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We propose a new definition of higher-order DisCoCat (categorical compositional distributional)
models where the meaning of a word is not a diagram, but a diagram-valued higher-order function.
Our models can be seen as a variant of Montague semantics based on a lambda calculus where the
primitives act on string diagrams rather than logical formulae. As a special case, we show how to
translate from the Lambek calculus into Peirce’s system beta for first-order logic. This allows us to
give a purely diagrammatic treatment of higher-order and non-linear processes in natural language
semantics: adverbs, prepositions, negation and quantifiers. The definition presented in this article
comes with a proof-of-concept implementation in DisCoPy, the Python library for string diagrams.

Introduction

DisCoCat [5, 6] (Categorical Compositional Distributional) models are structure-preserving maps which
send grammatical types to vector spaces and grammatical structures to linear maps. Concretely, the
meaning of words is given by tensors with shapes induced by their grammatical types; the meaning of
sentences is given by contracting the tensor networks induced by their grammatical structure. String
diagrams provide an intuitive graphical language to visualise and reason formally about the evaluation
of DisCoCat models; which can be formalised in terms of functors 𝐹 : G→ Vect from the category
generated by a formal grammar G to the monoidal category Vect of vector spaces and linear maps with
the tensor product [10, §2.5].

Although this functorial definition applies equally to any kind of formal grammar, most of the Dis-
CoCat literature focuses on pregroup grammars and more generally on categorial grammars such as the
Lambek calculus [17, 9] and combinatory categorial grammars (CCG) [27]. In that case, G is a closed
monoidal category and the DisCoCat models 𝐹 : G→ Vect map grammatical structures to the closed
structure of Vect in a canonical way. In practice, this means that once the meaning of each word is
computed from a dataset, the meaning of any new grammatical sentence can be computed automatically
from its grammatical structure.

While assigning vectors to words of atomic types like common nouns was already a standard tech-
nique in the field of distributional semantics, the main novelty of the DisCoCat framework lies in its
treatment of complex types like adjectives, verbs, etc. If the atomic type 𝑛 for common nouns is assigned
a vector space 𝐹 (𝑛) = 𝑁 , the complex type 𝑛← 𝑛 for adjectives (modifying nouns on their right) is
mapped to the tensor product 𝐹 (𝑛← 𝑛) = 𝑁 ⊗𝑁★: adjectives are not vectors, they are linear maps. Now
if we play the same game with the type for adverbs (modifying adjectives on their right) we get tensors
of order four: 𝐹 ((𝑛← 𝑛) ← (𝑛← 𝑛)) = 𝑁 ⊗𝑁★⊗𝑁★⊗𝑁 . Not only does this lead to unreasonably large
representations — if we want 1000 parameters for each noun, we need 1000 billion parameters for each
adverb — but we argue that it also misses the point of such higher-order types altogether.

Because the codomain of DisCoCat models 𝐹 : G→Vect is a compact-closed category, any second-
order type 𝑎← (𝑏← 𝑐) is squashed down to the same vector space 𝐴⊗ (𝐵 ⊗𝐶★)★ ≃ 𝐴⊗𝐶 ⊗ 𝐵★ as the
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first-order types 𝑎(𝑐← 𝑏) and (𝑎𝑐) ← 𝑏. This collapse down to first-order makes it impossible to express
linguistic phenomena that are inherently higher-order1 such as negation, disjunction and universal quan-
tification. Indeed, the variant of DisCoCat models valued in the compact closed category of relations Rel
are as expressive as regular logic, the fragment of first-order logic generated by truth, conjunction and
existential quantification [13]. The one missing ingredient to get from regular logic to all of first-order
logic is negation, which cannot be expressed in terms of relational composition. In short, negation can-
not be a relation but it can be expressed as a non-linear, higher-order function which maps relations to
relations.

This observation can be traced back to Peirce [20]’s system beta and his existential graphs which
are both the first examples of string diagrams and arguably the first axiomatisation of first-order logic.
In today’s terminology, Peirce defined string diagrams with swaps, cups, caps, spiders — which Peirce
called lines of identity — and a unary operator on homsets for negation represented as a circle that he
called cut. Existential graphs come with graphical equations that are sound and complete for first-order
logic, see [3, 14] for a categorical presentation.

Higher-order functions are at the basis of Montague semantics [19]. Concretely, the meaning of a
word is given by a term in the simply-typed lambda calculus with the symbols of first-order logic2 taken
as primitives; the meaning of a sentence is given by composing these lambda terms together to get a
closed formula. Abstractly, this can be formalised as a closed monoidal functor 𝐹 : G→ Λ𝐿 where
G is a categorial grammar and 𝐿 is the language of first-order logic (predicates, negation, conjunction,
quantifiers, etc.) seen as the presentation of a cartesian closed category Λ𝐿 [10, §2.2]. Interpretations
of the logic in a model then induce closed monoidal functors [[−]] : Λ𝐿→ Set, which we can compose
with 𝐹 to get a set-theoretic interpretation of the grammar [[−]] ◦𝐹 : G→ Set.

Let us summarise the situation. On the one hand, we have DisCoCat models defined in terms of
tensors that can be learnt from data and compared efficiently (with e.g. inner products) but that cannot
express higher-order phenomena such as negation and universal quantification. On the other, we have the
higher-order functions of Montague semantics, but where the resulting logical formulae are not easily
amenable to machine learning and computationally intractable (e.g. equivalence of first-order logic for-
mulae is undecidable). What we propose is to get the best of both worlds. As in Montague semantics, we
assign a simply-typed lambda term to each word, but now with diagram-valued operations as primitives.
The meaning of a sentence is given by composing these lambda terms together to get a diagram which
can be interpreted in Vect, as in a DisCoCat model, or in fact in any monoidal category C.

We propose to go from standard DisCoCat models 𝐹 : G→ Vect to higher-order DisCoCat (HO-
DisCoCat) models defined as closed monoidal functors 𝐹 : G→ Λ𝐷 where 𝐷 is the language of string
diagrams (boxes, identity, composition, tensor, etc.) again seen as the signature for a free cartesian closed
category Λ𝐷. The closed monoidal functors [[−]] : Λ𝐷→ Set now correspond precisely to interpreta-
tions of the diagrams in any monoidal category C. Thus we can replace Vect by any monoidal category
C, which need not be compact closed. This allows many new variants of DisCoCat models, for example
based on neural networks or stochastic processes. It also has potential applications in quantum natural
language processing [8] (QNLP) where the compact closed structure comes at the cost of exponentially
low probability of success [24].

The rest of this article is organised as follows. Section 1 gives a first toy example of a higher-order

1Here we mean higher-order in the sense of functions taking functions as input, although we are still within the realm of
first-order logic with quantifiers over variables rather than predicates. There is yet another ambiguous meaning of order: an
element of 𝐴⊗𝐶 ⊗ 𝐵★ is called a tensor of order three but it is still a first-order function when seen as a linear map 𝐴⊗𝐶→ 𝐵.

2Montague semantics dealt with first-order modal logic, we leave the treatment of modalities in natural language using
Peirce’s system gamma as a promising direction for future work.
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process which cannot be accounted for in these standard DisCoCat models. Section 2 formulates a
standard example of Montague semantics in terms of a closed monoidal functor 𝐹 : G→ Λ𝐿. Section 3
contains our main definition: HO-DisCoCat models as closed monoidal functors 𝐹 : G→Λ𝐷. Section 4
shows how our models can be extended to monoidal categories with additional operations, which we use
to model arbitrary adverbs depicted as boxes with holes that can hold diagrams themselves. Section 5
defines a HO-DisCoCat model which we call Peirce-Lambek-Montague semantics, where the diagrams
are existential graphs. This closes the conjecture opened in [5]: DisCoCat models valued in Rel are not
as expressive as Montague semantics, but higher-order DisCoCat models are. Appendix A showcases an
implementation of this Peirce-Lambek-Montague semantics using DisCoPy [11], the Python toolkit for
computing with string diagrams.

1 A toy example: “very big” = “big big”

To keep things concrete, we delay the formal definition of HO-DisCoCat models and start with a simple
example of a higher-order function: the function twice : (𝑋 → 𝑋) → (𝑋 → 𝑋) which takes a function
and applies it twice, i.e. twice = 𝜆 𝑓 𝑥. 𝑓 𝑓 𝑥. In our toy model of semantics:

• the noun “car” is sent to some vector 𝐹 (car) ∈ 𝑁 drawn as a box with one wire out,

• the adjective “big” is sent to the function which takes a vector and post-compose it with some
linear map 𝐹 (big) = 𝜆𝑥.𝐵 ◦ 𝑥 drawn as a box with one wire in and one wire out,

• the adverb “very” is sent to the non-linear, higher-order function 𝐹 (very) = twice.

We can now apply it to the noun phrase “very big car” and check that indeed it has the same semantics
as “big big car”. The image of the functor 𝐹 : G→ Λ𝐷 on a syntax tree can be visualised by annotating
each node with a lambda term with string diagrams as primitives. The leaves of the tree contain the
lambda terms for each word. Each binary node is the application of a subtree of type 𝑥← 𝑦 on the left
(𝑦→ 𝑥 on the right) to one of type 𝑦 on the other side.

Remark. The following notation for syntax trees annotated with their semantics is borrowed from
the one used for CCG derivations [2], except that we use string diagrams rather than the traditional
predicate-argument structure. These are not quite string diagrams in the category Set: boxes are not
labeled with their corresponding function, but with the result of applying this function to its arguments.

𝑥 𝐵𝜆𝑥 · 𝐶𝜆 𝑓 𝑥 · 𝑓 𝑓 𝑥

Very big car

𝑥 𝐵 𝐵𝜆𝑥 ·

𝐶 𝐵 𝐵

(𝑛← 𝑛) ← (𝑛← 𝑛) 𝑛← 𝑛 𝑛

𝑛← 𝑛

𝑛
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Due to the no-cloning theorem, copying an adjective in this way is not possible in a standard Dis-
CoCat model 𝐹 : G→ Vect. Indeed, there can be no linear map twice : 𝑋 ⊗ 𝑋★→ 𝑋 ⊗ 𝑋★ such that
twice( 𝑓 ) = 𝑓 ◦ 𝑓 for all linear maps 𝑓 : 𝑋→ 𝑋 . How can our higher-order DisCoCat model 𝐹 : G→Λ𝐷

get away with such a fundamental law of physics? To clear any such confusion, it is important to distin-
guish the three categories at play in the example above:

1. The (white) closed monoidal category G generated by arrows 𝑤→ 𝑡 for each word 𝑤 of type 𝑡.
The arrows 𝑤1 . . . 𝑤𝑛→ 𝑠 are the syntax trees of grammatical sentences.

2. The (green) cartesian closed category Λ𝐷 where the arrows are lambda terms with the composition
of string diagrams as primitives. Thanks to the cartesian product, lambda terms can copy and
discard variables at will.

3. The (pink) monoidal category Vect where the computation of the model happens. This can be
replaced by any monoidal category C, be it cartesian, compact or otherwise.

Remark. The equivalence between the lambda calculus with simple types and cartesian closed cate-
gories is known as the Curry-Howard-Lambek isomorphism [1, §1.6]. The correspondence between
categorial grammars and closed monoidal categories is due to Lambek [16].

Thus, higher-order DisCoCat models allow to make a distinction between the resource-sensitive
world of Vect where computation happens and the cartesian category Λ𝐷 where we can do arbitrary
meta-computation. This may summarised in a slogan: processes cannot copy, but we can copy processes.
Take the example of quantum circuits: there is no circuit that can copy arbitrary qubits, but we can copy
the classical instructions for any quantum circuit.

2 Montague semantics as a closed monoidal functor

Before we define HO-DisCoCat and its string-diagram-valued lambda calculus, we first look at the sim-
pler case of standard Montague semantics, defined as a monoidal functor 𝐹 : G→ Λ𝐿. We adapt the
presentation from [25].

As codomain Λ𝐿, we take the cartesian closed category with objects generated by 𝐿0 = {𝜏, 𝜙} for
terms and formulae. The generating arrows 𝐿1 are listed in the table below, they are chosen so that
the arrows 𝑓 : 𝜏⊗𝑘 → 𝜙 in Λ𝐿 are all the well-formed formulae of first-order logic with 𝑘 ≥ 0 free
variables. The relations ( 𝑓 , 𝑓 ′) ∈ 𝐿2 between pairs of formulae 𝑓 , 𝑓 ′ : 𝜏⊗𝑘 → 𝜙 may be given by any
sound and complete deduction system for first-order logic, so that 𝑓 = 𝑓 ′ in Λ𝐿 if and only if 𝑓 and 𝑓 ′

are equivalent formulae. The closed monoidal functors [[−]] : Λ𝐿→ Set are interpretations, also called
first-order structures: they are defined by a set [[𝜏]] called the universe and a set [[𝜙]] of truth values,
together with an element [[Alice]] ∈ [[𝜏]] for each constant, a function [[mortal]] : [[𝜏]] → [[𝜙]] for each
unary predicate, etc.

𝐿1 symbol type
constants Alice, Bob, ... 𝜏

unary predicates man, sings, ... 𝜏→ 𝜙

binary predicates needs, sees, ... 𝜏→ (𝜏→ 𝜙)
nullary operators ⊤,⊥ 𝜙

unary operators ¬ 𝜙→ 𝜙

binary operators ∧,∨,→ 𝜙→ (𝜙→ 𝜙)
quantifiers ∀,∃ (𝜏→ 𝜙) → 𝜙
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Remark. We treat the quantifiers ∀,∃ as higher-order functions (𝜏 → 𝜙) → 𝜙 and write ∃𝑥.𝑢 for
∃(𝜆𝑥.𝑢). In other words, we define first-order logic formulae as lambda terms where every 𝜆 is pre-
ceded by ∀ or ∃. Thus, the variables of first-order logic formulae are encoded as variables of the lambda
calculus, with implicit 𝛼-equivalence so that e.g. (∃𝑥.𝑃𝑥) = (∃𝑦.𝑃𝑦).

Remark. The presentation 𝐿 implicitly depends on a first-order signature which contains all the non-
logical symbols (constants and predicates).

As domain G, we take the free closed monoidal category with objects generated by the grammatical
types {𝑠, 𝑛, 𝑝} for sentence, common noun and noun phrase respectively, together with the words in some
finite vocabulary 𝑤 ∈ 𝑉 . There is a generating arrow 𝑤→ 𝑡 for each dictionary entry, i.e. for each word
𝑤 ∈ 𝑉 of type 𝑡 as listed in the table below. We define the image of our functor on generating objects
as follows: sentences go to formulae, common nouns go to predicates and noun phrases go to functions
from predicates to formulae. For example, the function for the noun phrase “no man” takes as input any
formula 𝑃(𝑥) with a free variable and return the closed formula ∀𝑥.¬man(𝑥) ∨𝑃(𝑥).

𝐹 (𝑠) = 𝜙 𝐹 (𝑛) = 𝜏→ 𝜙 𝐹 (𝑝) = (𝜏→ 𝜙) → 𝜙

We assume that the objects for each word go to the monoidal unit, i.e. 𝐹 (𝑤) = 1 so that the meaning
of dictionary entries 𝑤→ 𝑡 is given by the states 𝐹 (𝑤→ 𝑡) : 1→ 𝐹 (𝑡) listed below.

Montague semantics word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
proper nouns Alice 𝑝 𝜆𝑃.𝑃(𝐴𝑙𝑖𝑐𝑒)

common nouns man 𝑛 𝜆𝑥.man(𝑥)
adjectives big 𝑛← 𝑛 𝜆𝑃𝑥.big(𝑥) ∧𝑃𝑥

determiners every 𝑝← 𝑛 𝜆𝑃𝑄.∀𝑥.𝑃𝑥→𝑄𝑥

intransitive verbs sleeps 𝑝→ 𝑠 𝜆𝑃.𝑃(𝜆𝑥.sleeps(𝑥))
transitive verbs kills (𝑝→ 𝑠) ← 𝑝 𝜆𝑃𝑄.𝑄(𝜆𝑥.𝑃(𝜆𝑦.kills(𝑥, 𝑦)))

Again, we can visualise the action of the functor 𝐹 : G→ Λ𝐿 on the syntax trees for a grammatical
sentence by labeling each node with a lambda term. Note how the meanings of determiners “every” and
“a” use both the higher-order and cartesian structure of the cartesian closed category Λ𝐿: they take two
predicates 𝑃 and 𝑄, quantify over a variable 𝑥 of which they make two copies, feeding one to 𝑃 and the
other to 𝑄 before combining the resulting formulae.

mortal

𝜆𝑃𝑄 · ∃𝑥 ·𝑃𝑥∧𝑄𝑥

a

𝑝← 𝑛 𝑛

𝜆𝑃 ·𝑃(Alice)

Alice

𝑝

kills

(𝑝→ 𝑠) ← 𝑝

𝜆𝑃𝑄 ·𝑄(𝜆𝑥 ·𝑃(𝜆𝑦 ·kills(𝑥, 𝑦)))

𝑝→ 𝑠

𝑝

𝑠

𝜆𝑥 ·mortal(𝑥)

𝜆𝑄 · ∃𝑥 ·mortal(𝑥) ∧𝑄𝑥

𝜆𝑄 ·𝑄(𝜆𝑥 · ∃𝑦 ·mortal(𝑦) ∧kills(𝑥, 𝑦))

∃𝑦 ·mortal(𝑦) ∧kills(Alice, 𝑦)
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𝑛𝑝← 𝑛

𝜆𝑃𝑄 · ∀𝑥 ·𝑃𝑥→𝑄𝑥 𝜆𝑃𝑥 ·big(𝑥) ∧𝑃𝑥

𝑝→ 𝑠

𝜆𝑃 ·𝑃(𝜆𝑥 · sleeps(𝑥))

𝑛← 𝑛

𝜆𝑥 ·man(𝑥)

manEvery big sleeps

𝜆𝑥 ·big(𝑥) ∧man(𝑥)

𝜆𝑥 · ∀𝑥 ·big(𝑥) ∧man(𝑥) →𝑄𝑥

∀𝑥 ·big(𝑥) ∧man(𝑥) → sleeps(𝑥)

𝑛

𝑝

𝑠

3 Higher-order DisCoCat as a closed monoidal functor

We can now get to our main definition: HO-DisCoCat models as closed monoidal functors 𝐹 : G→ Λ𝐷

from a categorial grammar G to the cartesian closed category Λ𝐷 generated by the signature 𝐷 which
captures the language of string diagrams: boxes, identity, composition and tensor.

Before we draw any diagram, we fix a monoidal signature Σ = (Σ0,Σ1,dom,cod), i.e. a pair of sets Σ0
and Σ1 for generating objects and boxes together with a pair of functions dom,cod : Σ1→ 𝑇 from boxes
to lists of objects 𝑇 = Σ★

0 =
∐

𝑘∈NΣ
𝑘
0 , also called types. The generating objects of the cartesian closed

category Λ𝐷 are given by pairs of types which encode the input and output of diagrams, i.e. 𝐷0 = 𝑇 ×𝑇 .

𝐷1 symbol type
boxes 𝑓 ∈ Σ (𝑥, 𝑦)

identity id𝑥 (𝑥, 𝑥)
composition ◦𝑥𝑦𝑧 (𝑥, 𝑦) → (𝑦, 𝑧) → (𝑥, 𝑧)

tensor ⊗𝑥𝑦𝑧𝑤 (𝑥, 𝑦) → (𝑧,𝑤) → (𝑥𝑧, 𝑦𝑤)

The generating arrows 𝐷1 are listed in the table above, they are chosen so that the arrows:

𝑓 : (𝑧1,𝑤1) × · · · × (𝑧𝑘 ,𝑤𝑘) → (𝑥, 𝑦) ∈ Λ𝐷

are all the well-typed string diagrams with (𝑥, 𝑦) ∈ 𝐷0 as domain, codomain and 𝑘 free variables for
boxes of shape (𝑧𝑖 ,𝑤𝑖) ∈ 𝐷0. The relations ( 𝑓 , 𝑓 ′) ∈ 𝐷2 between pairs of diagrams are given by the
axioms for monoidal categories so that 𝑓 = 𝑓 ′ in Λ𝐷 if and only if the two diagrams are equivalent (i.e.
planar isotopic), see [23, Theorem 3.1]. Closed monoidal functors [[−]] : Λ𝐷→ Set are in one-to-one
correspondence with monoidal functors [[−]] : 𝐹 (Σ) →C from the free monoidal category generated by
Σ into any monoidal category C. In other words, they are defined by the following data:

• an inclusion Σ0 ↩→ C0 and a morphism [[ 𝑓 ]] ∈ C(𝑥, 𝑦) for each box ( 𝑓 : 𝑥→ 𝑦) ∈ Σ,

• a homset C(𝑥, 𝑦) = [[(𝑥, 𝑦)]] between every pair of types,

• an identity morphism [[id𝑥]] ∈ C(𝑥, 𝑥) for each type 𝑥 ∈ 𝑇 ,

• a composition function [[◦𝑥𝑦𝑧]] : C(𝑥, 𝑦) → C(𝑦, 𝑧) → C(𝑦, 𝑧),

• a tensor function [[⊗𝑥𝑦𝑧𝑤]] : C(𝑥, 𝑦) → C(𝑧,𝑤) → C(𝑥𝑧, 𝑦𝑤).



A. Toumi & G. de Felice 7

We can recover the standard definition of DisCoCat models in terms of pregroups by taking the HO-
DisCoCat model which sends the syntax trees in a categorial grammar to their corresponding pregroup
diagrams, which come with an implicit interpretation in C = Vect. This is based on a functor from closed
to rigid monoidal categories which appears in the CCG version of the DisCoCat framework [27].

CCG-to-DisCoCat word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
proper nouns Alice, Bob 𝑛 Alice,Bob ∈ Σ

transitive verbs loves (𝑛→ 𝑠) ← 𝑛 𝜆 𝑓 𝑔.(cup𝑁 ⊗ id𝑆 ⊗ cup𝑁 ) ◦ (𝑔 ⊗ loves⊗ 𝑓 )

𝑥

𝜆𝑦𝑥 · 𝐵

loves Bob

(𝑛→ 𝑠) ← 𝑛

𝑛

𝐴

Alice

𝑛

𝐿

𝑦

𝑥

𝜆𝑥 · 𝐿

𝐵

𝐴

𝐿

𝐵

𝑛→ 𝑠

𝑠

Remark. A similar trick of interpreting syntax trees as functions that return pregroup diagrams is also
used in the formalisation of Wittgenstein’s language games in terms of functors [12].

We can also formalise our toy example “very big car” where we define the image of our HO-
DisCoCat model 𝐹 : G→ Λ𝐷 as follows.

“very big” = “big big” word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
common nouns car 𝑛 car ∈ Σ

adjectives big 𝑛← 𝑛 𝜆𝑥.big◦ 𝑥
adverbs very (𝑛← 𝑛) ← (𝑛← 𝑛) 𝜆 𝑓 𝑥. 𝑓 𝑓 𝑥

Note that we have three different directions in which to compose diagrams:

1. left-to-right using the composition ◦𝑥𝑦𝑧 : (𝑥, 𝑦) × (𝑦, 𝑧) → (𝑥, 𝑧) which connects the output of one
diagram to the input of another,

2. top-to-bottom using the tensor ⊗𝑥𝑦𝑧𝑤 : (𝑥, 𝑦) × (𝑧,𝑤) → (𝑥𝑧, 𝑦𝑤) which concatenates two diagrams
side by side,

3. inside-out using the evaluation (𝑥, 𝑦) ×
[
(𝑥, 𝑦) → (𝑧,𝑤)

]
→ (𝑧,𝑤) which substitutes one diagram

for the free variable in another.
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Whereas standard DisCoCat model could play only with the first two directions, it is this extra di-
rection of inside-out composition that makes our higher-order DisCoCat models more flexible. In the
next section, we make this extra flexibility more explicit by adding it directly to the signature for our
diagrams.

4 Adverbs as operators on homsets

Moving away from our toy example to a more realistic model of language, we cannot assume that adverbs
can all be given an explicit formula like the one we chose for “very”. We propose to represent such
second-order3 processes as boxes with 𝑘 holes that can contain diagrams of a certain shape. Concretely,
we define a monoidal signature with holes:

Σ = (Σ0,Σ1,dom,cod,holes)

as a monoidal signature together with a function holes : Σ1→ (𝑇 ×𝑇)★ which assigns to each box ( 𝑓 :
𝑥→ 𝑦) ∈ Σ a list of pairs of types:

holes( 𝑓 ) =
(
(𝑧1,𝑤1), . . . , (𝑧𝑘 ,𝑤𝑘)

)
∈ (𝑇 ×𝑇)★

for the domain and codomain of the diagrams that can fit in its 𝑘 ∈ N holes. This is drawn as follows:

𝑓
𝑥 𝑦𝑧1 𝑤1 𝑧𝑘 𝑤𝑘. . .

We may now add some dedicated symbols to our set of generators for the cartesian closed category
Λ𝐷, i.e. the primitives 𝐷1 of our lambda calculus for diagrams.

𝐷1 (continued) symbol type
...

boxes with holes 𝑓 ∈ Σ (𝑧1,𝑤1) → · · · → (𝑧𝑘 ,𝑤𝑘) → (𝑥, 𝑦)

The arrows 𝑓 : (𝑧1,𝑤1) × · · ·× (𝑧𝑘 ,𝑤𝑘) → (𝑥, 𝑦) in Λ𝐷 are all the well-formed string diagrams where
the boxes themselves can contain well-formed string diagrams, again with 𝑘 boxes as free variables.
The closed monoidal functors [[−]] : Λ𝐷 → Set are precisely the monoidal categories C with a 𝑘-ary
operator on homsets for each box 𝑓 ∈ Σ:

[[ 𝑓 ]] : C(𝑧1,𝑤1) × · · · ×C(𝑧𝑘 ,𝑤𝑘) → C(𝑥, 𝑦)

Remark. A box with no holes is just a simple box; a nullary operator on homsets is just an element of
a homset, i.e. a morphism. Boxes with one hole and unary operators on homsets have also been called
bubbles, they were first introduced in [21] to denote the derivative of diagrams. As we will see in the
next section, they also allow to formalise negation in Peirce’s system beta. Boxes with a list of holes first
appeared under the name of quantum combs in [4]. These “open diagrams” have then been formalised
in terms of the coend calculus [22, 15].

3We could imagine going higher still and consider boxes with holes that can fit diagrams with holes themselves, i.e. operators
on operators on homsets. We stop at second-order because it is the limit of what we can draw with two-dimensional diagrams.
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We can now define the semantics of adverbs like “furiously” as boxes with one hole for a verb,
prepositions like “with” as boxes with two holes for nouns, etc.

HO-DisCoCat word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
nouns ideas 𝑛 𝐼 ∈ Σ

intransitive verbs sleep 𝑛→ 𝑠 𝜆𝑥.𝑆 ◦ 𝑥
adverbs furiously (𝑛→ 𝑠) → (𝑛→ 𝑠) 𝜆 𝑓 𝑥.𝐹 ( 𝑓 𝑥)

prepositions with (𝑛→ 𝑛) ← 𝑛 𝜆𝑥𝑦.𝑊 (𝑦, 𝑥)

𝑔𝑥𝐹𝜆𝑔𝑥·

furiously

𝐼

Ideas

𝑛

𝑥 𝑆𝜆𝑥·

sleep

𝑛→ 𝑠

𝑥𝐹𝜆𝑥·

(𝑛→ 𝑠) → (𝑛→ 𝑠)

𝑆

𝑛→ 𝑠

𝐼𝐹 𝑆

𝑠

Remark. Note how in the following example “concepts with attitude”, we are merely interpreting the
syntax tree as itself, represented in terms of nesting rather than branching. Indeed when a diagram has
no composition or tensor, but only inside-out nesting of boxes with holes, it is nothing more than a syntax
tree with operators on the nodes and homsets on the edges.
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𝑦 W𝜆𝑥𝑦·

with

𝑥
𝐶

Concepts

𝑛

𝐴

attitude

𝑛

𝜆𝑦·

(𝑛→ 𝑛) ← 𝑛

𝑛

𝑛→ 𝑛

𝐶 W 𝐴

𝑦 W 𝐴

Remark. Composition and tensor can themselves be thought of as binary operators on homsets, subject
to the axioms of monoidal categories: boxes with holes are all you need! This observation can be
formalised in terms of operads of wiring diagrams [26].

5 Peirce-Lambek-Montague semantics

In generalising Montague semantics and DisCoCat models, we are in fact going back to their common
ancestor: Peirce’s existential graphs, a formal graphical language of string diagrams for logic. Peirce’s
existential graphs come in three variants of increasing expressive power:

• System alpha, the fragment of system beta with no wires and only scalar boxes, is equivalent to
propositional logic and Boolean algebras.

• System beta is the variant we use in this work, it is equivalent to first-order logic.

• System gamma extends system beta with a second unary operator on homsets for the “contingent”
modality (i.e. “not necessary”) together with axioms that make it sound and complete for various
kinds of modal logics.

The translation between Peirce’s graphical notation and the traditional one is straightforward. Boxes
are predicates and wires are variables, which are implicitly existentially quantified. Tensor is interpreted
as conjunction and spiders as equality of variables. Thus, a scalar diagram with no input or output wires
represents a first-order logic formula with no free variables, which we take as our interpretation for
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sentences. A diagram with not input and one output wire 𝑁 is a formula with one free variable. We take
this as our interpretation for common nouns, i.e.

𝐹 (𝑠) = (1,1) and 𝐹 (𝑛) = (1, 𝑁)

Before we move on to noun phrases and determiners, let us look at a preliminary example taken from
Big Shaq’s novelty song title “Man’s Not Hot”, which we interpret as the formula ∃𝑥.man(𝑥) ∧¬hot(𝑥).

Man’s Not Hot word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
common noun Man’s 𝑛 (man : 1→ 𝑁) ∈ Σ

negation Not (𝑛→ 𝑠) ← 𝑎 𝜆 𝑓 𝑔.(¬ 𝑓 ) ◦𝑔
adjective Hot 𝑎 (hot : 𝑁→ 1) ∈ Σ

𝜆 𝑓 𝑔 · (¬ 𝑓 ) ◦𝑔 𝐻

Not Hot

(𝑛→ 𝑠) ← 𝑎 𝑎

𝑀

Man’s

𝑛

𝜆𝑔 ·

𝑛→ 𝑠

𝑠

𝐻𝑔

𝐻𝑀

Here we had to define the type 𝑎 for adjectives as atomic so that we could take 𝐹 (𝑎) = (𝑁,1) instead
of 𝐹 (𝑛→ 𝑠) = (1, 𝑁) → (1,1). Indeed, the unary operator for negation can act only on diagrams, not
diagram-valued functions. Suppose we had defined the meaning of “hot” in terms of post-composition
𝜆 𝑓 .hot◦ 𝑓 as in our previous example. Then the function for “not” would have had to extract the diagram
(𝑁,1) from the diagram-valued function (1, 𝑁) → (1,1). The only way to do this would be to apply the
function 𝜆𝑥.hot◦𝑥 to the identity diagram id𝑁 : (𝑁,𝑁), but that would be forbidden by its type. We need
dependent types to express the fact that post-composition by the effect hot : (𝑁,1) can take as input any
diagram (𝑥, 𝑁) and return a diagram of type (𝑥,1).

This is precisely the definition we use to model noun phrases, i.e.

𝐹 (𝑝) =
∏
𝑥

(𝑁,𝑥) → (1, 𝑥)

For example, the function 𝜆 𝑓 .man◦ 𝑓 for the noun phrase “a man” can take as input any diagram (𝑁,𝑥)
and return a state (1, 𝑥). In this way, we can apply it to an effect hot : (𝑁,1) and get a closed formula
∃𝑥.man(𝑥) ∧ hot(𝑥), but we can also keep the variable free by applying it to the identity. Finally, we
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can define the meaning 𝜆 𝑓 𝑔.𝑔( 𝑓 (id𝑁 )𝑇 ) of the copula “is”: it takes two noun phrases, applies one to
the identity diagram and transposes the result before feeding it to the other. Other verbs are given in the
same way, replacing the identity diagram id𝑁 by any predicate.

Peirce-Lambek-Montague word 𝑤 type 𝑡 meaning 𝐹 (𝑤→ 𝑡)
common nouns man 𝑛 (man : 1→ 𝑁) ∈ Σ

proper nouns Alice 𝑝 𝜆 𝑓 .Alice◦ 𝑓
adjectives big 𝑛← 𝑛 𝜆 𝑓 .spider2,1 ◦ (big⊗ 𝑓 )

determiners no 𝑝← 𝑛 𝜆 𝑓 𝑔.cut(𝑔 ◦ 𝑓 )
intransitive verbs sleeps 𝑝→ 𝑠 𝜆𝑃.𝑃(sleeps)

transitive verbs kills (𝑝→ 𝑠) ← 𝑝 𝜆𝑃𝑄.𝑄(𝑃(kills)𝑇 )
copula is (𝑝→ 𝑠) ← 𝑝 𝜆𝑃𝑄.𝑄(𝑃(id𝑁 )𝑇 )

𝑀

mortal

𝑓 𝑔𝜆 𝑓 𝑔 ·

a

𝑝← 𝑛 𝑛

𝐴 𝑓𝜆 𝑓 ·

Alice

𝑝

kills

(𝑝→ 𝑠) ← 𝑝

𝐾 )𝑇 )𝜆𝑃𝑄 · 𝑄(𝑃(

𝜆𝑄 ·𝑄(

𝑝→ 𝑠

𝐾 )

𝑀 𝑔𝜆𝑔 ·

𝑝

𝑀

𝐴 𝐾 𝑀

𝑠

See Appendix B for two extra examples.

Conclusion

Higher-order DisCoCat models are a generalisation of DisCoCat and Montague semantics where the
meaning of words is given by lambda terms which output string diagrams. We have given a formal
definition in terms of functors G→Λ𝐷 for G a categorial grammar and Λ𝐷 the cartesian closed category
generated by the language of string diagrams. We defined a concrete instance of our model where the
string diagrams are Peircean existential graphs: Peirce-Lambek-Montague semantics. Appendix A gives
an implementation of these models as DisCoPy [11] functors into the category of Python functions.

A natural next step would be to give experimental support for our higher-order DisCoCat models.
Another direction which has been developed recently [18] is to go from sentences to text, formalising
the DisCoCirc framework [7] in terms of diagram-valued higher-order functions.
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A Implementation

# Step 1: Define Formula as a subclass of frobenius.Diagram

from discopy import frobenius
from discopy.tensor import Dim, Tensor
from discopy.cat import Category, factory

@factory
class Formula(frobenius.Diagram):

ty_factory = frobenius.PRO # i.e. natural numbers as objects

def eval(self, size):
return frobenius.Functor(

ob=lambda _: Dim(size),
ar=lambda box: box.data,
cod=Category(Dim, Tensor[bool]))(self)

class Cut(frobenius.Bubble, Formula): pass
class Ligature(frobenius.Spider, Formula): pass
class Predicate(frobenius.Box, Formula): pass

Id, Formula.bubble_factory = Formula.id, Cut
Tensor[bool].bubble = lambda self, **_: self.map(lambda x: not x)

# Step 2: Parse natural language sentences using a categorial grammar

from discopy.grammar.categorial import Ty, Word, Eval

n, p, s = Ty('n'), Ty('p'), Ty('s') # noun, phrase and sentence

Alice = Word("Alice", p)
big, sleeps = Word("big", n << n), Word("sleeps", p >> s)
man, island = (Word(noun, n) for noun in ("man", "island"))
kills, _is = (Word(verb, (p >> s) << p) for verb in ("kills", "is"))
no, every, some = (Word(det, p << n) for det in ("no", "every", "some"))

Alice_kills_a_mortal = (Alice @ kills @ some @ man
>> p @ ((p >> s) << p) @ Eval(p << n)
>> p @ Eval((p >> s) << p) >> Eval(p >> s))

every_big_man_sleeps = (every @ big @ man @ sleeps
>> ((p << n) @ Eval(n << n) >> Eval(p << n))
@ (p >> s) >> Eval(p >> s))

no_man_is_an_island = (no @ man @ _is @ some @ island
>> Eval(p << n) @ ((p >> s) << p) @ Eval(p << n)
>> p @ Eval((p >> s) << p) >> Eval(p >> s))
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from random import choice

size = 42 # Generating a random interpretation to test our model
random_bits = lambda n=size: [choice([True, False]) for _ in range(n)]

is_killed_by = [random_bits() for _ in range(size)]
unary_predicates = is_Alice, is_man, is_island, is_big, is_sleeping = [

random_bits() for _ in range(5)]

K = Predicate("K", 1, 1, data=is_killed_by)
A, M, I, B, S = (Predicate(P, 0, 1, data)

for P, data in zip("AMIBS", unary_predicates))

# Step 3: Higher-order DisCoCat as a closed functor into Python functions

from typing import Callable

from discopy import closed
from discopy.python import Function

F = closed.Functor(
cod=Category(tuple[type, ...], Function),
ob={s: Formula, n: Formula, p: Callable[[Formula], Formula]},
ar={Alice: lambda: lambda f: A >> f,

sleeps: lambda: lambda P: P(S.dagger()),
man: lambda: M, island: lambda: I,
big: lambda: lambda f: f @ B >> Ligature(2, 1, frobenius.PRO(1)),
_is: lambda: lambda P: lambda Q: Q(P(Id(1)).dagger()),
kills: lambda: lambda P: lambda Q: Q(P(K).dagger()),
no: lambda: lambda f: lambda g: (f >> g).bubble(),
some: lambda: lambda f: lambda g: f >> g,
every: lambda: lambda f: lambda g: (f >> g.bubble()).bubble()})

evaluate = lambda sentence: bool(F(sentence)().eval(size))

assert evaluate(Alice_kills_a_mortal) == any(
is_man[y] and is_killed_by[y][x] and is_Alice[x]
for x in range(size) for y in range(size))

assert evaluate(every_big_man_sleeps) == all(
not (is_big[x] and is_man[x]) or is_sleeping[x] for x in range(size))

assert evaluate(no_man_is_an_island) == all(
not is_man[x] or not is_island[x] for x in range(size))

This implementation is also available as a notebook:

https://docs.discopy.org/en/main/notebooks/higher-order-discocat.html

https://docs.discopy.org/en/main/notebooks/higher-order-discocat.html
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B Extra examples

man

𝑛

𝑀

Every

𝑝← 𝑛

𝑓 𝑔𝜆 𝑓 𝑔 ·
𝐵

𝜆 𝑓 ·

big

𝑝→ 𝑠

𝑆𝜆𝑃 · 𝑃

𝑓

sleeps

𝐵

𝑛← 𝑛

𝑀

𝑛

𝑔𝜆𝑔 ·
𝐵

𝑀

𝑆
𝐵

𝑀

𝑠

𝑛

𝜆𝑃𝑄 ·

man is

𝑛 (𝑝→ 𝑠) ← 𝑝

𝑀

No

𝑝← 𝑛

𝑓 𝑔 𝐼

island

𝜆 𝑓 𝑔 · 𝑓 𝑔𝜆 𝑓 𝑔 ·

an

𝑀 𝑔𝜆𝑔 ·

𝐼 𝑔𝜆𝑔 ·

𝐼𝜆𝑄 · 𝑄( )

𝑀 𝐼

𝑝← 𝑛 𝑛

𝑝

𝑝→ 𝑛

𝑝

𝑛

𝑄(𝑃(id)𝑇 )
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