is clear from the definition
that βι = β . The interesting case is the converse, that αι = α for a monoidal isomorphism α : F → G.
We verify

F(A,A′)
αι(A,A′)−−−−→ G(A,A′)

= F(A,A′)
∼−→ FιA⊗ (FιA′)∗

αιA⊗(αιA′
−1)∗

−−−−−−−−→ GιA⊗ (GιA′)∗
∼−→ G(A,A′)

= F(A,A′)
∼−→ FιA⊗ (FιA′)∗

αιA⊗(α
ιA′

−1)∗

−−−−−−−−→ GιA⊗ (GιA′)∗
∼−→ G(A,A′)

= F(A,A′)
∼−→ FιA⊗ (FιA′)∗

∼−→ FιA⊗ (F(ιA′)∗)∗∗
αιA⊗(α(ιA′)∗ )

∗∗

−−−−−−−−→ GιA⊗ (G(ιA′)∗)∗∗

∼−→ GιA⊗ (GιA′)∗
∼−→ G(A,A′)

= F(A,A′)
∼−→ FιA⊗ (F(ιA′)∗)

αιA⊗(α(ιA′)∗ )−−−−−−−→ GιA⊗ (GιA′)∗
∼−→ G(A,A′)

= F(A,A′)
α(A,A′)−−−→ G(A,A′)

by expanding the explicit description of the inverse of αιA′ given by Proposition 3.2, and using the
monoidalness of α at the last step.

From this we conclude that restriction along ι is an equivalence of categories between Comp(AtempC,D)
and SymMong(C,D), making ι a biuniversal arrow. It follows abstractly [5, Theorem 9.17] that Atemp
assembles into a bifunctor Atemp : SymMong → Comp, left biadjoint to the inclusion.

Remark 3.4. The restriction to SymMong with natural isomorphisms as 2-cells is necessary. As pointed
out by [8], this assumption is erroneously missing from the similar theorem given in [12].
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