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Graph-based models of chemical processes typically come at two different levels of abstraction:
formal reactions and disconnection rules. The former are combinatorial rearrangements of atoms
and charge, and are used for reaction prediction and storage of reaction data. The latter constitute
hypothetical bond breaking in the direction opposite to a reaction, and are used for designing
synthetic pathways and reaction search, known as retrosynthesis [6} 9} 5, 18, [10].

Whereas reactions have been studied formally before, a mathematical description of disconnec-
tion rules has received far less attention (see, however [4,[7]]). In this work, we provide a categorical
formalisation of the two levels, and show that they are tightly linked: the disconnection rules are
complete and universal with respect to the reactions (Corollary [2)). This is a consequence of the
functor from the category of disconnection rules to the category of reactions being a faithful opfi-
bration (Theorem[I)). Concretely, this means that every reaction can be decomposed into a sequence
of disconnection rules in an essentially unique way. This provides a uniform way to store and com-
pare reaction data, and gives an algorithmic interface between (forward) reaction prediction and
(backward) reaction search.

Molecules are represented as certain labelled graphs (called chemical graphs), whose vertices
are labelled with atoms and charge, and edges with ionic or covalent bonds. Reactions are partial
bijections between chemical graphs which preserve the atoms and the net charge, with the ad-
ditional requirement that the complement of the domain is isomorphic to the complement of the
codomain as a labelled graph. The idea is that nothing outside of the domain of the bijection is
changed during the reaction. We denote by React the category whose objects are chemical graphs
and whose morphisms are reactions.

This way of representing reactions is strongly connected to double pushout graph rewriting [1}
2, 13]]: in fact, every morphism in React can be represented as a double pushout diagram in the
category of chemical graphs. The composition, however, is not that of composing rewrite rules,
which is non-deterministic in the sense that it results in a set of all possible combinations of the
rules being composed [3]]. The composition in React can be though of as composition of two fixed
instances of rewrite rules. We give an example of a reaction (glucose phosphorylation) below,
where the numbered vertices are in the (co)domain of the bijection, with vertices with the same
superscript being mapped to each other:
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We define four classes of disconnection rules, all of which have a clear chemical significance:
two versions of electron detachment, ionic bond breaking and covalent bond breaking. The con-
verse of a disconnection rule is a connection rule. We represent the rules as the following graph
transformations (here o denotes an unpaired electron and o™ a free electron):
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Our first observation (universality) is highly intuitive: the (dis)connection rules generate all the
morphisms in React (up to an isomorphism). This can be thought of as a consistency result for
reactions: the definition captures exactly those rearrangements of chemical graphs which result
from local, chemically motivated rewrite rules. On the other hand, this establishes the basic units
of retrosynthetic analysis as first-class citizens of reaction representation. The second result is
perhaps slightly more surprising: treating the (dis)connection rules as terms with types (the source
and the target graphs), the terms can be endowed with equations such that the terms describing the
same reaction are identified. This axiomatisation is essentially a set of commutativity conditions:
the identities say when two rules can be applied in either order. We denote the resulting category
by Disc, and note that there is a functor to React that simply keeps track of the vertices on which
the (dis)connections act on.

Theorem 1. The functor Disc — React is a faithful opfibration.
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Corollary 2 (Universality and completeness). For every reaction r : A — B, there is a unique (up
to equations in Disc) sequence of disconnection rules d : A — B' and an isomorphism f : B' = B
such that foR(d) =r.

As the decomposition of a reaction into a sequence of (dis)connection rules is algorithmic,

these results can be used to automatically break a reaction (or its part) into smaller components:
the purpose can be, inter alia, doing retrosynthesis or storing reaction data in a systematic way.
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