
Submitted to:
ACT 2024

© D. Stein & M. Széles
This work is licensed under the
Creative Commons Attribution License.

Combs, Causality and Contractions in Atomic Markov
Categories

Dario Stein Márk Széles
Radboud University Nijmegen, The Netherlands

{dario.stein,mark.szeles}@ru.nl

We present a counterexample showing that Markov categories with conditionals (such as BorelStoch)
need not validate a natural scheme of axioms which we call contraction identities. These identities
hold in every traced monoidal category, so in particular this shows that BorelStoch cannot be embed-
ded in any traced monoidal category. We remedy this under the additional assumption of atomicity:
Atomic Markov categories validate all contraction identities, and furthermore admit a notion of trace
defined for non-signalling morphisms. We conclude that atomic Markov categories admit an intrinsic
calculus of combs without having to assume an embedding into compact-closed categories.

1 Introduction

Markov categories with conditionals have emerged as a general and powerful framework for studying
stochastic processes and notions such as conditioning and independence in an abstract way that general-
izes reasoning in graphical models (e.g. [4, 11, 5, 8, 9, 15, 21]). An important challenge is to understand
the equational theory of such categories: assuming some equation or factorization holds, which further
equations can be derived? This is crucial a reasoning tool, for example in causal inference: see [16] for
a derivation of Pearl’s front-door adjustment in such categorical terms.

Such problems are nontrivial because the existence of conditionals implies a range of non-obvious
quasi-identities1, such as the positivity and causality axioms [6] or that isomorphisms are deterministic:

f ◦g = idY ∧g◦ f = idX ⇒ ∆Y ◦ f = ( f ⊗ f )◦∆X

In this work, we are interested in a particular schema of implications which we call contraction identities.
A simple instance looks as follows:

f1

ν

X

X

Y

f2

ν

X

X

Y

= ⇒
f1

ν

Y

f2

ν

Y

=
(1)

Every contraction identity is formed by connecting an outgoing wire (here X) to an incoming one and
pulling the strings tight. This must be done in an acyclic way to make sure the resulting diagram is
meaningful – we need to avoid genuine feedback loops. We will give the general, combinatorial definition
of the contraction scheme in (25) using the language of free Markov categories [10] and hypergraphs.

1i.e. implications between equations. we will speak of identities for brevity
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We show using a simple counterexample that (1) does not hold in the category BorelStoch, despite
it having conditionals. We remedy this under a common additional assumption called atomicity. A
Markov category is called atomic if ∆ ◦ p≪ p⊗ p holds for every morphism p. Common categories
such as FinStoch,Gauss and SetMulti are atomic, while Stoch,BorelStoch and categories modelling
fresh name generation are not. Our main theorem 27 states that atomic Markov categories with condi-
tionals satisfy all contraction equations, which gives us additional power for equational reasoning in such
categories. As we will discuss next, such categories admit a calculus of traces and combs.

Causal Traces A trace on a monoidal category C is an operator which assigns to every morphism
f : X⊗W →Y ⊗W a morphism trW

X ,Y ( f ) : X→Y which represents evaluating a feedback loop of W into
itself. We depict the trace operation as follows

f

X

Y

WtrW
X ,Y ( f ) =

X

Y

The trace satisfies a number of axioms which encode the desired properties of such a feedback operation
(see Appendix 7.2), and the graphical calculus reflects these [20]. We show that all contraction identi-
ties can be proved from the trace axioms (Proposition 26). For example in (1), we can obtain the the
consequent equation via the trace

f

ν

f

ν

Y
f

ν

=

f

ν

= =

As a consequence of our counterexample, BorelStoch cannot be embedded in any traced monoidal cat-
egory. We then establish the following converse result, in trying to obtain a canonical notion of trace on
an atomic Markov category. It is hopeless to attempt this for an arbitrary morphism f : X⊗W →Y ⊗W .
If however f satisfies the non-signalling condition, i.e. there exists a morphism fs such that

f fs

X

=

W

X

W

W
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this means the input W is not needed to compute the output W . So the feedback loop created by the
trace remains causal. Our central definition 4 states that every atomic Markov category with conditionals
admits a canonical notion of causal trace, that is a trace defined on non-signalling morphisms. We show
that this construction satisfies a restricted version of the trace axioms, and compare with the notion of
a partially traced category [12, 1]. The properties of the causal trace suffice to derive all contraction
identities (Propositions 26 and 27).

Combs Combs are a widely-used tool for studying decompositions of string diagrams into more flexi-
ble shapes, with applications for example in quantum theory [2] and causal inference [16]. A comb C of
type (A,A′)→ (B,B′) is roughly a diagram of type A→ A′ which features a hole of type B→ B′. This
hole can be filled by appropriate morphisms h, leading to a composite C[h]. This way, a comb describes
a second-order process and lends itself to be rendered in an evocative shape (see Figure 1).

hCC ⇝ C[h] =
B′

B

A

A′

A

A′ E ′

E

f

g

A

B′

B

A′

E
def

Figure 1: Left: Comb insertion (graphically), right: intensional presentation of a comb as a pair ⟨ f |g⟩

There are various inequivalent ways of formally defining what a comb is. An extensional definition is to
define a comb as a morphism A⊗B′→ A′⊗B in C which is non-signalling from B′ to B. An intensional
definition is as a pair of morphisms ⟨ f |g⟩ with f : A→ E⊗B and g : E⊗B′→ A′, under some kind of
equivalence relation. We review these notions in Section 5 following [13].

Relating the different definitions of combs to each other is tricky: To go from the extensional defini-
tion to comb insertion is an instance of a contraction identity:

f1

g1

=

f2

g2

⇒

f1

g1

=

f2

g2

(2)

For this reason, the theory of combs has commonly been developed in the setting of compact closed
categories. There, second-order processes can be reduced to first-order processes by bending wires, and
the various notions of comb are equivalent. The downside is that even when analyzing diagrams in a
Markov category C using combs, we must assume that it comes with an embedding into a compact
closed category (for example FinStoch ↪→Mat(R+)). Not only is this difficult for practical categories
(such an embedding category requires developing a theory of exact conditioning, e.g. [17, 23]), but our
counterexample shows that this is generally impossible in the absence of the axiomicity axiom: Identity
(2) is invalid in BorelStoch. We argue that causal traces are sufficient to develop an intrinsic theory of
combs. We prove that in every atomic Markov category with conditionals, the extensional and intensional
definitions of combs are equivalent.
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Contributions This work is a shared refinement of three different developments [14, 13, 7]. The major
starting point is [14], where the author develops a theory of causality and contraction. The statements
of their Lemma 4.2.5 and Theorem 4.2.6 have the same content as our Lemma 10 and Corollary 27, but
are proved under a different set of assumptions. Their work is built on the notion of universal dilations
in semicartesian categories. We specialize this to Markov categories, which allows us to refine the
monolithic notion of universal dilations into more modular pieces:

1. We recognize the role of the atomicity axiom, which has been introduced in [7]. Our theorems
are proven under the assumption of conditionals and atomicity, which are weaker than universal
dilations

2. our counterexample (5) gives a precise reason for the failure of universality in BorelStoch.

3. the combinatorics of the contraction identities are elegantly phrased using free Markov categories

4. Traces have been (purposefully) ignored in [14]. We make the notion of causal trace a central
element of our theory, which offers new proofs, and enables connections to the theory of combs
and compact closed categories

We then connect our theory to the different notions of combs compared in [13]. We generalize their
results significantly from the compact-closed case to a large family of Markov categories, which removes
the need to assume an embedding as done in [16]. We briefly return to the relationship between universal
dilations and combs in Proposition 33.

Acknowledgements We’d like to thank many people for fruitful discussions, in particular Dylan Braith-
waite, Tobias Fritz, Tomáš Gonda, Nicholas Gauguin Houghton-Larsen, and Nathaniel Virgo.

2 Atomic Markov Categories

We being by recalling the notion of atomicity in Markov categories, as well as the prerequisite notions
of almost sure equality and absolute continuity found in [7]. We assume that the reader is familiar with
monoidal Markov categories, but recall relevant definitions and notations in Appendix 7.1. Let C be a
Markov category.

Definition 1 (Almost sure equality – [7]). Given a morphism p : A→ X, we say f1, f2 : W ⊗X → Y are
p-almost surely equal (written f1 =p f2) if

p

f1

=

AW

Y X

p

f2

AW

Y X

Definition 2 (Absolute continuity – [7]). For two morphisms p : A→ X and q : B→ X, we say that p
is absolutely continuous with respect to q (written p≪ q), if f1 =q f2 implies f1 =p f2 for all f1, f2 :
W ⊗X → Y .

We note the quantification over arbitrary W which is stronger than earlier definitions (e.g. [5]). These
abstract notions capture the usual definitions of almost sure equality in our example categories (see [7,
Section 2.2]):
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1. in FinStoch, f1, f2 are p-almost surely equal if f1(y|x) = f2(y|x) for all x with p(x|a)> 0 for some
a ∈ A. We have p≪ q if supp(p)⊆ supp(q) where

supp(p) = {x ∈ X : ∃a ∈ A, p(x|a)> 0}

2. in BorelStoch, f1, f2 are p-almost surely equal if the set D = {x : f1(x) ̸= f2(x)} satisfies p(D|a) =
0 for all a ∈ A. We have p≪ q if for every every measurable subset S⊆ X , we have

(∀b ∈ B,q(S|b) = 0)⇒∀a ∈ A, p(S|a) = 0

Definition 3 (Atomicity – [7]). We call a morphism p : A→ X atomic if ∆X ◦ p≪ p⊗ p. We call the
Markov category C atomic if every morphism in it is atomic.

The following characterizations are known from [7], but we repeat them because they are instructive.
Example 4. For every morphism p : A→ X in FinStoch, we have

(p⊗ p)(x1,x2|a1,a2) = p(x1|a1)p(x2|a2), (∆X ◦ p)(x1,x2|a) =

{
p(x1|a), x1 = x2

0, otherwise

so supp(∆X ◦ p)⊆ supp(p⊗ p). That is FinStoch is atomic.
The name atomicity points to the fact that this property fails for distributions that are atomless, such as
the Lebesgue measure. For a morphism p : A→ X in BorelStoch, we define its set of atoms A ⊆ X as

A = {x ∈ X : ∃a ∈ A, p({x}|a)> 0}

We call p completely atomic if p(A |a) = 1 for all a ∈ A, i.e. its probability mass is fully concentrated on
its atoms. It is shown in [7, Theorem 3.2.7] that p is atomic in the sense of Definition 3 if and only if it
is completely atomic. It is easy to see that the Lebesgue measure ν on the interval [0,1] is not atomic, as
its set of atoms A is empty. We will now give a concrete counterexample, showing that ∆◦ν ̸≪ ν⊗ν .
Example 5. BorelStoch is not atomic.

Proof. Let X = [0,1] and ν : I → X be the Lebesgue measure, and consider the measurable functions
ff,eq : X⊗X →{0,1} which are defined as follows

ff(x,y) = 0, eq(x,y) =

{
1, x = y
0, otherwise

Then we have ff =ν⊗ν eq, because intuitively, if X ,Y ∼ ν then Pr(eq(X ,Y ) = 0) = 1. Formally,

ν ν

eq

=

ν ν 0

=

ν ν

ff

However ff ̸=∆◦ν eq, because ff(X ,X) is constantly 0, while eq(X ,X) is constantly 1.

ν

eq

=

ν

eq

=

ν

1
=

ν 1
ν

ff
=

ν

0
=

ν 0

̸=

This shows ∆◦ν ̸≪ ν⊗ν .
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As a simple corollary, we have

Example 6. BorelStoch does not satisfy the contraction identity (1) from the introduction.

Proof.

ff

ν

eq

ν

= but
ff

ν

eq

ν

̸=

This type of counterexample can easily be adapted to other Markov categories which feature atomless
distributions, such as quasi-Borel spaces or nominal sets ([22]). As we will see, such counterexamples
are impossible when the category in question is atomic.

We remark that the notion of atomicity is dependent on the surrounding category. The Gaussian
distribution N (0,1) is non-atomic in BorelStoch, but it is atomic in the subcategory Gauss. More gen-
erally, the category TychStoch of Tychonoff spaces and continuous Markov kernels is atomic [7], despite
featuring atomless measures: Note that the map eq from the counterexample 6 fails to be continuous.

We return to the abstract properties of atomic morphisms

Proposition 7. In a Markov category C, the following morphisms p are always atomic

1. morphisms of ‘full support’, in the sense that f1 =p f2 implies f1 = f2.

2. deterministic morphisms

3. if C is satisfies the causality axiom, g is deterministic, and p is atomic, then the composite g◦ p is
atomic

Note that atomic morphisms are generally not closed under composition, and atomicity cannot be checked
on points (see Example 36). We now show that the atomicity axiom plus conditionals imply a basic con-
traction identity. These will be sufficient to prove all of them (3.1). We need the following technical
notion to rule out pathological cases:

Definition 8. An object W of a Markov category is called cancellable if delW ⊗ f1 = delW ⊗ f2 implies
f1 = f2. We call the Markov category cancellative if every object W is cancellable.

This condition is called normality in [14]. In practical examples, most objects are cancellable, for ex-
ample any object that admits a state I→W . In FinStoch and BorelStoch, every object except W = /0 is
cancellable. We may formally consider sub-Markov categories FinStoch∗,BorelStoch∗ on non-empty
objects, or simply assume cancellability on the fly when needed. We will go with the latter approach.

Lemma 9. In an atomic Markov category, we have for all f1, f2 : X →W and g1,g2 : W ⊗X ⊗W → Y
that

f1

g1

Y W

XW

f1

g1

Y

X

f2

g2

Y W

XW

= ⇒ f2

g2

Y

X

=
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Proof. In the appendix.

Lemma 10. Let C be an atomic Markov category with conditionals. Then

f1

g1

=

f2

g2

⇒

f1

g1

=

f2

g2

Proof. In the appendix.

Note that this is precisely the statement of Lemma 4.2.5 of [14] in our setting.

3 Causal Traces

Definition 11. We say a morphism f : X ⊗W ′→ Y ⊗W is non-signalling (from W ′ to W) if there exists
a morphism fs : X →W such that

f fs

X

=

W

X

W

W ′W ′

This captures the intuition that in order to determine W, we don’t need access to W ′ (but we do to
compute the joint output Y ).

For non-signalling morphisms, we can hope to define a canonical trace as follows:

Proposition 12. Let C be a Markov category with conditionals. Then f : X ⊗W ′ → Y ⊗W is non-
signalling if and only if it can be written in the following form

f fs

fp
Y

X

=

W ′

W

WY

X W ′

(3)

In this article, we will call the form (3) a disintegration of f . Note that while fs is unique (assuming
cancellability), fp is not.

Definition 13. Let C be an atomic Markov category with conditionals, and f : X ⊗W → Y ⊗W be
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non-signalling. Then we define the causal trace trW ( f ) : X → Y in terms of any disintegration as

f fs

fp

Y

X

W =
fs

fp

=
def (4)

By Lemma 10, this definition does not depend on the choice of disintegration.

The definition of the causal trace is unique in that it is forced via the trace axiom. For a non-signalling
morphism f , any trace must send f to (4). The special role of non-signalling is also reflected in the
following proposition

Proposition 14. Let C be a traced semicartesian monoidal category. If f : X⊗W →Y ⊗W is a discard-
able morphism, then trW ( f ) : X → Y need not be discardable, unless f is non-signalling.

Proof. In the appendix.

We spell out concretely how to compute the trace in FinStoch:

Example 15. Let f : X ⊗W → Y ⊗W be a non-signalling morphism in FinStoch, and assume W ̸= /0.
As we can compute the causal trace using any embedding into a traced category, such as the usual
embedding into Mat(R). There we have

trW ( f )(y|x) = ∑
w

f (y,w|x,w)

This will not define a normalized probability kernel for a general f . However, if f is non-signalling then
the sum ∑y f (y,w|x,w′) does not depend on w′. Hence by fixing any w0 ∈W, we can prove normalization

∑
y

trW f (y|x) = ∑
y

∑
w

f (y,w|x,w) = ∑
w

∑
y

f (y,w|x,w) = ∑
w

∑
y

f (y,w|x,w0) = 1

from the normalization of f .

In the language of [24], we can see a non-signalling morphism as a degenerate kind of automaton whose
future states don’t depend on the current states. The causal trace takes a fixed point by re-using identical
copies of states.

3.1 Laws of the Causal Trace

We now state and prove a list of properties which the causal trace enjoys. We will compare it with the
notion of partial trace discussed by [12, 1]. This requires us to postulate a class of traceable morphism,
which we choose as the non-signalling ones, TX ,Y

W = { f : X ⊗W → Y ⊗W | f is non-signalling}. The
axioms marked with a star∗ are weaker than the corresponding axioms for partial traces, while the ones
without star are identical to the partial trace axioms. All proofs are given in the Appendix (Section 7.4).
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Proposition 16 (Tightening – naturality in X ,Y ). If f : X⊗W →Y ⊗W is traceable, then (h⊗ idW )◦ f ◦
(g⊗ idW ) : X ′⊗W → Y ′⊗W is traceable and

trW ((h⊗ idW )◦ f ◦ (g⊗ idW )) = h◦ trW ( f )◦g (5)

Proposition 17 (Sliding∗ – dinaturality in W ). Let f : X⊗W ′→Y⊗W and g : W →W ′. If f is traceable,
then so are (idY ⊗g)◦ f and f ◦ (idX ⊗g), and

trU((idY ⊗g)◦ f ) = trV ( f ◦ (idX ⊗g)) (6)

Proposition 18 (Vanishing (Coherence with I)). All g : X⊗ I→ Y ⊗ I are traceable, and trI(g) = g.

Proposition 19 (Associativity∗ (Coherence with ⊗)). If f : X ⊗ (U ⊗V )→ Y ⊗ (U ⊗V ) is traceable,
then so are f : (X⊗U)⊗V → (Y ⊗U)⊗V and trV ( f ) : X⊗U → Y ⊗U, and

trU⊗V ( f ) = trU(trV ( f ))

Proposition 20 (Superposition (Strength)). If f : X⊗W →Y⊗W is traceable, so is g⊗ f : X ′⊗X⊗W →
Y ′⊗Y ⊗W, and

trW (g⊗ f ) = g⊗ trW ( f ) (7)

Proposition 21 (Yanking). The symmetry is traceable, and

trW (swapW,W ) = idW (8)

4 Causal Traces in Free Markov Categories

In this section, we show that free Markov categories also have causal traces, and that interpretations of
Markov string diagrams in cancellative, atomic Markov categories C with conditionals preserve causal
traces. This is an analogue of Theorem 4.2.13 of [14], albeit in a different setting (Markov categories
with extra structure instead of universal theories). In particular, we obtain that all contraction identities
are satisfied. That is, in the language of [14], the causal trace of a non-signalling morphism in C can be
computed via any stencil representation.

We use free Markov categories as constructed in [10]. Recall that every monoidal signature Σ gives
rise to a finite hypergraph which we also denote by Σ. A labelling of wires and boxes in a hypergraph
G is a hypergraph homomorphism to Σ. Finite hypergraphs and their homomorphisms form a category

FinHyp. A Markov string diagram is a cospan m i−→ G
j←− n with discrete hypergraphs m,n, satisfying

the conditions of acyclicity, left monogamy, and having no eliminable boxes. The setting is recalled in
more detail in Appendix 7.5.

Proposition 22 ([10]). The free Markov category FreeMarkovΣ over a monoidal signature Σ can be
constructed as follows:

1. Objects are hypergraph homomorphisms m→ Σ, i.e. lists of types in Σ.

2. Morphisms are (isomorphism classes of) Markov string diagrams, which compose by pushout and
subsequent normalisation (elimination of eliminable boxes).

3. The tensor is given by coproduct.

To ease notation we will write f : n→ m for a morphism f : (m→ Σ)→ (n→ Σ), thus leaving the
labelling implicit. It is straightforward to verify the following:
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Proposition 23. A morphism f : n⊗w→ m⊗w in FreeMarkovΣ is non-signalling if and only if there
are no directed paths from input ports in w to output ports in w.

We now show that FreeMarkovΣ has causal traces, by describing the appropriate combinatorial contrac-
tion as a contraction of hypergraphs: Let f : m⊗w→ n⊗w be non-signalling, represented by the cospan

m+w
[i,i′]−−→ G

[ j, j′]←−− n+w. Graphically, forming the contraction amounts to gluing the wires connected
to matching input and output ports in w, thus making them inner wires (not connected to any input or
output port), and normalizing. See Figure 2 for an illustration. The need for normalisation is apparent
from the following example:

f

A B

More formally, we define the contracted string diagram contrw( f ) : m→ n as the normalization of the
resulting cospan in the following diagram, where the central square is a pushout:z

contrw(G) G n

G w

m w+w

[id,id][i′, j′]

⌟

i

j

We verify that the resulting string diagram is acyclic and left monogamous. Acyclicity follows from the
non-signalling assumption. For left monogamy, observe that after gluing the only affected wires are the
one connected to ports in w. Every wire connected to an output port is either also connected to an input
port, or is an output of a box. In both cases, left monogamy is preserved, for if a wire was both connected
to an input and an output port, the input port cannot be in w by the acyclicity assumption.

f

g

h

=

f

g

h f

g h

0 1 2

0 1 2

⇝
f

g

h

0 1

0 1

Figure 2: An example of computing the contraction in the hypergraph representation. (Left) The causal
trace we want to compute (Right) Hypergraph representations. Black dots represent wires, white dots
ports; the red ports are being contracted.

Proposition 24. The contraction operation contr satisfies the causal trace axioms (as stated in Propo-
sitions 16 - 21) for FreeMarkovΣ.
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Proof. Vanishing, strength, and yanking are immediate. The other axioms require bit more caution
around the normalization step that occurs in sequential composition and contraction. We can use the
fact that normalization of string diagrams is an identity-on-objects gs-monoidal functor FreeGSΣ →
FreeMarkovΣ from the free gs-monoidal category FreeGS ([10], Lemma 6.5) to solve these cases.

We finally are ready to formally define our notion of contraction identities.

Definition 25. A Markov category C is said to satisfy all contraction identities if for all C1,C2 : m⊗
w→ n⊗w non-signalling in a free Markov category over any signature Σ, and all interpreting functors
J−K : FreeMarkovΣ→ C, we have that if JC1K = JC2K, then Jcontrw(C1)K = Jcontrw(C2)K.

This definition is analogous to the ‘notions of contraction’ in [14].We can show by induction that if
C already has causal traces, then any Markov functor from FreeMarkovΣ must preserve them:

Proposition 26. Let C have causal traces, and let f : m⊗w→ n⊗w in FreeMarkovΣ, J−K : FreeMarkovΣ→
C an interpreting functor. Then if f is non-signalling, so is J f K, and Jcontrw( f )K = trJwK(J f K).

Proof. The first point is clear. For the second point we proceed by strong induction on w. If w = 0, then
f is of the form g⊗ idI . We are done by vanishing (18).

Now assume the statement for all c < k+1. Let f : n+ k+1→ m+ k+1.

trJk+1K(J f K) = trJkK(trJ1K(J f K)) = trJkK(Jcontr1( f )K = Jcontrk(contr1( f ))K = Jcontrk+1( f )K

We applied the induction hypothesis twice, and associativity (19) twice.

As a direct consequence of the previous proposition we obtain:

Corollary 27. Every cancellable atomic Markov categories with conditionals satisfies all contraction
identities.

5 Calculus of Combs

We recall various definitions of combs and refer to [13, 18, 19] for reference.

Definition 28 (Comb). Let C be a symmetric monoidal category. A comb of type (A,A′)→ (B,B′) is a
triple C = ⟨ f |g⟩E consisting of an object E and morphisms f : A→ E⊗B and g : E⊗B′→ A′. We will
omit the subscript E if it is clear from context. For a morphism h : B⊗K→ B′⊗K′, the comb insertion
C[h] : A⊗K→ A′⊗K′ is defined as C[h] = ( f ⊗ idK);(idE ⊗h);(g⊗ idK′). The extension of the comb C
is the joint morphism C[swapB,B′ ] : A⊗B′→ A′⊗B.

Definition 29. Two combs C1,C2 : (A,A′)→ (B,B′) are called

1. extensionally equivalent if their extensions are equal

2. contextually equivalent if for all h : B⊗K→ B′⊗K′, we have C1[h] =C2[h]

3. optically equivalent if they are identified as elements of the coend∫ E
C(A,E⊗B)×C(E⊗B′,A′)

Concretely, this is the equivalence generated by ‘sliding’ for all s : E→ E ′

⟨ f ;(s⊗ idB)|g⟩E ′ ∼ ⟨ f |(s⊗ idB′);g⟩E
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Proposition 30 ([13]). Optic equivalence implies contextual equivalence. Contextual equivalence im-
plies extensional equivalence.

The converses are false in general. Comb insertion need not be well-defined under extensional equiva-
lence; counterexample atomicity. It is shown in [13] that all three notions coincide in two special cases:
compact closed categories and cartesian categories. We generalize this as follows:

Proposition 31. In any category with causal traces, extensional and contextual equivalence coincide.

Proof. We can compute the comb insertion from the extension using the causal trace from Figure 2.

Theorem 32. Let C be an atomic Markov category with conditionals. Then extensional and contextual
equivalence coincide. Computing the extension defines a bijection between

1. morphisms f : A⊗B′→ A′⊗B that are non-signalling

2. contextual equivalence classes of combs (A,A′)→ (B,B′)

Proof. In the appendix.

This theorem generalizes the examples covered by [13] to include many common Markov categories
without assuming an embedding in a compact-closed category. The case of optic equivalence requires
further structure.

Proposition 33. If C has universal dilations in the sense of [14], then extensional and optic equivalence
coincide.

Proof. In the appendix.

Because FinStoch has universal dilations ([14, Theorem 2.4.6]), this means that for FinStoch, all notions
of combs coincide.

6 Conclusions and Future Work

We have shown that the contraction identities hold in every cancellative atomic Markov category with
conditionals, and used this to develop a theory of causal traces and relate various notions of comb equiv-
alence. Our work leaves an array of interesting open questions, including about converses of our results:

When does a Markov category embed into a traced category? It is known that every partially traced
category embeds in a traced one [1], but our axioms for the causal trace are strictly weaker than the
partial trace axioms. We conjecture that the difference is similar to what Houghton-Larsen achieves with
his construction of causal channels in [14, Section 4.1].

To what extent is atomicity a necessary assumption? Does an embedding in a traced category imply
atomicity? Atomicity is intimately related to supports [7], and in turn to universal dilations, though the
precise relationship remains to be clarified.

Our developments in Section 4 suggest that the information-flow properties of free Markov categories
are an interesting area of study beyond this work: We conjecture that these categories are atomic, and
have supports but no conditionals. We also believe that free Markov categories embed in free hypergraph
categories, even though this point was sidestepped in [10].

We would also like to explore if failure of atomicity poses formal challenges in causal inference,
given that the approach to causal inference in [16] relied on combs, or if the approach can be refined to
not rely on them.
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7 Appendix

7.1 Recap on Markov Categories

This introductory material is taken from [4].

A gs-monoidal category or CD-category (due to [3]) is a symmetric monoidal category (C,⊗, I) where
every object is coherently equipped with the structure of a commutative comonoid ∆X : X → X ⊗X ,
delX : X → I. We render these graphically as

delX = ∆X =

X
X

X X

,

A morphism f : X → Y is called discardable if delY ◦ f = delX . A Markov category is a CD category in
which every morphism is discardable. Equivalently, this means del is a natural transformation. Copying
is not assumed to be natural – a morphism f : X →Y is called deterministic if it commutes with copying

f

f f
=

From now on, let C be a Markov category.

7.1.1 Information-flow Axioms

So called information-flow axioms (e.g. [4, 6]) are certain additional axioms which do not hold in every
Markov category, but capture specific aspects of probabilistic reasoning. Important in this work is the
so-called causality axiom: A Markov category is called causal if every equation of the form

f

h1

g

f

h2

g=
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implies a stronger equation

f

h1

g
=

f

h2

g

7.1.2 Conditionals

We say that C has conditionals if for every f : A→ X⊗Y there exists f |X : X⊗A→ Y such that

f = f

A

X Y f |X

X Y

A

For morphisms p : A→ X and f : X → Y , a Bayesian inverse is a morphism f †
p : A⊗Y → X such that

p

f

=

p

f †
p f

f

Conditionals and Bayesian inverses are mutually interdefinable, and we will be using both in the present
article. Conditionals are known to imply the information-flow axioms previously mentioned.

7.1.3 Example Categories

We briefly recall the Markov categories of interest, mainly to establish notation. For the full definitions,
we ask the reader to consult the references.

Example 34. The Markov category FinStoch consists of

1. objects are finite sets X

2. morphisms p : X → Y are stochastic matrices, with entries written p(y|x) ∈ [0,1], subject to the
axiom

∀x ∈ X , ∑
y∈Y

p(y|x) = 1

3. composition is matrix multiplication, a.k.a. the Kolmogorov-Chapman equation

(g f )(z|x) = ∑
y

g(z|y) f (y|x)
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The hypergraph category Mat(R+) is defined like FinStoch allows arbitrary matrices with with
nonnegative entries. FinStoch corresponds to the subcategory of Mat(R+) of morphisms which are
discardable.

Example 35. The Markov category BorelStoch consists of

1. morphisms are standard Borel spaces (X ,ΣX)

2. morphisms p : X → Y are Markov kernels p : X × ΣY → [0,1]. We write p(x) for the measure
p(x,−) : ΣY → [0,1] on Y .

3. composition is Lebesgue integration

(g f )(x,E) =
∫

g(y,E) f (x,dy)

For x ∈ X , we write δx for the Dirac distribution centered at x. We can consider every measurable func-
tion f : (X ,ΣX)→ (Y,ΣY ) as a BorelStoch morphism δ f defined by δ f (x) = δ f (x). As a slight abuse of
notation, we will often write f for both the function and its induced Markov kernel.

The following Markov categories will not be relevant beyond mentioning in examples, but we will give
references

1. SetMulti: sets and nonempty relations [4]

2. TychStoch: Tychonoff spaces and continuous Markov kernels [7]

3. Gauss: Markov kernels built from multivariate normal distributions and linear maps [4]

7.2 Traced Monoidal Categories

A traced monoidal category is a symmetric monoidal category C together with a family of operators

trW
X ,Y : C(X⊗W,Y ⊗W )→ C(X ,Y )

satisfying the following axioms:

1. Tightening (naturality in X ,Y ): For all f : X⊗W → Y ⊗W , g : X ′→ X , h : Y → Y ′, we have

trW ((h⊗ idW )◦ f ◦ (g⊗W )) = h◦ trW ( f )◦g

or graphically

f
g

h
= f

g

h
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2. Sliding (dinaturality in W ): For all f : X⊗W → Y ⊗W ′ and g : W ′→W , we have

trW ((idY ⊗g)◦ f ) = trW ′( f ◦ (idX ⊗g))

or graphically

f =

g

f
g

3. Vanishing (coherence with I). For all f : X⊗ I→ Y ⊗ I, we have

trI( f ) = (X
ρ
−1
X−−→ X⊗ I

f−→ Y ⊗ I
ρY−→ Y )

4. Associativity (coherence with ⊗): For all f : X⊗U⊗V → Y ⊗U⊗V we have

trU⊗V ( f ) = trU(trV ( f ))

or graphically

f = f

5. Superposition (strength): For all f : X⊗W → Y ⊗W and g : X ′→ Y ′, we have

trW (g⊗ f ) = g⊗ trW ( f )

or graphically

f = fg g
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6. Yanking:
trW (swapW,W ) = idW

or graphically

=

Proof of Proposition 14. The trace of a discardable morphism f need not itself be discardable. For
example, in the compact closed category Mat(R+), the trace of idW : W →W is the scalar |W | : I→ I
which is not normalized (i.e. equal to 1). On the other hand, if f is non-signalling, we obtain

f = f = fs = fs = f =

We will omit the grey shading of the trace boxes when it is clear from context how to interpret the trace.

7.3 Appendix to Section 2

Proof of Proposition 7. The statement for morphisms of full support is immediate. For a deterministic
morphism p, we reason straightforwardly

p

f1 f1

p p
=

f2

p p
= =

p

f2

For the third point, let g be deterministic and p atomic, and assume

g

f1

=

p

g

p

g

f2

p

g

p
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By causality [6, A.14], we may strengthen this equation and marginalize to obtain

g

f1

=

p

g

p

g

f2

p

g

p

g

f1

p

g

p

⇒ g

f2

p

g

p

=

Now, we use atomicity of p, postcompose the two rightmost wires with g and use determinism to simplify

g
f1

p

g
=

g
f2

p

g
⇒

f1

p

=

g

f2

p
g

Example 36. Atomic morphisms need not be closed under composition: In BorelStoch, let X = [0,1]
and define the morphism p : X⊗2→ X by

p(x,c) =

{
δx, c = 0
ν , c = 1

Then the atoms of p are all of X, i.e. p is atomic. However, for all deterministic states σ : I→ X ⊗2 of
the form σ = δ(x,1), we have that p◦σ = ν is not atomic.

Proof of Lemma 9. First, by marginalizing Y and cancellability of W , we conclude that f1 = f2 and write
f indiscriminately. Now we show that the morphisms ci = delX ⊗gi (for i = 1,2) and are φ ⊗φ -almost
surely equal, where φ = (idX ⊗ f )◦∆X .

ff

g1

= f

f

g1

= f

f

g2

ff

g2

=

Applying atomicity to φ , we obtain that that c1,c2 are also (∆◦φ)-almost surely equal, i.e.

f

g1

f

g2

=
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From this, we obtain the desired conclusion by marginalizing the four wires on the right.

Proof of Lemma 10. For i = 1,2, disintegrate fi as

fi = ci

hi

and define γi :=
hi

gi

Then

c1

γ1

= f1

g1

= f2

g2

c2

γ2

=

So by Lemma 9, we conclude

c1

h1

g1

f1

g1

=

f2

g2

= =
c1

γ1

=
c2

γ2

c2

h2

g2

=
(9)

7.4 Appendix to Section 3.1

Proof of Tightening (Proposition 16). Write k for the composite (h⊗ idW ) ◦ f ◦ (g⊗ idW ); it is easy to
see that k is traceable. Using the Bayesian inverse ( fs)

†
g, we obtain the following disintegration

f
g

h

fs

fp

g

= fs

g

=

f †
s

h

fp

h

fs

g

=

f †
s

fp

h



D. Stein & M. Széles 21

Using that disintegration, we compute as desired

f
g

h

=

fs

g

f †
s

fp

h

=

fs

g

fp

h

= f

g

h

Proof of Sliding (Proposition 17). Traceability is straightforward. Using the Bayesian inverse g†
fs

, we
establish the following disintegrations:

f fs

gfp

=

g

fs

fp

=

g

g†

f fs

fp

=
g

g

and

Using these disintegrations, we show

f =

g

fs

fp

g

g†

f=
g

=

fs

fp

g

Proof of Associativity (Proposition 19). Assume that f : X ⊗ (U ⊗V )→ Y ⊗ (U ⊗V ) is non-signalling
in U⊗V ; that is

f = fs hence f = fs
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hence f is in particular non-signalling from V to V . Choose a disintegration fp, fs, and condition fs

further, to obtain

f = fs

fp

and fs
= fs

u

Then we can give the following disintegration with respect to V

f =

fp

fs

u =

fp

fs

u

Using this disintegration, we obtain trV ( f ) as

f =

fp

fs

u

=

fp

fs
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Of this, we can in turn compute the trace

f = fs

fp

f=

Proof of Superposition (Proposition 20). We make use of the following disintegration

f
fs

fp

=g

g

fs

fp

=

g

to obtain

f =g
fs

fpg

=
fs

fpg

= fg
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Proof of Yanking (Proposition 21). The symmetry has the following disintegration, hence

= idW
⇒ = idW

=

7.5 Appendix to Section 4

We recall the construction of free Markov categories [10].

Definition 37 ([10]). The category I is defined as follows.

• Objects are pairs of natural numbers (m,n) ∈ N×N, and there is an extra object ∗.
• The only non-identity morphisms are in1, · · · , inm,out1, · · · ,outn : (m,n)→∗.

A hypergraph is a functor I→ Sets. Hypergraphs form a functor category Hyp.

We also use the following notation for a hypergraph G : I→ Sets.

• W (G) = G(∗) is the set of wires.

• Bm,n(G) is the set of boxes with m inputs and n outputs. B(G) =
⊔

m,n∈N Bm,n(G) is the set of all
boxes.

• We abbreviate G(ini) to ini and G(outi) to outi. These assign the ith input/output wire to each box.

• For b ∈ Bm,n(G), w ∈W (G)

in(b,w) = {ini(b) : i ∈ {1, · · · , ,m}}
out(b,w) = {outi(b) : i ∈ {1, · · · ,n}}

These numbers tell how many times a wire is the input/output of a box.

Definition 38 ([10]). A hypergraph is finite if the set of wires W (G) and the set of boxes B(G) is finite.
We denote the subcategory of finite hypergraphs by FinHyp.

Every monoidal signature Σ gives rise to a finite hypergraph which we also denote by Σ. A labelling
of wires and boxes in a hypergraph G is a hypergraph homomorphism (natural transformation) to Σ.

Definition 39 ([10]). Markov string diagrams over the monoidal signature Σ are (isomorphism classes
of) cospans in the slice category FinHyp/Σ, that is of the form

m G n

Σ

p q

in FinHyp, such that

1. m and n are discrete hypergraphs (B(m) = B(n) = /0).
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2. G is acyclic, i.e. it contains no cycles. A path is a finite, alternating sequence of wires and boxes
(w1,b1, · · ·wn,bn,wn+1) such that in(bi,wi)> 0, and out(bi,wi+1 > 0) for all 1≤ i≤ n. A cycle is
a path that additionally satisfies w1 = wn+1.

3. The cospan satisfies left monogamy: for all wires w ∈W (G)

|p−1(w)|+ ∑
b∈B(G)

out(b,w) = 1

That is, every wire is either connected to exactly one input port or is the output of a single box.

4. There are no eliminable boxes. A box is eliminable if none of its output wires are connected to an
output port or to the input of a box. That is, an eliminable box b satisfies for all w ∈W (G)

out(b,w)> 0 =⇒ q−1(w) = 0∧∀b′ ∈ B(G).in(b′,w) = 0

We leave the labelling implicit and write the cospan as m
p−→ G

q←− n.
Proposition 40 ([10]). The free Markov category FreeMarkovΣ over a monoidal signature Σ can be
constructed as follows:

1. Objects are homomorphisms m→ Σ, that is an m-long list of types in Σ.

2. Morphisms are (isomorphism classes of) Markov string diagrams, which compose by pushout and
subsequent normalisation (elimination of eliminable boxes).

3. The tensor is given by coproduct.

4. Copy and delete are represented by the cospans

0 0
1 0 /0

To ease notation we write f : n→m for a morphism f : (m→Σ)→ (n→Σ), thus leaving the labelling
implicit.

7.6 Appendix to Section 5

Proof of Theorem 32. For each comb ⟨ f |g⟩ : (A,A′)→ (B,B′), its extension is a non-signalling morphism
A⊗ B′ → A′⊗ B. Conversely, from a non-signalling morphism f : A⊗ B′ → A′⊗ B, we construct a
disintegration

f fs

fp
A′

A

=

B′

B

BA′

A B′

fs

fp

=

BA′

A B′

which defines a comb with environment E =A⊗B whose extension is f . By Proposition 31, the resulting
comb is unique up to contextual equivalence.
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Universal Dilations In the terminology of [14, Definition 2.4.1], a universal dilation of a morphism
p : X → Y is another morphism φ : X → E⊗Y satisfying

φ = p

X X

Y Y

E

such that for all Π : X⊗W ′→W ⊗Y

φ

γ

Π = p

X W ′

Y

W

W ′

thenif ∃!γ with Π =

X

Y

Proof of Proposition 33. Let ⟨ f1|g1⟩E1 ,⟨ f2|g2⟩E2 : (A,A′)→ (B,B′) be two combs which are extension-
ally equivalent. Define using cancellability p : A→ B as the common morphism

f1 = f2p =

and choose a universal dilation φ : A→ E⊗B of p. Using universality, the fi must factor through φ as

fi = φ

ri

By uniqueness of factorization, we have

φ

g1

=

φ

g2

hencer1 r2

g1

=

g2

r1 r2

Now we reason modulo optic equivalence that

φ

g1

r1

f1

g1

=

φ

g1

∼
r1

φ

g2

=
r2

φ

g2

r2

∼

f2

g2

=


	1 Introduction
	2 Atomic Markov Categories
	3 Causal Traces
	3.1 Laws of the Causal Trace

	4 Causal Traces in Free Markov Categories
	5 Calculus of Combs
	6 Conclusions and Future Work
	7 Appendix
	7.1 Recap on Markov Categories
	7.1.1 Information-flow Axioms
	7.1.2 Conditionals
	7.1.3 Example Categories

	7.2 Traced Monoidal Categories
	7.3 Appendix to Section 2
	7.4 Appendix to Section 3.1
	7.5 Appendix to Section 4
	7.6 Appendix to Section 5


