
Submitted to:
ACT 2023

© A. Toumi, R. Yeung, B. Poór & G. de Felice
This work is licensed under the
Creative Commons Attribution License.

Monoidal Streams and Probabilistic Dataflow with DisCoPy

Alexis Toumi Richie Yeung Boldizsár Poór Giovanni de Felice
Quantinuum – Quantum Compositional Intelligence

17 Beaumont street, OX1 2NA Oxford, UK
firstname@discopy.org

Monoidal streams give semantics to signal flow diagrams over any base monoidal category. Over
the category of functions, they give rise to causal stream functions used in dataflow programming.
Over categories of probabilistic functions, they give rise to different kinds of controlled stochastic
processes. Here, we report on an implementation of monoidal streams in DisCoPy, the Python library
for computing with string diagrams. The tool allows to specify dataflow programs in the syntax of
Markov categories with delayed feedback. It then performs the semantic evaluation of these programs
by unrolling their time-evolution in the chosen semantic category. Example uses include computing
the Fibonacci sequence, sampling from a random walk or simulating quantum channels with memory.

Extended Abstract

DisCoPy [3] is a Python toolkit for computing with string diagrams, a graphical calculus for representing
sequential and parallel composition of processes. The library allows for string diagrams to be defined
either as algebraic formulae or as Python programs. They can then be plotted, compared, rewritten and
evaluated as code, be it for a quantum circuit, a probabilistic program or a neural network. In many cases
however, we are not interested in one fixed process but in a family of processes, e.g. circuits indexed by
the size of their input or communication protocols indexed by a discrete time step.

Monoidal streams [4] are infinite families of processes where each process may depend on the output
of the previous one. Formally, for a symmetric monoidal category C and three countable sequences of
objects 𝑋,𝑌, 𝑍 ∈ Ob(C)N we define Stream(C) (𝑋,𝑌, 𝑍) =C(𝑋0⊗𝑍0,𝑌0⊗𝑍1) ×Stream(C) (𝑋+,𝑌+, 𝑍+)
i.e. a monoidal stream1 𝑓 : 𝑋 → 𝑌 with memory(𝑓) = 𝑍 is a process now(𝑓) : 𝑋0 × 𝑍0 → 𝑌0 × 𝑍1 and
a monoidal stream later(𝑓) : 𝑋+ → 𝑌+ with memory(later(𝑓)) = 𝑍+ = (𝑍1, 𝑍2, . . .). This gives a
symmetric monoidal category Stream(C) (𝑋,𝑌) =∐

𝑍∈Ob(𝐶)N Stream(C) (𝑋,𝑌, 𝑍) where:

• 𝑋 ⊗𝑌 = (𝑋0 ⊗𝑌0, 𝑋1 ⊗𝑌1, . . .) and memory(𝑓 ◦𝑔) = memory(𝑓 ⊗ 𝑔) = memory(𝑓) ⊗ memory(𝑔)

• now(𝑓 ◦𝑔) and now(𝑓 ⊗ 𝑔) are given by the following composition in C:

f

g

x0

y0

z0

m0 m2

m3m1

f g

x0 y0 m0 m2

y0 m1 m3z0

1Here we define intentional streams which can later be quotiented by extensional and observational equivalence.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Monoidal Streams and Probabilistic Dataflow with DisCoPy

• later(𝑓 ◦𝑔) = later(𝑓) ◦later(𝑔) and later(𝑓 ⊗ 𝑔) = later(𝑓) ⊗ later(𝑔)

The category of monoidal streams comes with a delayed feedback, [6] i.e. an endofunctor 𝛿 called
delay and an operation from 𝑓 : 𝑋 ⊗ 𝛿(𝑍) → 𝑌 ⊗ 𝑍 to feedback𝑍 (𝑓) : 𝑋 → 𝑌 which satisfies all the
axioms of a traced monoidal category [5] except yanking, i.e. in general the feedback of a swap is not
the identity.

≠

Thus, we can take monoidal functors from the free category with delayed feedback over a monoidal
signature (where the morphisms are string diagrams with feedback loops) to the category of monoidal
streams. In effect, we are unrolling the feedback loop:

x

z.d

y z

f ↦→

x0 x1 x2

y0 z0

y1 z1

y2 z2

f0

f1

f2

When we take C = Set the category of sets and functions, we get an implementation of dataflow
programming. For instance, in Appendix A we implement the Fibonacci sequence as a feedback diagram
together with a functor into the category of monoidal streams of Python functions. DisCoPy implements
linear type systems inside of Python which follow the hierarchy of graphical languages for monoidal
categories [8]. That is, it can either prevent variable copying and deleting or make it explicit as structural
morphisms in a copy-discard category [2]. In particular, this allows to implement streams of probabilistic
processes e.g. in C = Stoch the category of measurable spaces and Markov kernels. This gives an
implementation of probabilistic dataflow programming which we showcase in Appendix B.

Another natural application would be to build upon the quantum computing features of DisCoPy [7]
to implement quantum dataflow programming [1]. We also plan to develop heuristics to simplify dataflow
programs via string diagram rewriting based on DisCoPy’s hypergraph data structure.

A. Toumi, R. Yeung, B. Poór & G. de Felice 3

References
[1] Titouan Carette, Marc de Visme & Simon Perdrix (2021): Graphical Language with Delayed Trace: Picturing

Quantum Computing with Finite Memory. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), pp. 1–13, doi:10.1109/LICS52264.2021.9470553. Available at https://ieeexplore.
ieee.org/abstract/document/9470553.

[2] Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian Inversion via String Diagrams. Mathematical
Structures in Computer Science 29(7), pp. 938–971, doi:10.1017/S0960129518000488. arXiv:1709.00322.

[3] Giovanni de Felice, Alexis Toumi & Bob Coecke (2020): DisCoPy: Monoidal Categories in Python. In:
Proceedings of the 3rd Annual International Applied Category Theory Conference, ACT, 333, EPTCS,
doi:10.4204/EPTCS.333.13.

[4] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, Asso-
ciation for Computing Machinery, New York, NY, USA, pp. 1–14, doi:10.1145/3531130.3533365. Available
at https://doi.org/10.1145/3531130.3533365.

[5] André Joyal, Ross Street & Dominic Verity (1996): Traced Monoidal Categories. Math-
ematical Proceedings of the Cambridge Philosophical Society 119(3), pp. 447–468,
doi:10.1017/S0305004100074338. Available at https://www.cambridge.org/core/journals/
mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/
traced-monoidal-categories/2BE85628D269D9FABAB41B6364E117C8.

[6] P. Katis, Nicoletta Sabadini & Robert F. C. Walters (2002): Feedback, Trace and Fixed-Point Semantics.
RAIRO - Theoretical Informatics and Applications 36(2), pp. 181–194, doi:10.1051/ita:2002009. Available at
https://www.rairo-ita.org/articles/ita/abs/2002/02/ita0217/ita0217.html.

[7] Alexis Toumi, Giovanni de Felice & Richie Yeung (2022): DisCoPy for the Quantum Computer Scientist.
QPL. arXiv:2205.05190.

[8] Alexis Toumi, Richie Yeung, Boldizsár Poór & Giovanni de Felice (2023): DisCoPy: The Hierarchy of Graph-
ical Languages in Python, doi:10.48550/arXiv.2311.10608. arXiv:2311.10608.

https://doi.org/10.1109/LICS52264.2021.9470553
https://ieeexplore.ieee.org/abstract/document/9470553
https://ieeexplore.ieee.org/abstract/document/9470553
https://doi.org/10.1017/S0960129518000488
https://arxiv.org/abs/1709.00322
https://doi.org/10.4204/EPTCS.333.13
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1017/S0305004100074338
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/traced-monoidal-categories/2BE85628D269D9FABAB41B6364E117C8
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/traced-monoidal-categories/2BE85628D269D9FABAB41B6364E117C8
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/traced-monoidal-categories/2BE85628D269D9FABAB41B6364E117C8
https://doi.org/10.1051/ita:2002009
https://www.rairo-ita.org/articles/ita/abs/2002/02/ita0217/ita0217.html
https://arxiv.org/abs/2205.05190
https://doi.org/10.48550/arXiv.2311.10608
https://arxiv.org/abs/2311.10608

4 Monoidal Streams and Probabilistic Dataflow with DisCoPy

A The Fibonacci sequence as a feedback diagram

from discopy.feedback import *

Diagram.use_hypergraph_equality = True

X = Ty('X')
fby, wait = FollowedBy(X), Swap(X, X.d).feedback()
zero, one = Box('0', Ty(), X), Box('1', Ty(), X)
copy, plus = Copy(X), Box('+', X @ X, X)

@Diagram.feedback
@Diagram.from_callable(X.d, X @ X)
def fib(x):

x = fby(zero.head(), plus.d(
fby.d(one.head.d(), wait.d(x)), x))

return (x, x)

assert fib == (copy.d >> one.head.d @ wait.d @ X.d
>> fby.d @ X.d
>> plus.d
>> zero.head @ X.d
>> fby >> copy).feedback()

F = Functor(
ob={x: int},
ar={zero: lambda: 0,

one: lambda: 1,
plus: lambda x, y: x + y},

cod=stream.Category(python.Ty, python.Function))

assert F(fib).unroll(10).now() == (0, 1, 1, 2, 3, 5, 8, 13, 21, 34)

1

fby

+

0

fby

A. Toumi, R. Yeung, B. Poór & G. de Felice 5

B A random walk as a feedback diagram

from random import choice, seed; seed(420)
from discopy import stream, python
from discopy.feedback import *

x, fby = Ty('x'), FollowedBy(Ty('x'))
zero, rand, plus = Box('0', Ty(), x), Box('rand', Ty(), x), Box('+', x @ x, x)

@Diagram.feedback
@Diagram.from_callable(x.d, x @ x)
def walk(x0):

x1 = plus.d(rand.d(), x0)
x2 = fby(zero.head(), x1)
return (x2, x2)

F = Functor(
ob={x: int},
ar={zero: lambda: 0,

rand: lambda: choice([-1, +1]),
plus: lambda x, y: x + y},

cod=stream.Category(python.Ty, python.Function))

assert F(walk).unroll(10).now() == [0, -1, 0, 1, 2, 1, 0, -1, 0, 1]
assert F(walk).unroll(10).now() == [0, -1, 0, 1, 2, 1, 2, 3, 2, 1]
assert F(walk).unroll(10).now() == [0, 1, 0, 1, 0, -1, 0, -1, 0, -1]

rand

0 +

fby

	A The Fibonacci sequence as a feedback diagram
	B A random walk as a feedback diagram

