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Monoidal streams give semantics to signal flow diagrams over any base monoidal category. Over
the category of functions, they give rise to causal stream functions used in dataflow programming.
Over categories of probabilistic functions, they give rise to different kinds of controlled stochastic
processes. Here, we report on an implementation of monoidal streams in DisCoPy, the Python library
for computing with string diagrams. The tool allows to specify dataflow programs in the syntax of
Markov categories with delayed feedback. It then performs the semantic evaluation of these programs
by unrolling their time-evolution in the chosen semantic category. Example uses include computing
the Fibonacci sequence, sampling from a random walk or simulating quantum channels with memory.

Extended Abstract

DisCoPy [3] is a Python toolkit for computing with string diagrams, a graphical calculus for representing
sequential and parallel composition of processes. The library allows for string diagrams to be defined
either as algebraic formulae or as Python programs. They can then be plotted, compared, rewritten and
evaluated as code, be it for a quantum circuit, a probabilistic program or a neural network. In many cases
however, we are not interested in one fixed process but in a family of processes, e.g. circuits indexed by
the size of their input or communication protocols indexed by a discrete time step.

Monoidal streams [4] are infinite families of processes where each process may depend on the output
of the previous one. Formally, for a symmetric monoidal category C and three countable sequences of
objects 𝑋,𝑌, 𝑍 ∈ Ob(C)N we define Stream(C) (𝑋,𝑌, 𝑍) =C(𝑋0⊗𝑍0,𝑌0⊗𝑍1) ×Stream(C) (𝑋+,𝑌+, 𝑍+)
i.e. a monoidal stream1 𝑓 : 𝑋 → 𝑌 with memory( 𝑓 ) = 𝑍 is a process now( 𝑓 ) : 𝑋0 × 𝑍0 → 𝑌0 × 𝑍1 and
a monoidal stream later( 𝑓 ) : 𝑋+ → 𝑌+ with memory(later( 𝑓 )) = 𝑍+ = (𝑍1, 𝑍2, . . . ). This gives a
symmetric monoidal category Stream(C) (𝑋,𝑌 ) =∐

𝑍∈Ob(𝐶 )N Stream(C) (𝑋,𝑌, 𝑍) where:

• 𝑋 ⊗𝑌 = (𝑋0 ⊗𝑌0, 𝑋1 ⊗𝑌1, . . . ) and memory( 𝑓 ◦𝑔) = memory( 𝑓 ⊗ 𝑔) = memory( 𝑓 ) ⊗ memory(𝑔)

• now( 𝑓 ◦𝑔) and now( 𝑓 ⊗ 𝑔) are given by the following composition in C:
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1Here we define intentional streams which can later be quotiented by extensional and observational equivalence.
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• later( 𝑓 ◦𝑔) = later( 𝑓 ) ◦later(𝑔) and later( 𝑓 ⊗ 𝑔) = later( 𝑓 ) ⊗ later(𝑔)

The category of monoidal streams comes with a delayed feedback, [6] i.e. an endofunctor 𝛿 called
delay and an operation from 𝑓 : 𝑋 ⊗ 𝛿(𝑍) → 𝑌 ⊗ 𝑍 to feedback𝑍 ( 𝑓 ) : 𝑋 → 𝑌 which satisfies all the
axioms of a traced monoidal category [5] except yanking, i.e. in general the feedback of a swap is not
the identity.

≠

Thus, we can take monoidal functors from the free category with delayed feedback over a monoidal
signature (where the morphisms are string diagrams with feedback loops) to the category of monoidal
streams. In effect, we are unrolling the feedback loop:
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When we take C = Set the category of sets and functions, we get an implementation of dataflow
programming. For instance, in Appendix A we implement the Fibonacci sequence as a feedback diagram
together with a functor into the category of monoidal streams of Python functions. DisCoPy implements
linear type systems inside of Python which follow the hierarchy of graphical languages for monoidal
categories [8]. That is, it can either prevent variable copying and deleting or make it explicit as structural
morphisms in a copy-discard category [2]. In particular, this allows to implement streams of probabilistic
processes e.g. in C = Stoch the category of measurable spaces and Markov kernels. This gives an
implementation of probabilistic dataflow programming which we showcase in Appendix B.

Another natural application would be to build upon the quantum computing features of DisCoPy [7]
to implement quantum dataflow programming [1]. We also plan to develop heuristics to simplify dataflow
programs via string diagram rewriting based on DisCoPy’s hypergraph data structure.
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A The Fibonacci sequence as a feedback diagram

from discopy.feedback import *

Diagram.use_hypergraph_equality = True

X = Ty('X')
fby, wait = FollowedBy(X), Swap(X, X.d).feedback()
zero, one = Box('0', Ty(), X), Box('1', Ty(), X)
copy, plus = Copy(X), Box('+', X @ X, X)

@Diagram.feedback
@Diagram.from_callable(X.d, X @ X)
def fib(x):

x = fby(zero.head(), plus.d(
fby.d(one.head.d(), wait.d(x)), x))

return (x, x)

assert fib == (copy.d >> one.head.d @ wait.d @ X.d
>> fby.d @ X.d
>> plus.d
>> zero.head @ X.d
>> fby >> copy).feedback()

F = Functor(
ob={x: int},
ar={zero: lambda: 0,

one: lambda: 1,
plus: lambda x, y: x + y},

cod=stream.Category(python.Ty, python.Function))

assert F(fib).unroll(10).now() == (0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
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B A random walk as a feedback diagram

from random import choice, seed; seed(420)
from discopy import stream, python
from discopy.feedback import *

x, fby = Ty('x'), FollowedBy(Ty('x'))
zero, rand, plus = Box('0', Ty(), x), Box('rand', Ty(), x), Box('+', x @ x, x)

@Diagram.feedback
@Diagram.from_callable(x.d, x @ x)
def walk(x0):

x1 = plus.d(rand.d(), x0)
x2 = fby(zero.head(), x1)
return (x2, x2)

F = Functor(
ob={x: int},
ar={zero: lambda: 0,

rand: lambda: choice([-1, +1]),
plus: lambda x, y: x + y},

cod=stream.Category(python.Ty, python.Function))

assert F(walk).unroll(10).now() == [0, -1, 0, 1, 2, 1, 0, -1, 0, 1]
assert F(walk).unroll(10).now() == [0, -1, 0, 1, 2, 1, 2, 3, 2, 1]
assert F(walk).unroll(10).now() == [0, 1, 0, 1, 0, -1, 0, -1, 0, -1]
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