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Delta lenses are an algebraic structure used to model bidirectional transformations, and directly gener-
alise split opfibrations. The classical Grothendieck construction establishes an equivalence between
split opfibrations and functors into the category of small categories. In this talk, we introduce a variant
of the Grothendieck construction which establishes an equivalence between delta lenses and certain lax
double functors into the double category of sets, functions, and split multi-valued functions. The proof
follows abstractly from the universal property of the left-connected completion of a double category
with companions, applied to the double category of sets, functions, and spans. We demonstrate
several advantages of this fibred approach to delta lenses, and provide a new characterisation of split
opfibrations.

Context and Motivation Delta lenses were first introduced in 2011 by Diskin, Xiong, and Czarnecki
[22] as a generalisation of the classical “state-based” lenses [24, 34]. The original motivation for delta
lenses was as an algebraic framework for bidirectional transformations [1, 17], especially in model-
driven engineering [21, 38], and they have since been applied to areas such as triple graph grammars
[4], supervised learning [20], and optimal transport [37]. The study of delta lenses using category theory
began with the work of Johnson and Rosebrugh [28], and this has led to an ongoing programme in the
applied category theory community to understand their properties [8, 9, 12, 14, 18, 19].

A delta lens is a pair ( f ,ϕ) consisting of a functor f : A→ B equipped with a lifting operation that
provides, for each object a ∈ A and morphism u : f a→ b in B, a morphism ϕ(a,u) : a→ a′ in A, called a
chosen lift, such that f ϕ(a,u) = u. The lifting operation is required to preserve identities and composition
of morphisms, and the intrinsic “functorial” nature of this lifting operation has resulted in numerous
characterisations of delta lenses in the literature. For example, delta lenses are: compatible functor and
cofunctor pairs [2, 9], coalgebras for a comonad [11], algebras for a monad [14], and the right class of an
algebraic weak factorisation system [14, 15]. Each of these approaches reveals a unique perspective on
the theory of delta lenses while also suggesting new ways to construct examples.

Split opfibrations are delta lenses such that the chosen lifts are opcartesian [28], and thus a delta lens
may be understood capturing the underlying structure of a split opfibration. Given the close relationship
between these concepts, it is not surprising that many results regarding delta lenses are drawn from the
analogous results for split opfibrations. For example, split opfibrations are: algebras for a monad [29, 39],
the right class of an algebraic weak factorisation system [6, 25], and coalgebras for a comonad [23].
Conversely, the development of delta lenses has led to new characterisations of split opfibrations [10].

The Grothendieck construction is widely recognised as among of the most important concepts in
category theory. First introduced by Grothendieck [26], the construction describes a correspondence
between functors from a category B into Cat, and split opfibrations over B. There have since been
numerous variants and generalisations of the Grothendieck construction introduced for different purposes
[5, 7, 16, 27, 30, 31, 32, 33]. Drawing upon the connection between delta lenses and split opfibrations, it
becomes natural to wonder: is there a Grothendieck construction for delta lenses?
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Outline and Contributions In this talk, we will describe an equivalence between delta lenses into a
category B, and lax double functors out of a double category Lo(B).

To state the theorem, we introduce the necessary notation. Let LensB denote the category whose
objects are delta lenses with codomain B. Let Lo(B) denote the double category whose objects and loose
morphisms come from the objects and morphisms of B, and whose tight morphisms and cells are identities.
Let SMult denote the double category whose objects are sets, whose tight morphisms are functions, and
whose loose morphisms are split multi-valued functions, that is, spans of sets whose left leg have a chosen
section. Finally, let [Lo(B),SMult]lax denote the category of lax double functors from Lo(B) to SMult
and tight natural transformations between them.
Theorem. There is an equivalence LensB ' [Lo(B),SMult]lax between the category of delta lenses with
codomain B, and the category of lax double functors from Lo(B) to the double category of sets, functions,
and split multi-valued functions.

The right-to-left functor
∫

: [Lo(B),SMult]lax→ LensB of this equivalence we call the Grothendieck
construction for delta lenses. To understand the intuition behind this equivalence, consider a lax double
functor F : Lo(B)→ SMult which assigns each morphism u : x→ y in B to a split multi-valued function
as follows.

F(x) F [u] F(y)
ϕu

su

tu su ◦ϕu = 1F(x)

From this data, we may construct a category
∫

F whose objects are pairs (x ∈ B,a ∈ F(x)) and whose
morphisms are pairs (u : x→ y ∈ B,α ∈ F [u]) : (x,su(α))→ (y, tu(α)). There is a canonical functor
π :

∫
F → B given by projection in the first component, and this admits a delta lens structure, since for

each object (x,a)∈
∫

F and morphism u : x→ y in B, there is a chosen lift (u,ϕu(a)) : (x,a)→ (y, tuϕu(a)).
The additional data and axioms of a lax double functor with respect to identities and composition ensure
that both the category

∫
F and the delta lens structure are well-defined.
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B
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Rather than establishing this equivalence explicitly, we provide an abstract proof via a sequence of
equivalences depicted above. First, we recall the equivalence between a delta lens ( f ,ϕ) : A→ B and a
commutative diagram of functors, as shown in (1), such that ϕ is identity-on-objects and f ϕ is a discrete
opfibration [9]. Next, we recall the equivalence Cat/B' [Lo(B),Span]lax between ordinary functors into B
and lax double functors from Lo(B) to the double category Span of sets, functions, and spans [3, 35, 36],
and use this to establish the equivalence, shown in the middle of (1), where (−)∗ : Sq(Set)→ Span is the
strict double functor assigning each function to its companion span. Finally, we show that SMult is the
left-connected completion of the double category Span, and use the universal property of this completion
to establish the right-most equivalence in (1).

There are numerous benefits to viewing delta lenses as lax double functors into SMult. We demonstrate
how various classes of delta lenses may be characterised by factoring a lax double functor Lo(B)→ SMult
through a double functor D→ SMult, for some double category D. We provide a new perspective on
split opfibrations as lax double functors Lo(B)→ SMult with a certain property. Several monoidal
structures on the category LensB also shown to arise naturally from monoidal structures on the category
[Lo(B),SMult]lax. In future work, we hope that our approach to delta lenses as displayed categories [3]
with additional structure leads to new applications of delta lenses in type-theoretic settings.
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Further reading The content of this extended abstract will be further developed in a forthcoming
preprint with the same title, and is based on Chapter 4 of my PhD thesis [13].
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