
Submitted to:
ACT 2024

© T. Hanks, M. Klawonn & J. Fairbanks
This work is licensed under the
Creative Commons Attribution License.

Generalized Gradient Descent is a Hypergraph Functor

Tyler Hanks James Fairbanks
Department of Computer and Information Science and Engineering

University of Florida
Gainesville, Florida

t.hanks@ufl.edu fairbanksj@ufl.edu

Matthew Klawonn
Information Directorate
Air Force Research Lab

Rome, New York
matthew.klawonn.2@us.af.mil

Cartesian reverse derivative categories (CRDCs) provide an axiomatic generalization of the reverse
derivative, which allows generalized analogues of classic optimization algorithms such as gradient
descent to be applied to a broad class of problems. In this paper, we show that generalized gradient
descent with respect to a given CRDC induces a hypergraph functor from a hypergraph category of
optimization problems to a hypergraph category of dynamical systems. The domain of this functor
consists of objective functions that are 1) general in the sense that they are defined with respect to
an arbitrary CRDC, and 2) open in that they are decorated spans that can be composed with other
such objective functions via variable sharing. The codomain is specified analogously as a category
of general and open dynamical systems for the underlying CRDC. We describe how the hypergraph
functor induces a distributed optimization algorithm for arbitrary composite problems specified in
the domain. To illustrate the kinds of problems our framework can model, we show that parameter
sharing models in multitask learning, a prevalent machine learning paradigm, yield a composite
optimization problem for a given choice of CRDC. We then apply the gradient descent functor to
this composite problem and describe the resulting distributed gradient descent algorithm for training
parameter sharing models.

1 Introduction

Recently, Cartesian reverse derivative categories (CRDCs) were used to define generalized analogues of
classic optimization algorithms, such as gradient descent, that minimize generalized objective functions
[8, 17]. This has allowed techniques from machine learning such as backpropagation to be applied not
only to artificial neural networks, but to a broad class of models including boolean circuits. The generality
of the framework makes future expansion to other problem types likely. Central to the definition of a
CRDC is the Cartesian reverse derivative combinator R, which must obey axioms mirroring the behavior
of the standard directional derivative in the Euclidean domain. This combinator is compositional in that it
satisfies a chain rule, allowing one to define a general version of the backpropagation algorithm [13, 15].

In prior work, CRDCs have been used primarily to compose parameterized morphisms, i.e to build
a learning model, all the while leveraging R to ensure the parameters can be updated with respect to
the generalized gradient of an objective. In this way the induced optimization problem of maximiz-
ing/minimizing the given objective with respect to the parameters has a compositional structure by virtue
of the model being compositional. We propose that in addition to compositional structure in the model,
compositional structure in the objective is also of interest. In particular, in machine learning it is common
for parameters to be optimized for more than one objective. Simple examples of compositional objec-
tives are those arising from various regularization methods, for example ℓ1 or ℓ2 penalties [3], wherein
one term in the objective incentivizes “good performance” on the given task while the other enforces
some generically desirable property like sparseness. Other examples with more sophisticated compo-
sition patterns include parameter sharing methods wherein subsets of parameters may be optimized for

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 1 INTRODUCTION

ℒ1
𝒟 ℒ2

𝒟 ℒ𝑁
𝒟 ∇(𝑃0,𝑃1)ℒ1

𝒟 ∇(𝑃0,𝑃2)ℒ2
𝒟 ∇(𝑃0,𝑃𝑁)ℒ𝑁

𝒟

ℝ𝑃0 ℝ𝑃0

ℝ𝑃1 ℝ𝑃2 ℝ𝑃𝑁 ℝ𝑃1 ℝ𝑃2 ℝ𝑃𝑁

Figure 1: An illustration of multitask learning in our framework. The left string diagram shows the
composite objective function representing the multitask learning objective. The right string diagram is
the result of applying the gradient descent functor to the morphism on the left, resulting in a distributed
optimization algorithm.

one or more objective functions. Parameter sharing arises within the setting of multitask learning, which
we will discuss in this paper. Figure 1 illustrates this example.

To capture composition of objective functions that may have shared parameters, we turn to decorated
spans [10]. Our approach closely follows that of [11], where algebras of undirected wiring diagrams are
used to compose objective functions with shared decision variables, and a variety of first-order methods
including (sub)gradient descent and primal-dual methods are shown to be functorial in the standard Eu-
clidean domain. This paper extends the results on gradient descent to the general setting of Cartesian
reverse derivative categories and generalized optimization introduced in [17]. Specifically, our contribu-
tions are as follows.

• We show how to produce hypergraph categories of generalized open objectives and optimizers
over a given optimization domain.

• We prove that generalized gradient descent yields a hypergraph functor from open objectives to
open optimizers.

• We highlight how functoriality allows the gradient descent solution algorithms for composite prob-
lems to be implemented in a distributed fashion.

• We show that multitask learning [4] with hard parameter sharing is an example of objective com-
position occurring in the machine learning literature, and we leverage our functorial formulation
of gradient descent to recover a distributed optimization scheme.

We will begin by setting up the categories of open generalized objectives and open dynamical sys-
tems. We then specify the generalized gradient descent functor between them before turning to the
multitask learning example.

3

2 Generalized Gradient Descent as a Hypergraph Functor

In order to proceed we need to recall many definitions from prior work. For convenience, they have
been included in Appendix A. The reader who is unfamiliar with Cartesian reverse derivative categories,
linear maps in CRDCs, optimization domains, and generalized gradients may wish to peruse the appendix
before proceeding.

The fundamental component for generalized optimization is the notion of an optimization domain,
which generalizes the role of the real numbers in defining the “cost” or “value” of a given configuration of
decision variables. Specifically, an optimization domain consists of a pair (C,R) where C is a Cartesian
reverse derivative category and R ∈ C has the structure of an ordered commutative ring (for full details,
see Definition A.5). To construct hypergraph categories of objectives and optimizers, we will also require
that the subcategory of linear maps in C, denoted Lin(C), has finite limits. Going forward, we use × to
denote the product and ∗ to denote the terminal object in an arbitrary CRDC.

2.1 The Hypergraph Category of Open Objectives

The goal of this section is to define a hypergraph category of generalized optimization problems. In
standard optimization, a generic unconstrained minimization problem has the form

minimize f (x),

where f : Rn → R is known as the objective function, and x ∈ Rn is referred to as the decision or op-
timization variable. When f (x) has the form ∑

N
i=1 fi(xi), where the xi are disjoint subvectors of x, f is

referred to as separable. Separable objectives can be solved entirely in parallel as each optimal xi has
no effect on the rest of the objective. However, in many important problems, the objective function is
partially separable. For example, the problem

minimize f (w,x)+g(u,w,y)+h(u,w,z)

consists of a sum of objectives with complicating variables u and w. Such a sum of objectives with shared
variables is the type of compositional structure that we wish to capture and generalize in our hypergraph
category of optimization problems.

A standard method for defining such a hypergraph category is to leverage the theory of decorated
spans1 [9, 10]. Decorated spans turn a closed system into an open system by specifying a boundary
for the system in addition to morphisms that relate the domain of the system to its boundary. We now
leverage this general pattern to define a notion of open objectives.

Definition 2.1. Given an optimization domain (C,R), an open objective with domain boundary X and
codomain boundary Y consists of a span X ← N→Y in Lin(C) together with a choice of objective on N,
i.e., a map f : N→ R in C.

There is a straightforward interpretation of open objectives when the legs are both projections: the
boundary objects are subobjects of the overall decision space which can be shared with other objectives.
This intuition of sharing parts of the decision space is still helpful even when the legs are general linear
maps. We now arrange open objectives into a hypergraph category by specifying the following decorating
functor.

1The literature typically uses covariant decorating functors to define decorated cospan categories. However, all the same
results hold for the dual construction of contravariant decorating functors and decorated spans, which we leverage in this paper.

4 2 GENERALIZED GRADIENT DESCENT AS A HYPERGRAPH FUNCTOR

Theorem 2.2. Given an optimization domain (C,R), there is a contravariant lax symmetric monoidal
functor OR

C : (Lin(C)op,×) → (Set,×) defined by the following maps (where we let O := OR
C for the

remainder of the theorem and proof).

• Given an object X, O(X) is the set of generalized objectives with domain X, i.e., the hom-set
C(X ,R).

• Given a linear map φ : X → Y and objective f : Y → R, O(φ)(f) : X → R is the objective f ◦ φ

obtained by precomposition.

• Given objects X ,Y , the product comparison ϕX ,Y : O(X)×O(Y)→ O(X×Y) is defined by

ϕX ,Y (f ,g) := f ◦π0 +g◦π1, (1)

where π0 : X×Y → X and π1 : X×Y → Y are the natural projections.

• The unit comparison ϕ0 : {∗} → O(∗) selects the additive identity 0R for the hom-set C(∗,R) sup-
plied by the left additive structure.

Proof. O is plainly functorial as it is just the contravariant hom functor C(−,R) restricted to act only
on the linear maps of C. We still need to verify the symmetric lax monoidal axioms. For naturality of
the product comparison, we need the following diagram to commute for all objects X ,X ′,Y,Y ′ and linear
maps φ : X ′→ X and ψ : Y ′→ Y :

O(X)×O(Y) O(X ′)×O(Y ′)

O(X×Y) O(X ′×Y ′)

ϕX ,Y

O(φ)×O(ψ)

ϕX ′,Y ′

O(φ×ψ)

Letting f : X → R and g : Y → R be arbitrary, following the top path yields the morphism

f ◦φ ◦π0 +g◦ψ ◦π1 (2)

while following the bottom path yields

(f ◦π0 +g◦π1)◦ (φ ×ψ) = f ◦π0 ◦ (φ ×ψ)+g◦π1 ◦ (φ ×ψ), (3)

where the equality comes from LA.1. Now let x ∈ X ′ and y ∈Y ′ be generalized elements. Then applying
(2) to (x,y) gives f (φ(x))+g(ψ(y)) while applying (3) to (x,y) gives

f (π0(φ(x),ψ(y)))+g(π1(φ(x),ψ(y))) = f (φ(x))+g(ψ(y)), (4)

as desired. Commutativity of the symmetry, associativity, and unitality diagrams all follow from the fact
that the hom-set C(X ′×Y ′,R) is a commutative monoid.

We can now use our decorated spans of open objectives to construct a hypergraph category.

Corollary 2.2.1 (Open Generalized Optimization Problems). Given an optimization domain (C,R) such
that Lin(C) has finite limits, there is a hypergraph category OptR

C defined by the following data.

• Objects are the same as those of C.

• Morphisms are (isomorphism classes of) open generalized objectives.

2.2 The Hypergraph Category of Open Optimizers 5

• Given two open objectives (X l1←− N r1−→ Y, f ∈ OR
C(N)) and (Y l2←−M r2−→ Z,g ∈ OR

C(M)), their com-
posite consists of the following span computed by pullback

N×Y M

N N×M M

X Y Z
l1 r1 l2 r2

π1π0

b1b0

⟨b0,b1⟩

(5)

together with the objective obtained from the composite morphism

{∗} ∼= {∗}×{∗} f×g−−→ OR
C(N)×OR

C(M)
ϕN,M−−→ OR

C(N×M)
OR
C⟨b0,b1⟩−−−−−→ OR

C(N×Y M). (6)

• The identity on X is the pair (X = X = X ,{∗} ϕ0−→ OR
C(∗)

OR
C(!)−−−→ OR

C(X)).

• The monoidal product on objects is their product in C while the monoidal product of morphisms
(X ← N→ Y, f) and (W ←M→ Z,g) is

(X×W ← N×M→ Y ×Z,ϕN,M(f ,g)). (7)

• The hypergraph maps are inherited from those of Span(Lin(C)) together with the identity decora-
tion.

Proof. This follows by applying Proposition 3.2 and Theorem 3.4 in [9] to Theorem 2.2.

2.2 The Hypergraph Category of Open Optimizers

Having defined a hypergraph category of open objective functions, we will now use the same machinery
of decorated spans to define a hypergraph category of open dynamical systems over a given CRDC.

Definition 2.3. Given a CRDC C, an open dynamical system with domain boundary X and codomain
boundary Y consists of a span X ← N→ Y in Lin(C) together with a choice of system on N, i.e., a map
v : N→ N in C.

Endomaps in a CRDC are also referred to as optimizers in [17], thus we use the terms optimizer
and dynamical system interchangeably. Similar to open objectives, the boundaries of open dynamical
systems specify which parts of a system’s state space can be influenced by other systems. The decorating
functor is given as follows.

Theorem 2.4. Given a CRDC C, there is a contravariant lax symmetric monoidal functor
DC : (Lin(C)op,×)→ (Set,×) defined by the following maps (where we let D := DC for the remainder of
the theorem and proof).

• Given an object X, D(X) is the set of generalized dynamical systems with state space X, i.e., the
hom-set C(X ,X).

• Given a linear map φ : X → Y and a system v : Y → Y , D(φ)(v) is the system φ † ◦ v◦φ : X → X.

6 2 GENERALIZED GRADIENT DESCENT AS A HYPERGRAPH FUNCTOR

• Given objects X ,Y , the product comparison ϕX ,Y : D(X)×D(Y)→ D(X×Y) is defined by

ϕX ,Y (v,w) := π
†
0 ◦ v◦π0 +π

†
1 ◦w◦π1. (8)

• The unit comparison ϕ0 : {∗}→ D(∗) is uniquely determined as C(∗,∗) is singleton.

Proof. For functoriality of D, let φ : X → Y,ψ : Y → Z, and v : Z→ Z be arbitrary. For preservation of
composition, we have

D(φ ◦ψ)(v) := (φ ◦ψ)† ◦ v◦ (φ ◦ψ) = (ψ† ◦φ
†)◦ v◦ (φ ◦ψ)

= ψ
† ◦ (φ † ◦ v◦φ)◦ψ = (D(ψ)◦D(φ))(v), (9)

where the first equality comes from contravariant functoriality of (−)† and the second equality comes
from associativity of composition. Similarly, for preservation of identities, we have

D(idZ)(v) := id†
Z ◦ v◦ idZ = idZ ◦ v◦ idZ = v, (10)

where the first equality again comes from functoriality of (−)†.
To verify the naturality of the product comparison, we need the following diagram to commute for

all φ : X ′→ X and ψ : Y ′→ Y :

D(X)×D(Y) D(X ′)×D(Y ′)

D(X×Y) D(X ′×Y ′)

ϕX ,Y

D(φ)×D(ψ)

ϕX ′,Y ′

D(φ×ψ)

For this, let (v,w) ∈ D(X)×D(Y) be arbitrary. Then, following the top path yields

π
†
0 ◦φ

† ◦ v◦φ ◦π0 +π
†
1 ◦ψ

† ◦w◦ψ ◦π1, (11)

while following the bottom path yields

(φ ×ψ)† ◦ (π†
0 ◦ v◦π0 +π

†
1 ◦w◦π1)◦ (φ ×ψ)

= (φ ×ψ)† ◦ (π†
0 ◦ v◦π0 ◦ (φ ×ψ)+π

†
1 ◦w◦π1 ◦ (φ ×ψ)) Left additivity

= (φ ×ψ)† ◦π
†
0 ◦ v◦π0 ◦ (φ ×ψ)+(φ ×ψ)† ◦π

†
1 ◦w◦π1 ◦ (φ ×ψ) Additivity of linear maps

= (φ ×ψ)† ◦π
†
0 ◦ v◦φ ◦π0 +(φ ×ψ)† ◦π

†
1 ◦w◦ψ ◦π1 Lemma A.7

= (π0 ◦φ ×ψ)† ◦ v◦φ ◦π0 +(π1 ◦φ ×ψ)† ◦w◦ψ ◦π1 Contravariant functoriality
= (φ ◦π0)

† ◦ v◦φ ◦π0 +(ψ ◦π1)
† ◦w◦ψ ◦π1 Lemma A.7

= π
†
0 ◦φ † ◦ v◦φ ◦π0 +π

†
1 ◦ψ† ◦w◦ψ ◦π1,

(12)
as desired. The symmetric monoidal coherence axioms again follow from the commutative monoid
structure of hom-sets.

This is a generalization of the dynamics decorating functor defined in [1]. We can now define an
analogous hypergraph category of open generalized dynamical systems.

Corollary 2.4.1 (Open Generalized Dynamics). Given a CRDC C such that Lin(C) has finite limits, there
is a hypergraph category DynamC defined by the following data.

2.3 Functoriality of Generalized Gradient Descent 7

• Objects are the same as those of C.

• Morphisms are (isomorphism classes of) open dynamical systems.

• Given two open systems (X l1←− N r1−→ Y,v ∈ DC(N)) and (Y l2←− M r2−→ Z,w ∈ DC(M)), their com-
posite consists of the pullback span as in (5) together with the system obtained from the composite
morphism

{∗} ∼= {∗}×{∗} v×w−−→ DC(N)×DC(M)
ϕN,M−−→ DC(N×M)

DC⟨b0,b1⟩−−−−−→ DC(N×Y M). (13)

• The identity on X is the pair (X = X = X ,{∗} ϕ0−→ DC(∗)
DC(!)−−−→ DC(X)).

• The monoidal product on objects is their product in C while the monoidal product of morphisms
(X ← N→ Y,v) and (W ←M→ Z,w) is

(X×W ← N×M→ Y ×Z,ϕN,M(v,w)). (14)

• The hypergraph maps are inherited from those of Span(Lin(C)) together with the identity decora-
tion.

Proof. This follows by applying Proposition 3.2 and Theorem 3.4 in [9] to Theorem 2.4.

2.3 Functoriality of Generalized Gradient Descent

The pieces are now in place for our main result. We would like to show that one can functorially relate a
composite objective function defined in OptR

C to a composite optimizer in DynamC that performs gradi-
ent descent on the given objective function. The framework of decorated spans allows the construction
of such a hypergraph functor by specifying a monoidal natural transformation between the underlying
decorating functors defining the domain and codomain hypergraph categories. Note that we work with
continuous gradient flow systems; however, these results easily extend to discrete gradient descent sys-
tems as Euler’s method is known to be functorial for resource sharing dynamical systems [12].

Theorem 2.5. Given an optimization domain (C,R), there is a monoidal natural transformation
gd(C) : OR

C⇒DC with components gd(C)X : OR
C(X)→DC(X) defined by the generalized gradient descent

optimization scheme, i.e.,
f 7→ −R[f]1. (15)

Proof. Let gd := gdC ,O := OR
C , and D := DC . For naturality, we need to verify that the following diagram

commutes for all objects X ,Y ∈ Lin(C) and linear maps φ : Y → X :

O(X) O(Y)

D(X) D(Y)

O(φ)

gdX gdY

D(φ)

Let f : X → R be an arbitrary objective. Then, following the top path yields the optimizer

−R[f ◦φ]1 :=−R[f ◦φ]◦ ⟨idY ,1Y R⟩. (16)

8 2 GENERALIZED GRADIENT DESCENT AS A HYPERGRAPH FUNCTOR

Likewise, following the bottom path yields

−φ
† ◦R[f]1 ◦φ :=−φ

† ◦R[f]◦ ⟨idX ,1XR⟩ ◦φ . (17)

Now consider applying (16) to a generalized element y ∈ Y :

−R[f ◦φ]◦ ⟨idY ,1Y R⟩(y) =−R[f ◦φ](y,1R)
=−R[φ](y,R[f](φ(y),1R)) Chain rule RD.5
=−φ †(R[f](φ(y),1R)) Linearity.

(18)

Finally, applying (17) to the same element gives

−φ
†(R[f](⟨idX ,1XR⟩(φ(y)))) =−φ

†(R[f](φ(y),1R)) (19)

as desired. To verify the transformation is monoidal, we must show that the following diagrams com-
mute:

O(X)×O(Y) D(X)×D(Y) ∗ O(∗)

O(X×Y) D(X×Y) D(∗)

gdX×gdY

ϕX ,Y ϕX ,Y

gdX×Y

ϕ0

ϕ0
gd∗

Let g : Y → R be another arbitrary objective. Following the top path of the product comparison diagram
yields the system

−π
†
0 ◦R[f]1 ◦π0−π

†
1 ◦R[g]1 ◦π1 (20)

while following the bottom path gives

−R[f ◦π0 +g◦π1]1 =−R[f ◦π0 +g◦π1]◦ ⟨idX×Y ,1X×Y,R⟩
=−(R[f ◦π0]+R[g◦π1])◦ ⟨idX×Y ,1X×Y,R⟩ RD.1
=−R[f ◦π0]◦ ⟨idX×Y ,1X×Y,R⟩−R[g◦π1]◦ ⟨idX×Y ,1X×Y,R⟩ LA.1
=−R[f ◦π0]1−R[g◦π1]1.

(21)

These can be shown equivalent following the same reasoning as for naturality, namely by applying the
chain rule. The unit comparison diagram commutes trivially as D(∗) is terminal.

Corollary 2.5.1 (Functoriality of Generalized Gradient Flow). Given an optimization domain (C,R) such
that Lin(C) has finite limits, there is an identity on objects hypergraph functor GDC : OptR

C → DynamC

which takes an open objective (X l←−N r−→Y, f : N→R) to the open optimizer (X l←−N r−→Y,−R[f]1 : N→
N).

Proof. This follows by applying Theorem 4.1 of [9] to the monoidal natural transformation gd.

Taking stock, there are a many implications of the categories and functor just defined. For one,
corollary 2.5.1 says we have the following equality given any composable pair F :=(X←N→Y, f : N→
R),G := (Y ←M→ Z,g : M→ R) of open objectives:

GDC(G◦F) = GDC(G)◦GDC(F). (22)

In particular, this yields the following equivalence of open optimizers:

−R[f ◦π0 ◦φ +g◦π1 ◦φ]1 =−φ
† ◦ (ι0 ◦R[f]1 ◦π0 + ι1 ◦R[g]1 ◦π1)◦φ , (23)

9

where we are using φ to denote the pairing ⟨b0,b1⟩ from (5). Although these two optimizers are exten-
sionally equivalent (i.e., they compute the same output for a given input), they are not computationally
equivalent. In particular, the optimizer on the RHS of (23) is far better suited to implementation in a dis-
tributed computing environment as it can be interpreted with message passing semantics. Specifically,
the distribute step is given by applying the linear map φ to the input followed by the application of the
projections to send the desired components to the subsystems. The parallel computation step is given by
computing the gradients of each objective with respect to their current local values, and the collect step
is given by injecting the results into a single vector and applying the linear map φ †.

Another benefit of open objectives and optimizers is the ability to easily specify composite objective
functions using the graphical syntax of string diagrams. In the following section we will model hard pa-
rameter sharing for mulit-task learning in our category OptR

C . We do so to show that, rather than existing
as an exercise in abstraction, our framework is applicable to a prevalent machine learning paradigm.

3 Multitask Learning

Multitask learning (MTL) [4] is a machine learning paradigm in which learning signals from different
tasks are aggregated in order to train a single model. Precise definitions of what a task is vary, but for our
purposes we will consider a task Ti := (Di,Li) to be a pair of data set Di and loss function Li. Usually
(see [21]) the tasks Ti are supervised, so Di := Xi×Yi for input data Xi and labels Yi. The primary
(or at least original) motivation of MTL is to exploit additional learning signals for improved model
performance on a given “main” task, beyond what might be possible if the model were trained on any
single task [4].

A common approach (see [21]) to multitask learning is to leverage parameterised models where at
least some parameters are trained on all tasks. Such an approach is called hard parameter sharing be-
cause the shared parameters are updated directly using gradient information from multiple tasks. This is
in contrast to soft parameter sharing where the parameters are only penalized for differing from coun-
terparts trained on other tasks. Theoretically, hard parameter sharing helps to avoid overfitting of shared
parameters [2]. When the underlying model is a neural network, hard parameter sharing is often achieved
by sharing the parameters of the first several layers while training a unique set of predictive final layers
per task. However, recent work suggests that more flexible schemes may lead to improved performance
[20]. With this motivation, we will now frame hard parameter sharing as a composite optimization prob-
lem that allows arbitrary parameters to be shared amongst arbitrary tasks.

For each task Ti in a collection of N tasks, consider a neural network fi that has task-specific param-
eters Pi and shared parameters P0. We will call an assignment of parameters to real numbers Wi ∈ RPi

the weights of a neural network, though note that the machine learning literature often uses the terms
“weights” and “parameters” interchangeably. The composite optimization problem given by such a mul-
titask learning setup (cf. [16], (1)) is

min
W0,...,WN

∑
N
i=1 LD

i (fi;W0,Wi) (24)

where
LD

i (fi;W0,Wi) := 1
|Di| ∑

|Di|
d=1Li(fi(X d

i ;W0,Wi),Yd
i) (25)

with fi(X d
i ;W0,Wi) denoting the prediction of the network fi weighted by (W0,Wi) on input datum

X d
i . We will now describe how problem 24 is a composite of open objectives, and therefore how to

mechanically recover a distributed gradient descent algorithm for it.

10 3 MULTITASK LEARNING

3.1 Compositional Formulation

We will take our CRDC C to be Euc with objects euclidean spaces RN and morphisms f : RN →RM the
smooth maps between spaces. The monoidal product is given by ×, the standard product of Euclidean
spaces. Each task’s loss is a smooth map LD

i : RPi ×RP0 → R, meaning our optimization domain is
(Euc,R). Note that we have avoided some difficulty by treating each loss as an atomic map, as opposed
to the composition of a neural network applied to data followed by a loss function. In the latter case, we
would need to consider the set of parameters for the network in addition to the set of data points, and
handle the subtleties of updating parameters while ignoring gradients w.r.t the input data. See [8] for a
thorough discussion of such concerns. Because the loss LD

i is computed with respect to the entire data
setDi for a task, we have restricted ourselves to optimization methods that perform true gradient descent
as opposed to the stochastic or mini-batch variants which are more common in the machine learning
literature. We leave an extension of our work to the SGD setting for future efforts.

With the goal of specifying problem 24 as a morphism of OptREuc, we first consider the following
span that relates shared and task specific parameters for some i.

RP0 π0←− RP0×RPi π1−→ RPi (26)

To promote 26 to a decorated span, we need only to specify an objective function RP0 ×RPi → R.
With LD

i being the obvious choice, we construct a decorated span F i :=
(
RP0

π0←− RP0×RPi
π1−→ RPi ,LD

i

)
.

Each F i is a morphism in the hypergraph category OptREuc, meaning that we may take the monoidal
product

⊗N
i=1 F i. By Cor. 2.2.1, specifically Eq. 7, we know that the monoidal product of our task

specific decorated spans is as follows.

N⊗
i=1

F i =

(
N

∏
i=1

RP0
∏

N
i=1 π i

0←−−−−
N

∏
i=1

(RP0×RPi)
∏

N
i=1 π i

1−−−−→
N

∏
i=1

RPi ,ϕ(LD
1 , . . . ,LD

N)

)
(27)

Note that by Thm. 2.2 the decorating objective function is given by the comparison map:

ϕ(LD
1 , . . . ,LD

N) :
N

∏
i=1

O(RP0×RPi)→ O(
N

∏
i=1

RP0×RPi), (28)

where ϕ(LD
1 , . . . ,LD

N) maps the tuple of task specific losses to their sum:

(LD
1 , . . . ,LD

N) 7→
N

∑
i=1
LD

i ◦π
i, (29)

where π i denotes the i’th projection of ∏
N
i=1(RP0×RPi). We now wish to specify that the parameter space

RP0 is shared among all N loss functions. This is accomplished as follows.
Recall that in a hypergraph category like OptREuc, we have comultiplication maps

δp :=
(
Rp idp←− Rp ∆−→ Rp×Rp,0: Rp→ R

)
, (30)

where 0: Rp→ R is the “empty” decoration, i.e., the constant 0 objective function 0(v) = 0. The map
∆ : Rp → Rp×Rp is the duplication map v 7→ (v,v) built-in to any Cartesian category. Thus, to copy
the single parameter space RP0 to all tasks, we simply apply δP0 N times. We denote this N-fold appli-
cation δ N

P0
. To recover problem 24, all we must do is precompose our monoidal product of task specific

objectives with the N-fold copy, yielding the morphism in OptREuc

3.2 Distributed Optimization via Functoriality of Gradient Descent 11

((⊗N
i=1 F i

)
◦δ N

P0
,O(⟨b0,b1⟩)◦

(
0+∑

N
i=1LD

i ◦π i
))

=((⊗N
i=1 F i

)
◦δ N

P0
,LD : (W0,W1, . . . ,WN) 7→ ∑

N
i=1LD

i (W0,Wi)
) (31)

which can be pictured diagramatically as:

RP0×∏
N
i=1RPi

RP0 RP0×
(
∏

N
i=1RP0×RPi

)
∏i=1RP0×RPi

RP0 ∏
N
i=1RP0 ∏i=1RPi

id ∆
∏

N
i=1 π i

0 ∏
N
i=1 π i

1

π̂1π̂0

b1b0

⟨b0,b1⟩

In Eq. 31, the computation of the pullback has effectively filtered the multiple copies of RP0 and left
us with the loss we want. Note that the objective function 0 of the comultiplication morphism does not
contribute to the overall objective.

3.2 Distributed Optimization via Functoriality of Gradient Descent

Algorithm 1: Distributed MTL
Input: Initial shared weights W 0

0 ∈ RP0 , and task-specific weights W 0
i ∈ RPi for i ∈ {1, . . . ,N}

Input: A positive real learning rate γ

Wi←W 0
i for i ∈ {0, . . . ,N};

while a stopping criterion is not reached do
Compute each iteration of the following for-loop in parallel;
for i← 1 to N do

grad W0,i← ∇W0L(W0,Wi);
grad Wi← ∇WiL(W0,Wi);
Wi←Wi− γ ∗grad Wi; /* Update non-shared weights */

end
grad W0← ∑

N
i=1grad W0,i; /* Gradient of shared weights is sum of

gradients from each task-specific learner */

W0←W0− γ ∗grad W0;
end
return W0,W1, . . . ,WN

Having represented problem 24 as a morphism in OptREuc, we can create a gradient descent based
optimizer by applying Cor. 2.5.1. In particular we aim for a distributed gradient descent scheme. Ex-
ploiting the functoriality of GDEuc, we prefer to compute the gradient for each morphism separately and
then compose systems. The generalized gradient functor is illustrated in Section 1, Figure 1.

12 5 CONCLUSION

Algorithm 1 describes the distributed scheme for multitask learning derived by applying GDC to
the individual subproblems and composing the resulting dynamical systems. Note that there is value
in distributing computation this way as computing the gradients of weights will typically involve non-
trivial backpropogation over potentially large networks. With this, we have successfully recovered hard
parameter sharing for multitask learning and shown how to make a gradient descent optimizer that can
be implemented in a distributed fashion.

4 Discussion and Future Work

Taking stock, it is fair to wonder what has been gained by specifying parameter sharing via decorated
spans. One classic argument for the utility of applied category theory is the tight link between graph-
ical problem depiction and its realization in a mathematical or computational data structure. Figure 1
contains two string diagrams which visually capture the structure of multitask learning objectives and
optimizers respectively, enabling better communication of models between machine learning practition-
ers. Moreover, the relative ease with which one can describe compositional objectives supports more
complex problem structures. Objectives with traditional regularization terms can be trivially described
as compositional objectives, and soft parameter sharing should be fairly easily accommodated via the
addition of penalization terms. More exotic hierarchical parameter sharing (see e.g. [18]) should be
readily modeled using our approach to MTL. There is a computational benefit too; distributed optimiza-
tion schemes become easier to implement with a rigorous definition of problem structure. Finally the
generality of the techniques discussed allows the parameter sharing pattern of the given morphism to be
applied to settings beyond smooth real-valued functions and traditional gradient descent.

As for the general framework defined in Sec. 2, we believe there are interesting connections with
previous work on CRDCs. Perhaps the most obvious direction for future work would be to understand
the connections with the Para and Lense constructions of [8]. In particular, we hope that a unified
treatment of both the compositional structure of models and the compositional structure of objectives
can be achieved, perhaps using tools from double category theory. Naturally another direction of future
work is to find more examples of CRDCs and study not only learning problems in those settings, but
other optimization problems such as those arising in operations research.

5 Conclusion

In summary, we have presented hypergraph categories OptR
C and DynamC of open objectives and dy-

namical systems respectively, and shown that there exists a hypergraph functor between them that maps
a generalized objective to its corresponding gradient descent optimizer. Both OptR

C and DynamC are con-
structed with respect to an underlying Cartesian reverse derivative category, allowing for composition of
optimization problems that are defined on a general optimization domain. Such compositionality induces
a template for distributed optimization, and provides an accompanying graphical syntax that facilitates
communication and sharing. Lastly, to provide evidence that existing machine learning paradigms can be
described by our compositional framework, we described parameter sharing models for multitask learn-
ing using the hypergraph structure of OptR

C , and highlighted the distributed gradient descent algorithm
induced by this structure.

13

References

[1] John C Baez & Blake S Pollard (2017): A compositional framework for reaction networks. Reviews in
Mathematical Physics 29(09), p. 1750028.

[2] Jonathan Baxter (1997): A Bayesian/information theoretic model of learning to learn via multiple task sam-
pling. Machine learning 28, pp. 7–39.

[3] Christopher Bishop (2006): Pattern Recognition and Machine Learning. Springer.
Available at https://www.microsoft.com/en-us/research/publication/

pattern-recognition-machine-learning/.

[4] Rich Caruana (1997): Multitask learning. Machine learning 28, pp. 41–75.

[5] Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam,
Gordon Plotkin & Dorette Pronk (2019): Reverse derivative categories. arXiv:1910.07065.

[6] Bob Coecke & Ross Duncan (2007): A graphical calculus for quantum observables. Preprint.

[7] Bob Coecke & Ross Duncan (2008): Interacting quantum observables. In: International Colloquium on
Automata, Languages, and Programming, Springer, pp. 298–310.

[8] Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Categorical
foundations of gradient-based learning. In: European Symposium on Programming, Springer International
Publishing Cham, pp. 1–28.

[9] Brendan Fong (2015): Decorated Cospans. arXiv:1502.00872.

[10] Brendan Fong (2016): The algebra of open and interconnected systems. arXiv preprint arXiv:1609.05382.

[11] Tyler Hanks, Matthew Klawonn, Evan Patterson, Matthew Hale & James Fairbanks (2024): A Compositional
Framework for First-Order Optimization. arXiv preprint arXiv:2403.05711.

[12] Sophie Libkind, Andrew Baas, Evan Patterson & James Fairbanks (2022): Operadic Modeling of Dy-
namical Systems: Mathematics and Computation. Electronic Proceedings in Theoretical Computer Sci-
ence 372, pp. 192–206, doi:10.4204/EPTCS.372.14. Available at http://arxiv.org/abs/2105.12282.
ArXiv:2105.12282 [math].

[13] Seppo Linnainmaa (1970): The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. Ph.D. thesis, Master’s Thesis (in Finnish), Univ. Helsinki.

[14] Makoto Matsumoto & Takuji Nishimura (1998): Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 8(1), pp. 3–30.

[15] David E Rumelhart, Geoffrey E Hinton & Ronald J Williams (1986): Learning representations by back-
propagating errors. nature 323(6088), pp. 533–536.

[16] Ozan Sener & Vladlen Koltun (2018): Multi-task learning as multi-objective optimization. Advances in
neural information processing systems 31.

[17] Dan Shiebler (2022): Generalized Optimization: A First Step Towards Category Theoretic Learning Theory.
In Pandian Vasant, Ivan Zelinka & Gerhard-Wilhelm Weber, editors: Intelligent Computing & Optimization,
Springer International Publishing, Cham, pp. 525–535.

[18] Anders Søgaard & Yoav Goldberg (2016): Deep multi-task learning with low level tasks supervised at lower
layers. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pp. 231–235.

[19] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun & Rob Fergus (2013): Regularization of neural networks
using dropconnect. In: International conference on machine learning, PMLR, pp. 1058–1066.

[20] Lijun Zhang, Qizheng Yang, Xiao Liu & Hui Guan (2022): Rethinking hard-parameter sharing in multi-
domain learning. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), IEEE, pp.
01–06.

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://arxiv.org/abs/1910.07065
https://arxiv.org/abs/1502.00872
https://doi.org/10.4204/EPTCS.372.14
http://arxiv.org/abs/2105.12282

14 A GENERALIZED OPTIMIZATION

[21] Yu Zhang & Qiang Yang (2021): A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering 34(12), pp. 5586–5609.

A Generalized Optimization

In this section, we recall the necessary definitions and concepts from Cartesian reverse derivative cate-
gories [5] and generalized optimization [17].

Definition A.1 (Definition 3.1 in [17]). A Cartesian left-additive category is a Cartesian category C
with terminal object ∗ in which for any pair of objects X ,Y , the hom-set C(X ,Y) is a commutative monoid
with addition operation + and additive identities 0X ,Y : X → Y . In addition, the following axioms must
be satisfied.

• LA.1 For any morphisms h : X → Y and f ,g : Y → Z, we have

(f +g)◦h = (f ◦h)+(g◦h) : X → Z and 0Y,Z ◦h = 0X ,Z : X → Z. (32)

• LA.2 For any projection map πi : Y → Z and morphisms f ,g : X → Y we have

πi ◦ (f +g) = (πi ◦ f)+(πi ◦g) : X → Z and πi ◦0X ,Y = 0X ,Z : X → Z. (33)

The additive identity of C(∗,X) is denoted 0X .

Rough Definition A.2 (Definition 3.3 in [17]). A Cartesian differential category is a Cartesian left-
additive category C equipped with a Cartesian derivative combinator D taking morphisms f : X → Y
to morphisms D[f] : X ×X → Y . This combinator must satisfy several axioms requiring that it behave
like a standard forward derivative.

Rough Definition A.3 (Definition 3.2 in [17]). A Cartesian reverse derivative category is a Cartesian
left-additive category C equipped with a Cartesian reverse derivative combinator R taking morphisms
f : X → Y to morphisms R[f] : X ×Y → X . This combinator must satisfy several axioms requiring that
it behave like a standard reverse derivative. In particular, we will make use of the following axioms in
this paper.

• RD.1 R[f +g] = R[f]+R[g] and R[0] = 0.

• RD.5 R[g◦ f] = R[f]◦ (id×R[g])◦ ⟨π0,⟨ f ◦π0,π1⟩⟩.

Intuitively, RD.1 says that the reverse derivative combinator must be additive while RD.5 is the chain
rule cast in the abstract setting of CRDCs. Every Cartesian reverse derivative category (CRDC) is also a
Cartesian differential category (Theorem 16 in [5]) by defining the derivative combinator of a morphism
f : X → Y as

D[f] = π1 ◦R[R[f]]◦ (⟨idX ,0X ,Y ⟩× idX) : X×X → Y. (34)

This allows us to refer to the Cartesian derivative combinator of a CRDC. Of crucial importance in the
sequel is the notion of a linear map in CRDC.

Definition A.4. A linear map in a CRDC C is a morphism f such that D[f] = f ◦π1. The linear maps
in C form a subcategory of C which we denote Lin(C). By Proposition 24 in [5], Lin(C) is a †-category
with finite †-biproducts. Moreover, R[f] = f † ◦π1 and (f +g)† = f † +g†.

There are two canonical examples of CRDCs in the literature.

15

1. The CRDC Euc has Euclidean spaces as objects and smooth functions as morphisms. The terminal
object is R0 and the reverse derivative of a smooth function f : Rm→ Rn is

R[f](x,x′) := J f (x)T x′,

where J f (x) is the Jacobian of f evaluated at x. The linear maps in Euc are the usual linear maps
between vector spaces, with the dagger structure corresponding to dual maps.

2. Given a commutative ring r, the CRDC Polyr has natural numbers as objects. A morphism from
n to m is an m-tuple of polynomials over r, each in n variables. The terminal object is 0 and the
reverse derivative of a polynomial P(x) = (p1(x), . . . , pm(x)) is

R[P](x,x′) :=
(m

∑
i=1

∂ pi

∂x1
(x)x′i, . . . ,

m

∑
i=1

∂ pi

∂xn
(x)x′i

)
,

where ∂ pi
∂x j

(x) denotes the formal derivative of pi in x j at x. The linear maps are polynomials
P(x) = (p1(x), . . . , pm(x)) where each pi(x) is of the form pi(x) = ∑

n
i=1 rixi for ri ∈ r [5].

Definition A.5 (Definition 3.4 in [17]). An optimization domain is a pair (C,R) where C is a CRDC
and R is an object of C equipped with the following additional structures.

• Each morphism f : X → Y in C has an additive inverse − f .

• Each hom-set C(∗,X) out of the terminal object is equipped with a multiplication operation f g and
a multiplicative identity 1X : ∗→ X to form a commutative ring with the left additive structure.

• The hom-set C(∗,R) is totally ordered to form an ordered commutative ring.

Given a unique map !X : X → ∗ into the terminal object, the map 1Y◦!X : X → Y is denoted 1X ,Y . An
objective in (C,R) is a morphism ℓ : X → R in C.

Definition A.6 (Definition 3.6 in [17]). Given an optimization domain (C,R), the generalized gradient
of an objective ℓ : X → R is R[ℓ]1 : X → X defined by

R[ℓ]1 := R[ℓ]◦ ⟨idX ,1X ,R⟩. (35)

The following are examples given in [17] of optimization domains and generalized gradients.

1. The standard domain is (Euc,R). Objectives are smooth functions ℓ : Rn→ R and the gradient
of ℓ : Rn→ R is ∇ℓ : Rn→ Rn.

2. The r-polynomial domain is (Polyr,1). Objectives are polynomials ℓ : n→ 1 and the gradient of
ℓ : n→ 1 is

(
∂ℓ
∂x1

(x), . . . , ∂ℓ
∂xn

(x)
)

, where these are again formal derivatives.

Lemma A.7. Let φ : X → Y and ψ : X ′ → Y ′ be arbitrary morphisms in Lin(C). Then the following
equations hold:

1. (φ ×ψ)† = φ †×ψ†,

2. π0 ◦ (φ ×ψ) = φ ◦π0,

3. π1 ◦ (φ ×ψ) = ψ ◦π1.

16 A GENERALIZED OPTIMIZATION

Proof. For (1), we have

(φ ×ψ)† = ⟨φ ◦π0,ψ ◦π1⟩†
= (ι0 ◦φ ◦π0 + ι1 ◦ψ ◦π1)

† Lemma 3 in [5]
= (ι0 ◦φ ◦π0)

† +(ι1 ◦ψ ◦π1)
† Property of †-biproducts

= π
†
0 ◦φ † ◦ ι

†
0 +π

†
1 ◦ψ† ◦ ι

†
1 Contravariant functoriality

= ι0 ◦φ † ◦π0 + ι1 ◦ψ† ◦π1 Lemma 21 in [5]
= ⟨φ † ◦π0,ψ

† ◦π1⟩= φ †×ψ†.

(36)

For (2), let (x,x′) ∈ X×X ′ be generalized elements. Then

π0 ◦ (φ ×ψ)(x,x′) = φ(x) = φ(π0(x,x′)). (37)

A symmetric argument holds for (3).

	Introduction
	Generalized Gradient Descent as a Hypergraph Functor
	The Hypergraph Category of Open Objectives
	The Hypergraph Category of Open Optimizers
	Functoriality of Generalized Gradient Descent

	Multitask Learning
	Compositional Formulation
	Distributed Optimization via Functoriality of Gradient Descent

	Discussion and Future Work
	Conclusion
	Generalized Optimization

