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Extended abstract

The contributions of our work are twofold.
(A.1) On the one hand, we show that fuzzy simplicial sets, as introduced by [Spi09], can serve as a

natural combinatorial object to represent data, and expand upon the corresponding theory.

(A.2) On the other hand, we use those theoretical clarifications to put the UMAP algorithm developed by
[MHM18], that heavily draws upon those category theoretical concepts, on a more solid footing,
show how it is related to another prominent method called Isomap (cf. [TSL00]) and introduce a
natural combination of both methods.

Since data is often given in form of a metric space, we address the first point by providing additional
details about the relationship between the category UM of uber metric spaces and the category sFuz of
fuzzy simplicial sets, which are defined below.

Definition 0.1. An uber-metric space (X ,d) is a set X equipped with a map d : X ×X →R≥0∪{∞}
such that

1. d(x,y)≥ 0, and d(x,y) = 0 only if x = y;

2. d(x,y) = d(y,x); and

3. d(x,z)≤ d(x,y)+d(y,z).

The category of uber-metric spaces UM has as objects uber-metric spaces and as morphisms non-
expansive maps.

A closely related concept, important in the context of [MHM18], is a so-called extended pseudo-metric
space, the definition of which is equivalent to a uber metric space, except that the 3rd condition is
amended to “3. Either d(x,z) = ∞ or d(x,z)≤ d(x,y)+d(y,z)”, i.e. the triangle inequality does not have
to hold for infinite distances in an extended pseudo-metric space. We denote the category of extended
pseudo-metric spaces and non-expansive maps by EPMet.
We follow [Spi09] in defining fuzzy simplicial sets. Since the link to the publication was recently
removed, we provide a rather detailed description below. Let I = [0,1] be a topological space in which
the open sets are declared to be the intervals [0,a) (for all a ∈ [0,1]) and [0,1], ordered by inclusion. We
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use the same notation for the category I, in which objects are open sets and morphisms are inclusions. To
simplify our notation, we refer to objects [0,a) simply by writing a. Consequently, we write iab : a → b
for the inclusion maps [0,a)→ [0,b) (b ≥ a).

Definition 0.2. A fuzzy set S is a sheaf on I for which all restriction maps S(iab : a→ b) : S(b)→ S(a)
are injections. Their category is denoted by Fuz.
A fuzzy simplicial set is a functor ∆op → Fuz, where ∆ denotes the simplicial indexing category.
(Its objects are given by finite totally ordered sets [n] with exactly n+ 1 elements (we follow the
standard convention in this context to start counting at 0) and its morphisms are order preserving
maps ( f : [n]→ [m] s.t. f (a)≥ f (b) if a ≥ b).)

One of our contributions is that we use the well-known nerve-realization procedure to view the adjunction
that was provided in [Spi09] (which we define below) as one member of a family of adjunctions and
investigate the consequences of different choices. To start this analysis, we prove the following theorem.

Proposition 0.1. Let y : (∆×I)op → sFuz be the Yoneda embedding. Suppose that Re∆ : y(∆×I)→
C is any functor and that C is either UM or EPMet. Then the following defines a functor:

Re : sFuz → C,

Re(S) : = colim(DS)

where DS = Re∆ ◦y◦PS : El(S)→ C.

(1)

where the category of elements El(S) consists of objects which are pairs (A,x) with A ∈ ∆× I and
x ∈ S(A) and PS : El(S)→ ∆× I is the projection functor from the category of elements to the fuzzy
simplex category. Furthermore, the following functor is adjoint to Re:

Sing : C → sFuz,

Y 7→ Sing(Y ) : (∆× I)op → Sets,

(n,a) 7→ HomUM(Re∆(∆
n
<a),Y ).

(2)

To show that Re∆ is a functor only requires to define realizations and non-expansive maps on the
subcategory of sFuz of representable functors ∆n

<a := y(n,a) and there are infinitely many possibilities.
One choice is the realization provided in [Spi09], where Re∆ is defined as follows:

ReSpivak
∆

: y(∆× I)→ UM, Re∆(∆
n
<a) :=

{
x ∈ Rn+1

∣∣∣∣ n+1

∑
i=1

xi =− log(a)

}

ReSpivak
∆

(y(σ , iab)) : =
log(b)
log(a)

(
∑

i0∈σ−1(0)

xi1 , · · · , ∑
in∈σ−1(n)

xin

)
.

(3)

In UMAP, instead of employing UM, the category EPMet (or more precisely the subcategory of finite
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extended pseudo-metric spaces) is used, and they define the functor Re∆ as follows

ReUMAP
∆ : y(∆× I)→ EPMet, ∆

n
<a 7→ ({x0, · · · ,xn},da),

where da(xi,x j) :=

{
− log(a), if i ̸= j,
0, else.

,

ReUMAP
∆ (σ , iab) : Re∆(∆

n
<a)→ Re(∆m

<b), xi 7→ xσ(i)

(4)

However, this functor is also well-defined when the codomain category is UM instead. Furthermore, the
form of the Sing-functor, defined by (2), is independent of that choice. Since only the Sing-functor is
used in the UMAP method (and one could replace infinite sums that do not fulfill the triangle inequality
by certain sums), it would be possible to conduct their method fully in the categories UM and sFuz.
In this concrete sense, the adjunction provided in [MHM18] and the adjunction provided in [Spi09] are
elements of the same family. In a similar way, one can show that the transformation provided in t-SNE
(cf. [MH08]) can be expressed as a member of that family, by noting that (a slight generalization of)
the inverse transformation of the student-t-distribution can replace the logarithm in (4). Nevertheless, we
point out that the realization functor, as defined in (1), does depend on the choice UM vs EPMet because
the colimits in those two categories are different. In fact, we proved the following theorem:

Proposition 0.2. Let C be either UM or EPMet. The colimit of a small diagram D : I → C is given
by

colim(D) = (colim(FD), dcolim) (5)

where F is the forgetful functor F : C → Sets, and colim(FD) is given by

colim(FD)≃ X/∼, where X :=
⋃
·

I∈I
FD(I)

and ∼ is generated by ( x ∼ x′ iff x′ = FDu(x) ),
(6)

(where u is a morphism in the indexing category I of the diagram D).
For the case C = UM, dcolim is defined by

d∼([x], [x′]) = inf(dX(p1,q1)+ · · ·+dX(pn,qn)), dX(pi,qi) :=

{
dJ(pi,qi), if pi,qi ∈ FD(J)
∞, else,

(7)

where the infimum is taken over all pairs of sequences (p1, · · · , pn), (q1, · · · ,qn) of elements of X such
that p1 ∼ x, qn ∼ x′, and pi+1 ∼ qi for all 1 ≤ i ≤ n−1, whereas, for the case C = EPMet, dcolim is
defined by

dEPMet
∼ ([x], [x′]) :=

{
∞, if infy∈[x],y′∈[x′] = ∞,

d∼ (as in (7)), else.
(8)

The theorem about the colimits above allowed us make the description of the colimit appearing in (1)
more precise, which in turn allowed us to show that, a particular member of the family, namely, ReUMAP,
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either with codomain UM or EPMet, allows to embed the metric categories as subcategories into sFuz.
More concretely, we proved that

ReUMAP ◦SingUMAP ≃ id, (9)

no matter which codomain one considers for ReUMAP. However, SingUMAP is not essentially surjective
and we prove another theorem that explicitly characterizes the image, providing the exact conditions
under which a fuzzy simplicial set corresponds to a metric space.
We also show that the formalization of persistent homology in terms of fuzzy simplicial sets, that was
introduced in [Spi09], can be carried out in a somewhat simpler way with the adjunction mentioned
above, and provide an existence proof for an appropriate analogue to the related adjunction between the
truncation functor and the (co-)skeleton functors known from the category of (ordinary) simplicial sets.
However, we omit this somewhat lengthy theorem here.
The conclusion of those propositions is that there is in general more freedom to encode data in a fuzzy
simplicial set than in an (uber or extended pseudo-) metric space, which can be useful for encoding
relationships that do not satisfy all metric relations (for example in a social network graph), or to
encode higher order interactions (between more than 2 points), that a metric can not account for, while
providing a rich combinatorial and category theoretical structure that alternative structures, like for
example hypergraphs, can not offer. One important example of such higher relationships are those that
arise in the area of persistent homology (see, for example [Car09]). At the same time, our explicit
descriptions of the metric realization functors allow to specify concrete algorithms that transform this
combinatorial description into a metric one if desired.

The second point (A.2) is motivated by the importance of dimension reduction and data visualization
methods in the area of data analysis. Prominent methods include PCA (cf. [Pea01]), LE (cf. [BN03]),
MDS (cf. [Tor52], [BG05]), Isomap (cf. [TSL00]), t-SNE (cf. [MH08]) and UMAP (cf. [MHM18]).
Of those methods, UMAP is interesting from a category theoretical point of view because the authors pick
up and modify the adjunction in [Spi09] for their purposes. Roughly speaking, UMAP can be described
by the upper, solid pathway in the following diagram:

Met UMN sFuzN c1FuzN c1Fuz

UM Euc

split

mergeUM

SingN ctrN
1 mergec1Fuz

embedding
embedding

(10)

where split (which is not a functor) converts the dataset X , that contains N points, into N local k-nearest
neighborhood spaces with the same underlying set, A (for any category A) denote appropriately chosen
subcategories (obtained via pullbacks) to which the merge functors can be applied, Sing converts the
local neighbourhood spaces into fuzzy simplicial sets, ctr1 truncates the fuzzy simplicial sets and converts
them to their classical counterpart (c1Fuz can be thought of as directed weighted graphs), mergec1Fuz
describes a procedure to merge the N different local graphs and finally a gradient-descent based scheme
is used for embedding into a Euclidean space.
The merge functor is ultimately defined in terms of so-called t-conorms T , which are binary operations
T : [0,1]× [0,1]→ [0,1], satisfying some natural conditions, that were originally developed to formalize
the combination of two probabilities. Typical examples of t-conorms are the probabilistic sum, or the
maximum of two probabilities. During the merge process, the t-conorm is then applied to the probabilities
of each pair of simplices, that are supposed to be combined when two fuzzy simplicial sets are merged.
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Note that the merge operation in the diagram above is only performed on the underlying graphs and that,
even though the Sing functor is employed, the Re functor never maps the merged fuzzy simplicial set back
to a metric space because the final form in Euc is obtained indirectly via gradient descent.1 Therefore
a natural question is whether one could make use of the Re functor to walk along the alternative path
that is visualized with dashed lines in Diagram (10), where mergeUM := Re◦mergesFuz ◦SingN . In our
work, we derive explicit formulas for the computations involved in this alternative path and implement an
algorithm that makes use of them. This is facilitated by the explicit description of the metric realization
functors that we derived and it requires to generalize the merge operation, that in [MHM18] was only
defined in c1Fuz to a merge operation in sFuz. Concretely, we proved the following theorem:

Proposition 0.3. The functor

mergeUM := ReUMAP ◦mergesFuz ◦SingN : UM×Sets · · ·×Sets UM → UM. (11)

can be given the following explicit description:

mergeUM((X ,d1), · · · ,(X ,dN)) = (X ,d), where

d(x,y) : = inf
x=x1,··· ,xn=y

n−1

∑
i=1

(− log(T1(xi,xi+1))),
(12)

where T1 is defined recursively in terms of a t-conorm T :

Tk∈{1,··· ,N−1}(x,y) : = T (e−dk(x,y),Tk+1(x,y)), and

TN(x,y) : = e−dN(x,y).
(13)

Similarly, the functor

mergeEPMet := ReUMAP ◦mergesFuz ◦SingN : EPMet×Sets · · ·×Sets EPMet → EPMet. (14)

can be given the description:

mergeEPMet((X ,d1), · · · ,(X ,dN)) = (X ,dEPMet), where

dEPMet(x,y) : =

{
∞, if T1(x,y) = 0,
d(x,y) (as in (12)), else.

(15)

It turns out that a special case of the general formulas obtained for the case UM in this way describe the
process employed in the well-known method Isomap (cf. [TSL00]). This makes a previously unknown
close relationship between Isomap and UMAP apparent. At the same time, our derivation shows how
to naturally incorporate the local distances and t-conorms used in UMAP into the alternative pathway,
which then yields a natural combination of both methods. Since our algorithm represents a combination
of Isomap and UMAP, and takes place entirely in the category UM, we decided to call it IsUMap. Our
preliminary simulations displayed in Figure 1 show that, even though IsUMap is less useful for clustering
data in high dimensions, it is better at visualizing low-dimensional manifolds with small distortions, while

1Since the form of the Sing-functor is agnostic to the choice of the metric category, this is the reason why UMAP works
both in UM and EPMet, as mentioned above.
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retaining the capability of uniformizing the data distribution if desired. The reason why low-dimensional
data visualization is more faithful, while high-dimensional data visualization delivers less intuitive results,
is that UMAP during the embedding performs a series of numerical approximations, the most important
of which is perhaps the so-called negative undersampling (cf. [DH21] for a detailed analysis), that heavily
distorts the distances of the high-dim spaces. Since in high-dim spaces, much more points can be equally
far away from each other than in low-dim spaces, this distortion seems to be necessary for obtaining the
visually appealing clustering effects. However, this does not imply that the embedding is more faithful.
In fact, since the negative undersampling distorts distances, the embedding is less optimal in terms of
the original loss function. There is, to our knowledge, no extensive theory that establishes a rigorous
criterium as to which degree of distortion is optimal. In any case, we believe that one might be able
to combine our method with the ideas about functorial manifold learning and clustering described in
[Shi20b] and [Shi20a], to improve the clustering capabilities of our method in future work.
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Appendix

A Figures

Input data UMAP IsUMap
(a) (b) (c)

(1) Hemisphere

(2) Torus

(3) Swiss role
with hole

(4) MNIST

Table 1: Comparison of UMAP and IsUMap
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