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In many machine learning problems, it is useful to have a neural network that is equivariant with respect to a
group action. That is, for some group G acting on some input and output spaces X and Y of interest, we would
like a neural network f : X → Y that satisfies

f(g · x) = g · f(x) for all x ∈ X and g ∈ G. (1)

Such constraints naturally arise in many applications involving some geometric structure, such as computer
vision, or scientific problems where the data involved are known to follow certain symmetries. For example, a
common task in computer vision involves segmenting a point cloud according to the different objects it contains.
If a neural network is used for this, it is desirable that it is equivariant with respect to the group of rigid-body
transformations acting on the point cloud. Otherwise, the predictions of the network would depend on how the
point cloud is oriented, which intuitively should not matter for the task at hand.

However, most off-the-shelf neural networks are not equivariant. Even after training on data that involves
symmetries (such as point clouds), typically it will hold that f(g · x) ̸= g · f(x), possibly to a large degree. This
can hamper the performance of the network and affect its ability to generalise, and so an active research area
considers how to develop neural networks that are equivariant by design.

Intrinsic equivariance vs. symmetrisation Broadly speaking, there are two major approaches to obtaining
equivariant neural networks. A significant body of work has focussed on intrinsic equivariance, which imposes
certain constraints on individual layers of a neural network to ensure that the network as a whole is equivariant
[CW16; RSP17; FWW21]. In contrast, a recent line of work may be described as symmetrisation, which
takes an existing unconstrained neural network and modifies it in some way to become equivariant [Mur+19;
Pun+22; Kab+23; Kim+23]. These approaches are attractive as they can be used with arbitrary neural network
architectures, which reduces implementation complexity and allows for the use of powerful existing models.

Stochastic equivariance In this work, we consider a more general problem than (1), where we additionally
allow our neural network to depend on some randomness, so that its outputs are stochastic. Such models are
of interest in applications including generative modelling and reinforcement learning, and in situations where
uncertainty quantification is required. Roughly speaking, we would like a model whose distribution of outputs is
equivariant across repeated executions, rather than (say) at any single one. We can formalise this by considering
f to be a Markov kernel, i.e. a measurable function of the form X → PY , where PY denotes the set of
distributions on Y equipped with some suitable σ-algebra. The equivariance condition (1) remains the same,
except that G now acts on PY via the pushforward of its underlying action on Y .

Equivariance in Markov categories We use Markov categories [CJ19; Fri20] as a framework for reasoning
about stochastically equivariant neural networks. At a high level, given a Markov category C, our approach is
to consider groups and group actions internal to the subcategory of deterministic morphisms Cdet. Since Cdet

is cartesian monoidal [Fri20], we can recover standard results about group actions and homomorphisms via the
usual arguments. However, we also naturally obtain a notion of equivariance that makes sense in the whole of
C, i.e. including for morphisms that are not deterministic. Given a group G internal to C, this allows us to
define a Markov category CG, whose objects are objects of C equipped with a G-action, and whose morphisms
are morphisms of C that are appropriately equivariant.

Stochastic symmetrisation We then consider the problem of symmetrising a stochastic neural network along
a group homomorphism φ : H → G, where H and G are groups in C. We formulate this as follows. Any such
φ gives rise to a functor Resφ : CG → CH that maps a G-object to its restriction via φ. Our goal is to obtain
functions of the following form:

CH(ResφX,ResφY ) CG(X,Y ) where X and Y are G-objects. (2)

Notice that this maps H-equivariant morphisms to G-equivariant ones, which is exactly what is desired of a
symmetrisation procedure (although previous work has not framed the problem in this way).

Suppose Resφ has a left adjoint Extφ. This corresponds to the usual notion of extension of a group action
along a homomorphism. Then we obtain a procedure of the form (2) very naturally via the following steps:

CH(ResφX,ResφY ) CG(ExtφResφX,Y ) CG(X,Y ).
Apply adjunction Precompose

(3)

Here in the second step we precompose by any G-equivariant morphism of the formX → ExtφResφX in CG. This
accords with existing symmetriation procedures, which typically require some neural network that is already
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equivariant. However, the idea is that this can be much smaller and simpler than the “backbone” neural network
we are symmetrising, which only needs to be H-equivariant. In the extreme, taking H to be the trivial group
means the “backbone” network is completely constrained, and thereby potentially very expressive. Empirically,
this leads to stronger predictive performance overall while maintaining the desired equivariance properties.

Theoretical results For this approach to be viable, we require that a left adjoint Extφ exists. We give a useful
sufficient condition for this as follows:

Theorem 1. A left adjoint to Resφ exists if C has coequalisers of the form

G⊗X X
act

triv
(4)

where act is any action of G on X and triv is the trivial action, and if moreover these coequalisers are preserved
by the functor −⊗ Y for every Y in C.

We would also like a concrete Markov category C that actually satisfies this condition. We do not know whether
the category Stoch of measurable spaces and Markov kernels does: while it does have coequalisers of the form
(4), it is not clear that these are always preserved by the functor − ⊗ Y . However, we do have the following,
which is adequate for our purposes since neural networks are almost invariably continuous:

Theorem 2. The Markov category TopStoch of topological spaces and continuous Markov kernels [FPR21]
satisfies the conditions of the previous theorem.

Practical methodology To make this approach practical, we need to be able actually to compute the steps
in (3). For this, we show that there is an isomorphism

ExtφResφX ∼= G/H ⊗X

where G/H is the coequaliser of act, triv : H⊗G ⇒ G when H acts on G by right-multiplication (through φ) by
the inverse. This recovers a standard result that appears for example in equivariant algebraic topology [MC96],
and leads to a straightforward procedure for computing (3) in practice. End-to-end, the resulting methodology
recovers existing approaches to symmetrisation under various configurations, and moreover generalises these
immediately to the stochastic setting.

Applications We show how our procedure can be instantiated for various groups and actions of interest,
including compact groups, products, and semidirect products, all of which can be considered abstractly in a
general Markov category C. We also provide specific concrete examples in TopStoch, including for translation
groups, compact matrix groups, the Euclidean groups, and the general linear group. Equivariance with respect
to the general linear group does not appear to have been considered in the literature previously, possibly because
it is quite complex to work with (being e.g. noncompact).

Empirical results We have implemented our methodology and obtained promising empirical results. A flavour
of these is given in Figure 1, which shows the result of applying our methodology to learn the function (−)−1 that
maps an invertible matrix to its inverse. This is equivariant with respect to the action of the orthogonal group by
left-multiplication and right-multiplication by the transpose,1 since for orthogonal U we have (UB)−1 = B−1UT .
Figure 1 shows the results produced by a neural network before and after symmetrisation using our method for
a 16-dimensional matrix input. We have also obtained similarly positive results compared with other baseline
procedures for obtaining equivariance, both intrinsically and via symmetrisation.

(a) f is an unconstrained neural network. (b) f is symmetrised using our method.

Figure 1: Values of Af(A) obtained for four random 16× 16 matrices A. Ideally each value should be close to
the identity matrix, i.e. blue with a red line down the diagonal.

1More generally, (−)−1 is equivariant with respect to the action of the two copies of the full general linear group acting via left-
and right-multiplication, although the procedure becomes more complicated.
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