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Realizability over partial combinatory algebras

An important class of models for the meta-theoretic study of type theory comes from realiz-
ability. Not only can these models be used to show consistency of constructive principles (eg.
Church’s thesis, which is valid in Hyland’s effective topos [9]), but they are also able to interpret
polymorphism or impredicative universes in dependent type theory [10].

Traditionally, the starting point for a realizability interpretation is a partial combinatory
algeba (PCA). A PCA embodies a notion of untyped (or unityped) computation (the untyped-
ness is actually necessary for impredicativity [3, 14, 12]). Formally, a PCA consists of a set A
and a partial “application” operation (−) · (?) : A × A ⇀ A. Additionally, there must exist
particular elements (“combinators”) obeying certain laws. Most often one sees the combinators
k and s satisfying:

kab = a sab ↓ and sabc = ac(bc)

(we surpress the application symbol and associate to the left). The existence of these combina-
tors is enough to guarantee combinatorial completeness, which means that every “polynomial”
over A (built up from variables and elements of A using application) is represented by some
“code” (element of A) [6]. In this way, a PCA can mimic λ-abstraction, which, together with
application, satisfies the β-law.

Among the first PCAs one encounters are the λ-calculus Λ, “Kleene’s first algebra” K1 and
categorical models of the λ-calculus (reflexive objects in cartesian closed categories). Λ is the
set of λ-terms modulo β together with the application of the λ-calculus. The underlying set of
K1 is N and application is: n·m := {n}(m), ie. the result of applying the nth partial computable
function to m.

Realizability for intensional type theory

With the advent of homotopy type theory, in the context of intensional type theory (ITT),
evidence (a proof term) for an identification may be thought of as a path between points in
some space [18]. Insofar as realizability interpretations formalize the BHK interpretation (in
that realizers play the role of evidence for propositions), one might think that—in the context
of ITT—realizers should carry higher-dimensional (categorical, homotopical) structure.

In this spirit, Angiuli and Harper have formulated a cubical generalization of Martin-Löf ’s
meaning explanations [1]. Related to this is higher-dimensional (cubical) computational type
theory, which can be seen as a realizability model of cubical type theory [2]. The starting point
here is a cubical programming language that has sorts for dimensions and terms. Terms, which
may contain free dimension names, can be seen as abstract cubes.

On the categorical side, [15] studies a groupoidal generalization of partitioned assemblies.
Realizers derive from a realizer category R containing an interval (co-groupoid) I ∈ R. The
interval furnishes a fundamental groupoid construction Π : R → Gpd. A partitioned assembly
has an underlying groupoid, whose objects are realized by points in the fundamental groupoid
ΠA of some “realizer type” A ∈ R and whose morphisms are realized by paths ΠA. If the
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realizer type is always some fixed universal object U, the notion of realizability in untyped.
An alternative approach is to consider higher-dimensional structures in traditional realizability
models of extensional type theory, eg. cubical assemblies (cubical objects internal to the model
of extensional type theory in assemblies over K1) [17, 16].

Partial combinatory algebras in groupoids

The notion of PCA makes sense in any cartesian restriction category (CRC; restriction cate-
gories formalize the idea of categories containing partial maps) [4]. The goal of this work is
to give examples of PCAs in CRCs of groupoids that may be used for constructing
realizability models of ITT.

The first example we give is a higher-dimensional λ-calculus, very much inspired by cubical
type theory [5]. In fact, different calculi could be formulated depending on the notion of “shape”
(eg. globular, cubical, etc.). For simplicity, we discuss a relatively simple 1-dimensional globular
λ-calculus. Judgements in this calculus are of the form

Ψ | Γ ⊢ t

where Ψ is a context of dimension variables and Γ is a context of regular variables. We have
constants:

· | · ⊢ 0 · | · ⊢ 1

As well as the usual rules for λ-abstraction, application and β (uniform in dimension context),
we have rules for composition, identities and inverses. For example:

i | Γ ⊢ α i | Γ ⊢ β · | Γ ⊢ β[0/i] = α[1/i]
comp

i | Γ ⊢ β ◦ α
Identities are obtained by weakening the dimension context. These term constructors satisfy
the usual groupoid equations, ensuring that we obtain a groupoid ΠΛ with:

• objects: terms (in context, up to α-equivalence) of the form · | Γ ⊢ t;

• morphisms (· | Γ ⊢ t) → (· | Γ ⊢ u): terms i | Γ ⊢ α satisfying · | Γ ⊢ α[0/i] = t and
· | Γ ⊢ α[1/i] = u;

• composition, identities and inverses given by the corresponding term constructors.

The groupoid ΠΛ is a PCA in the category of groupoids and functors (with the trivial restriction
structure). The application functor is given by application of terms (given how substitution
behaves and the various term constructors interact) and the combinators k and s are determined
respectively by:

· | · ⊢ λxy. x · | · ⊢ λfgx. fx(gx)

Moving on, there is a class of examples coming from 2-dimensional models of the λ-calculus,
ie. cartesian closed bicategories C with a pseudoreflexive object U . Instances of these include
generalised species of structures [7], profunctorial Scott semantics [8] and categorified relational
(“distributors-induced”) [13] and graph models [11]); realizer categories (R, I, U) as discussed
above also gives rise to such structures. The carrier of the (total) PCA is the groupoid C(1, U).
This results in a “pseudo PCA”, where the combinator laws hold up to isomorphism.

Further work-in-progress is to establish a groupoidal analogue of K1 based on a notion of
partial recursive functor over the groupoid of finite sets and bijections. This will live in the
CRC of groupoids and partial functors (with non-trivial restriction structure).
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