
Submitted to:
ACT 2024

© Shah, Spencer, Zielinski, Caldwell, Lehmann & Rand
This work is licensed under the
Creative Commons Attribution License.

ViCAR: Visualizing Categories with
Automated Rewriting in Coq

Bhakti Shah* William Spencer* Laura Zielinski*
Ben Caldwell Adrian Lehmann Robert Rand

University of Chicago
Chicago, USA

Abstract. We present ViCAR, a library for working with monoidal categories in the Coq proof assistant.
ViCAR provides definitions for categorical structures that users can instantiate with their own verification
projects. Upon verifying relevant coherence conditions, ViCAR gives a set of lemmas and tactics for
manipulating categorical structures. We also provide a visualizer that can display any composition and
tensor product of morphisms as a string diagram, showing its categorical structure. This enables graphical
reasoning and automated rewriting for Coq projects with monoidal structures.

1 Introduction

Just as category theory provides a unifying framework for diverse concepts in mathematics, category theory
can be used in formal verification as a basis for generalization. We can abstract away common structural
patterns to yield reusable tactics, lemmas, and techniques for proof assistants. Many constructs that appear in
program verification resemble symmetric monoidal categories. ViCAR, a library for Visualizing Categories
with Automated Rewriting, takes advantage of the shared structure across symmetric monoidal instances to
understand and manipulate morphisms in Coq.

ViCAR emerged from VyZX, an effort to verify the ZX-calculus, a graphical reasoning system for
quantum programs [16]. The ZX-calculus [5] forms a symmetric monoidal category whose morphisms
are the ZX-diagrams which make up the language. ViCAR generalizes the tools developed in VyZX to
assist Coq verification for all concrete monoidal categories. ViCAR consists of three parts: typeclasses for
categorical structures in Coq, a visualizer to represent morphisms using string diagrams, and a set of tactics
for manipulating typeclass instances.

Other popular examples of monoidal categories include the calculus of relations and matrices. The former
is the category whose objects are types and morphisms are binary relations. The latter has matrices as its
morphisms between vector spaces. The similarities between these examples are initially unclear. Reframing
each categorically, however, reveals their shared structure and hints at how the verification of one could
help another. To explore and justify this claim, we implemented each of these instances in Coq then applied
ViCAR’s monoidal category framework. We found that for a well-developed project, we could easily
instantiate the relevant categorical definitions. The tactics and visualization gained were valuable and helped
project-specific proofs by removing proof and cognitive overhead. We discuss these examples in more detail
in Section 6.

ViCAR’s key contributions are as follows:

• We define symmetric monoidal categories in Coq, easily instantiable by user-created structures.

*Equal contribution

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 2 BACKGROUND

• We present an automatic morphism visualizer. While working on a Coq proof, the visualizer will
parse the monoidal structure of the current proof state, producing an image of its string diagram
representation.

• We provide a set of powerful automation tactics that users can access once they have proven the
necessary coherence conditions. They include foliate, which automatically rewrites diagrams to
common useful structures; assoc_rw, which performs rewriting modulo associativity; and cat_simpl,
a simplification tactic for commonly occurring patterns.

We describe ViCAR’s contributions in detail, how to use them, and how they fit into VyZX and other
projects with categorical structure. We conclude the paper with some discussion of the next steps for ViCAR.

2 Background

Formal verification and the Coq proof assistant Formal verification is grounded in the idea that we can
mathematically prove that a computer program satisfies a specification. This guarantees that a given piece of
software performs as expected on all possible inputs. Formal verification research focuses on developing
new and more effective techniques for these kinds of proofs. One approach uses proof assistants, which are
software (usually programming languages) that allow users to express and prove various constructs, often
mathematical, in code.

Among the most widely-used proof assistants is Coq [7]. It allows for writing definitions in the style
of a dependently-typed programming language and proving statements in the style of mathematical proof.
One powerful Coq mechanism is custom tactics, written in the Ltac language, which automate repetitive
tasks across proofs. Often, Coq libraries offer a set of tactics to abstract away technical details and perform
complex actions. ViCAR aims to provide such tactics for users verifying projects which have categorical
structure.

Symmetric monoidal categories Following the definition of Selinger [19], a (planar) monoidal category
consists of a base category C equipped with a bifunctor ⊗ : C ×C → C called the tensor product. The
tensor product is required to be unital and associative, which means there are natural isomorphisms whose
components are, for objects A,B,C ∈ C ,

λA : 1⊗A ∼−→ A, (left unitor)

ρA : A⊗1 ∼−→ A, (right unitor)

αA,B,C : (A⊗B)⊗C ∼−→ A⊗ (B⊗C). (associator)

(A⊗1)⊗B A⊗ (1⊗B) (A⊗B)⊗ (C⊗D)

((A⊗B)⊗C)⊗D A⊗ (B⊗ (C⊗D))

A⊗B (A⊗ (B⊗C))⊗D A⊗ ((B⊗C)⊗D)

αA,1,B

idA⊗λBρA⊗idB

αA⊗B,C,D αA,B,C⊗D

αA,B,C⊗idD

αA,B⊗C,D

idA⊗αB,C,D

Figure 1: The triangle identity (left) and the pentagon identity (right)

3

These natural isomorphisms are required to be coherent. Concretely, this means any diagram of a certain
formal class made only of associators and unitors must commute (for details, see Selinger [19]). This
requirement boils down to proving the commutativity of just two types of diagrams [9]. Specifically, a
monoidal category C is coherent if and only if the diagrams in Figure 1 commute for all A,B,C,D ∈ C [9]

A monoidal category can further be braided, meaning that there is a natural isomorphism whose compo-
nents are, for objects A,B ∈ C ,

βA,B : A⊗B ∼−→ B⊗A. (braiding)

Again, two diagrams called the hexagon identities, which this time involve braiding, must commute. Finally,
a braided monoidal category is symmetric if, for all A,B ∈ C ,

βA,B ◦βB,A ≃ 1. (symmetry)

Essentially, symmetric monoidal categories have an almost-commutative tensor product. We choose to focus
on monoidal and symmetric monoidal categories because of their prevalence and natural correspondence
to string diagrams [19]. String diagrams are a graphical way to represent morphisms, useful for parsing
complex structure. One of our goals is to unify verification, which is almost always text-based, with visual
reasoning. String diagrams are the platform for doing so for monoidal categories. We define them concretely
in Section 4.

Categories in verification In mathematics and computer science, symmetric monoidal categories are
everywhere. Commonly seen examples include the category of sets, the category of finite vector spaces,
and the simply-typed lambda calculus. In verification, active projects whose core structure is a symmetric
monoidal category include the verification of the ZX-calculus [16] and that of causal separation diagrams [3].
The ZX-calculus is a graphical language for expressing quantum computation, while causal separation
diagram allow us to reason about parallel processes. Both constructs independently satisfy the definitions of
a symmetric monoidal category, though this fact is not directly used in their verification.

Despite being in completely different domains, because of their shared structure, the ZX-calculus and
causal separation diagram have properties in common that should be exploited to ease their verification. This
is the idea that inspired ViCAR and the gap in formal verification that we wanted to address1. We bridge
this gap with our framework for instantiating monoidal categories, our generalized rewriting tactics, and our
morphism visualizer. We prioritize automation and ease—we want users to be able to use ViCAR’s features
in their own proofs with minimal additional effort.

Other projects attempt to unify categorical reasoning, proof assistants, and visualization. The Chyp proof
assistant, for one, allows users to state rewrite rules axiomatically and produces string diagrams to visualize
the rules in action [15]. ViCAR takes the alternative approach of requiring users to prove their structures are
instances of predefined category typeclasses. In exchange for this effort, ViCAR proofs can be used within
the greater context of the Coq proof assistant and augment existing Coq projects. ViCAR’s approach allows
us to use categorical reasoning to verify existing software, while Chyp is able to more easily handle rewrites
modulo associativity.

3 Constructively defining categories in Coq

There are several preexisting examples of implementing category theory in Coq [10, 12]. Though many
of these libraries have significant developments, we found they did not align with all of our goals. For

1We note that VyZX and causal separation diagrams are implemented in different proof assistants, Coq and Agda, respectively.
We chose to use Coq for ViCAR.

4 3 CONSTRUCTIVELY DEFINING CATEGORIES IN COQ

Class MonoidalCategoryCoherence {C : Type} {cC : Category C}
{cCh : CategoryCoherence cC} (mC : MonoidalCategory cC) : Type := {

triangle (A B : C) :
α_ A, I, B ◦ (id_ A ⊗ λ_ B)
≃ ρ_ A ⊗ id_ B;

pentagon (A B M N : C) :
(α_ A, B, M ⊗ id_ N) ◦ α_ A, (B × M), N ◦ (id_ A ⊗ α_ B, M, N)
≃ α_ (A × B), M, N ◦ α_ A, B, (M × N);

(* Remainder omitted *)
}.

Listing 1: The triangle and pentagon identities in the MonoidalCategoryCoherence typeclass.

instance, we want to separate structural definitions from coherence conditions to enable easy visualization
of category instances, independent of their semantics. Moreover, when working with categories in practice,
some notion of morphism equivalence is assumed, so we benefit by making this explicit in formal verification.
For ViCAR, we are interested in category theory as a means to generalize shared structure. Our library is to
be instantiated by active verification projects across a range of domains. We made a number of technical
decisions to reflect this purpose.

We implement our categorical definitions using a hierarchy of Coq typeclasses [20], a mechanism similar
to interfaces in object-oriented programming. Typeclasses specify and label a collection of types, possibly
dependent on each other, and instances of that typeclass must provide a concrete term for each type. For
example, Listing 1 gives the part of the typeclass for monoidal categories which translates the coherence
conditions from Figure 1. Typeclasses can also inherit from each other. ViCAR’s typeclass hierarchy starts
with the base category, then monoidal category, braided monoidal, and finally symmetric monoidal. A project
may instantiate as many typeclasses as is suitable for its purposes.

A benefit of using typeclasses is Coq’s inference mechanism, which automatically searches for typeclass
instances [20]. This avoids having to reference a particular instance every time one of its terms is used. For
example, suppose an instance catC of our category typeclass has been declared whose objects have type C.
Then, if A,B and M are terms of type C and f and g have types A⇝ B and B⇝M, the expression f ◦ g would
type check without the user having to explicitly point to the particular instance. Coq would automatically
retrieve it, determining that morphism composition ◦ should be taken as defined by catC.

One important way ViCAR differs from existing formalizations of category theory is its separation of
structural definitions from coherence conditions. Each abstract category has a typeclass containing just the
necessary structures, such as identity or the associator, and a different typeclass specifying its coherence
conditions. There are two separate hierarchies accordingly. The benefit is that users can access the visualizer
without having to prove coherence, which may be more demanding. Instantiating a structural typeclass with
existing definitions is enough to begin using our visualizer. Of course, without proving coherence, one has
no guarantee that the provided structure actually satisfies the criteria of an abstract category, and therefore
cannot use our automation.

Another way ViCAR diverges from other formalizations is by requiring users to supply an explicit
equivalence relation for morphisms, denoted ≃, instead of always using built-in equality. Using such an
equivalence relation is necessary for many standard constructions because Coq does not support performing a
quotient by an equivalence relation. By working over the supplied morphism equivalence, we maintain this
flexibility that many implementations rely on. We also chose to use a diagrammatic compose for the notation
◦, as our project focuses on visualization.

5

f g h

Figure 2: Visualization of both f ◦ (g◦h) and (f ◦g)◦h in traditional string diagrams.

(a) ViCAR visualization of (f ◦ g) ◦ h. (b) ViCAR visualization of f ◦ (g ◦ h).

Figure 3: How ViCAR renders parentheses.

4 Visualization

Categorical String Diagrams Reasoning about morphisms in categories is assisted by the use of string
diagrams, an associated graphical language. String diagrams visually represent monoidal categories that
are ordinarily represented in text form. Their notation focuses on morphisms rather than objects and can
therefore very concisely represent complicated expressions. We visualize our categories as string diagrams to
reduce cognitive overhead during proof.

Traditional string diagrams omit details such as associativity, so both f ◦ (g ◦ h) and (f ◦ g) ◦ h are
visualized as Figure 2, for example. This is useful for pen-and-paper proofs but not for proof assistants—
formal proofs require each “obvious” detail to be addressed. In Coq, f ◦ (g◦h) and (f ◦g)◦h are two distinct
terms, equivalent only via rewriting (applying a theorem which states they are equal). Identifying necessary
rewrites is essential to the proof engineering workflow, so we tweaked ViCAR’s string diagram notation
to maintain all parenthesizing explicitly. We represent these parentheses by circumscribing boxes, and the
differences can be easily identified as in Figure 3.

Our visualizations, while convenient for formal proof, are more verbose and add layers of complexity
over the simpler diagrams. Future extensions of ViCAR hope to solve this problem, by automatically
handling structure. This would allow for diagrams to be canonically represented and for proof engineers to
no longer focus on structural rewrites. While work has been done on rewriting in Coq modulo associativity
and commutativity, we found none of it sufficient for what ViCAR needs [2]. The current gap between
existing modulo associativity rules and this project relates to rules that depend on the interactions between
two operators, like (f ◦g)⊗ (h◦ t)≃ (f ⊗h)◦ (g⊗ t). There are promising directions being developed on
top of e-graph based equality saturation, as we discuss in Section 7.

Visualization semantics and workflow ViCAR allows for visualization of morphisms and morphism
equivalences over base category instances up to symmetric monoidal ones. We unlock functionality as we
deal with more expressive categories.

• A morphism f : A⇝ B is visualized as a quadrilateral, marked with A on the left and B on the right.

• The identity morphism for A is denoted by a wire (horizontal line) with A annotating the input and
output positions.

• Morphisms are composed by placing them side-by-side horizontally.

6 5 AUTOMATION

Figure 4: A visualization of the triangle identity.

• In monoidal categories, morphisms are tensored by placing them side-by-side vertically.

• Taking the inverse of the morphism is rendered in a box attached to left of the morphism.

• An isomorphism is a morphism with an emphasized bounding box.

• Category-specific terms, such as the associator, are identified as such (with the notation from Section 2).

• In braided monoidal categories, the braiding is rendered as a big cross.

An example which uses several of these features can be seen in Figure 4, which displays the statement of the
triangle identity from Listing 1.

One of ViCAR’s most convenient features is its integration into the Coq proof-writing workflow. ViCAR
is connected to the coq-lsp VSCode extension [8], which type checks dynamically and prints the current goal
state (hypotheses and statements yet to be proved) based on cursor position within a proof. The visualizer
renders a string-diagrammatic goal state, alongside the printed one, and updates automatically as the goal
changes. The user’s setup can be seen in Figure 5.

Because of this integration, the visualizer is able to use real-time hypothesis information to inform
rendering choices. This is useful for distinguishing overloaded notation or opaque variables. For example, if
the variable f in a proof state is a morphism from A to B, the visualizer will make this clear while the goal
may not show it explicitly. Association and the effect of braiding may also be unclear from the proof state.
The visualizer consults the hypothesis to check the type of each morphism and uses this information to label
the inputs and outputs of each morphism’s box.

5 Automation

Categorical structure gives a well-defined domain on which we can develop partial proof automation.
Specifically, we can automate proofs of statements that two morphisms are equivalent. This is the form of
many theorems in verification projects with monoidal structure. For example, theorems about matrices take
the form that certain matrices are equal, and theorems about the ZX-calculus take the form that diagrams
are proportional. These types of proofs generally consist of rewrites and share common techniques, such as
manipulation of the underlying categorical structure. In this section, we explain ViCAR’s tactics and how
they can help with these proofs.

7

Figure 5: User’s proof-writing IDE state

Coercing to categories Coq will often fail to apply general categorical lemmas to proofs about specific
typeclass instances because it cannot recognize which terms correspond to categorical structures. For example,
suppose the category of matrices (defined in full in Section 6.3) has been declared as a typeclass instance,
with composition and identity given by matrix multiplication and the identity matrix. It would not be possible
to rewrite the term I_n × A with the lemma whose statement is id_ A ◦ f ≃ f. Coq fails to recognize that × is
the composition of a declared category instance and I_n is the identity.

To address this gap, we provide the tactic categorify. It performs setup necessary for our automation
to identify the structure of the goal. For the category of matrices, calling categorify would replace each
instance A × B of matrix multiplication with categorical composition, A ◦ B, and the same for all other terms
used to define to the instance. In practice, when using ViCAR, this serves as a setup tactic. At the beginning
of the proof, categorify is called, which unlocks all the functionality of the visualizer and automation,
provided the relevant structural and coherence instances have been defined.

Foliation A common representation of a morphism is a foliation [6]. A foliation is a composition of “stacks,”
each of which is the tensor of identity morphisms and a single non-identity morphism. Such a representation
exists for any diagram and can be considered a standard form and useful for proofs [6]. Formally proving this
result for categorical instances, however, requires the complex notion that some morphisms are atomic with
respect to this decomposition. For example, in the category of matrices, it is hard to define when a matrix
should be decomposable with respect to matrix multiplication and Kronecker product (the tensor product).
Our tactic foliate computes a foliation of a given morphism from any monoidal categorical instance, proves
they are equivalent, and replaces the morphism with its foliation. Often, a full foliation is undesirable,
and a more concise form is preferable. The weak_foliate tactic performs a partial foliation that allows
multiple non-identity morphisms in a stack, but still ensures no stack contains a composition. An example of
weak_foliate and foliate is given in Figure 6 on (f ◦ g) ⊗ h. Its partial foliation is f ⊗ h ◦ g ⊗ id_ M and
its full foliation is f ⊗ id_ A ◦ (id_ B ⊗ h ◦ g ⊗ id_ M).

Associativity: partnering and rewriting A recurring task in many Coq projects is dealing with associativ-
ity. Coq expressions have explicit association, so to rewrite a subterm of a sequence of compositions, it is
often necessary to perform several rewrites using associativity rules. Even the expression g ◦ f ◦ f^−1 cannot
be rewritten to g directly, requiring first a rewrite using the associativity condition. In larger expressions,

8 5 AUTOMATION

(a) Initial state. (b) Weak foliation. (c) Foliation.

Figure 6: Visualization of foliation tactics on (f ◦ g) ⊗ h.

the reassociations which must be performed can be quite laborious to specify manually. We provide several
tactics to automate this work.

First, we define the partner tactic, which takes two terms as arguments and attempts to reassociate the
goal to make these terms syntactically adjacent. After calling partner f g, we get (f ◦ g) as a subterm of the
goal, assuming it can isolated by reassociation.

Building on this technique, we also define the assoc_rw tactic, which takes a lemma as an argument
and attempts to reassociate the goal such that the lemma can be rewritten. This works for any lemma
whose conclusion, possibly quantified over arguments, has the form F ≃ g, where F is some sequence of
compositions and g is any morphism. This tactic allows a user to entirely ignore the association of the goal,
and simply rewrite according to the sequence of morphisms present in the goal. For example, given a lemma
f ◦ g ≃ h, assoc_rw would rewrite its occurrence in the expression i ⊗ (e ◦ f ◦ g), even though this requires
reassociation within the argument to the tensor product.

These tactics together entirely obviate the need for manual association of the goal. This delivers on one
part of the motivation for using string diagram representations of morphisms: such representations implicitly
encode the coherence conditions of monoidal categories by means of topological irrelevance [19]. While
full topological irrelevance is hard both to define and to prove within Coq, suppressing the consideration of
association is a first step in this direction.

Simplifying the goal state Building on these tactics, we provide a number of tactics to simplify the goal
state. The tactic cancel_isos will cancel any isomorphism adjacent to its inverse, independent of associativity.
This is particularly useful for eliminating structural morphisms that accumulate by applications of naturality
properties. The tactic cat_simpl combines this cancellation with the removal of identity morphisms. These
tactics give a quick way to perform common simplifications of a goal without having to consider association.
The tactic cat_easy attempts to solve goals that are fundamentally structural, and not too complicated. It
will cancel isomorphisms and identities, right-associate the goal, and perform weak foliation until the goal is
solvable by reflexivity.

Listing 2 and Figure 7 give an example of these tactics in action to almost completely automate a
proof. The assoc_rw tactic automatically associates the goal to apply the given lemma, a braiding coherence
condition. cancel_isos then reassociates and cancels out the braiding and its inverse. These tactics can be
applied to any proof for a concrete instance, after first calling categorify.

9

Lemma assoc_rw_example {A B M N : Cobj}
(f : A ∼> B) (g : M ∼> N) :
(β_ A, M)^-1 ◦ f ⊗ g ◦ β_ B, N
≃ g ⊗ f.

Proof.
assoc_rw braiding_natural. (* apply braiding lemma *)
cancel_isos. (* cancellation *)
reflexivity.

Qed.

Listing 2: ViCAR’s tactics being used to easily solve an example lemma.

(a) Initial goal state. (b) Applying a braiding lemma. (c) Canceling.

Figure 7: Visualization at each step of Listing 2.

6 Example uses of ViCAR

6.1 VyZX

The ZX-calculus is a graphical language to represent quantum operations [5]. Each ZX-diagram represents a
linear transformation between qubits and consists of red and green nodes connected by wires. ZX’s appeal is
that its rewrite rules are easily visualized as graph manipulations. ZX-diagrams can be visually transformed
into any equivalent diagram using a finite set of rewrites. The ZX-calculus has been used for simulation [14],
circuit optimization [13], and fault tolerance [1] work. For a deeper introduction to the ZX-calculus, refer to
one of these surveys [21, 4].

VyZX (Verifying the ZX-Calculus) is an effort to formalize the ZX-calculus in Coq [16]. It gives inductive
definitions for diagrams and interprets them through standard matrix semantics for the ZX-calculus. The
ZX-calculus corresponds to a symmetric monoidal category whose objects are natural numbers (representing
the number of input and output wires) and whose morphisms are ZX-diagrams. Horizontal composition of
morphisms (connecting the input and output wires of two diagrams) is associative. The tensor product is
given by vertically stacking diagrams, corresponding to addition on natural numbers with identity object 0.
The morphism identity given for a natural number n is n wires with no nodes, since composition with this
object does not affect any diagram.

As VyZX is a well-developed verification library, most of these categorical structures and necessary
lemmas already existed. As a result, the coherence conditions for these morphisms were straightforward to
prove. The braiding was easily implemented, but proving naturality was a significant task. Fortunately, this
task was made easier by proving naturality of braiding for matrices, as discussed in 6.3.

10 6 EXAMPLE USES OF VI CAR

Figure 8: Visualization of the statement (zx0↔ zx1) ↕ n_wire p ∝ (zx0 ↕ n_wire p) ↔ (zx1 ↕ n_wire p).

The VyZX visualizer, ZXVIZ, displays ZX-diagrams by parsing an expression into its building blocks
and generating a string diagram. We modified ZXVIZ to work for general category instances, abstracting the
specific display style used for ZX-diagrams and significantly reworking the foundation of the visualizer to
work in the context of a general category. Figure 8 gives an example of ViCAR’s visualizer for a ZX-specific
lemma, where zx0 and zx1 are ZX-diagrams. Its string diagram makes clear this lemma is really just a
structural result.

ViCAR grew out of VyZX in an attempt to separate rules specific to the ZX-calculus from rules which
are common to any symmetric monoidal category. Typical ZX-calculus literature does not reason about such
structure but rather about ZX-diagrams as graphs. Therefore, future VyZX development can benefit from
ViCAR’s automation by being able to better ignore structural manipulation of ZX-diagrams.

6.2 Calculus of Relations

In contrast to the previous implementation, the calculus of relations is not a pre-existing Coq project. Its
implementation follows the book Picturing Quantum Processes [6]. To adapt this work to Coq, we define
the objects of our category to be types, and we define morphisms between types T and S to have type
T→ S→ Prop. As this is defined over any T and S, it can be easily applied to any specific example. By
defining base relations such as sibling and parent over a type person, we can construct and visualize
relations such as uncle in Figure 9. While relations are a toy example, they do demonstrate some insights.

Our implementation of relations was made with ViCAR in mind, and so all proofs are intended for our
typeclasses. However, categorical structure is far from a complete description of the properties of relations.
For example, it is natural to want to describe the transitive closure of a relation R : T→ T→ Prop. There is no
clear way to do this solely using categorical construction. Instead, we are able to use Coq’s built-in capabilities
to describe a very similar construct: given R : T→ T→ Prop, we define R^n, the repeated application of R
n times. We can then construct the transitive closure diagrammatically as ρ_ A ◦ (id_ A ⊗ any_nat) ◦ R^n,
where any_nat is a relation that relates unit to any nat. By having ViCAR embedded in an existing proof
assistant, we gain the ability to easily create new morphisms as needed and can reason about both structure
and properties specific to a particular instance, together.

6.3 Matrices

The collection of vector spaces over a field k form the category Vectk whose morphisms are linear transforma-
tions of spaces. This is a monoidal category with respect to the tensor product of vector spaces, with identity

11

Figure 9: Visualizing the “uncle” relation between two people, parent ◦ brother. (Note that this is diagram-
matic composition; parent precedes brother.)

element k. Moreover, this monoidal category is braided, as V ⊗W ∼=W ⊗V .
A commonly-used subcategory of Vectk is the category FinDimVectk of finite-dimensional vector spaces,

which is a braided monoidal category in exactly the same way. FinDimVectk has a skeleton given by vector
spaces of the form kn for n ∈N. This skeleton is isomorphic to the category whose objects are natural numbers
and whose morphisms from n to m are the n×m matrices over k, representing linear transformations kn → km.
We implement that category for k = C based on the matrices in the QuantumLib library [11], which provides
verified mathematics for quantum computing in Coq. VyZX defines its semantics in terms of QuantumLib
matrices.

QuantumLib already implements most of the definitions and lemmas required to instantiate a category.
Matrices in QuantumLib are defined as functions N→N→C. The dimensions of QuantumLib matrices are
not enforced by the type checker, but instead given as “phantom types” to guide the programmer [18]. This
lack of strict dimensions makes the construction and use of the associator and unitors very straightforward.

We implement our category instances using bounded equivalence (≡) as our morphism equivalence, which
says that matrices A,B of dimension n×m are equivalent if they are equal on all entries within their bounds.
The majority of the work in showing matrices are a braided monoidal category involves showing the naturality
condition of the braiding. In this category, the braiding is given by the commutation matrices Kn,m, which
have the property that for any n×m matrix A and p×q matrix B, we have Kp,n(A⊗B) = (B⊗A)Kq,m [17].
Due to phantom types, the associator and unitor can be defined as the identity matrix interpreted with the
appropriate dimensions. In proofs, these matrices can be immediately canceled, which makes the coherence
conditions easy to prove.

A diagrammatic representation of matrix expressions involving the Kronecker can reveal facts which
textual representations obscure. For instance, Figure 10 shows the distributivity of the Kronecker product
over matrix multiplication. The diagrammatic depiction of this equality highlights the structure of the vector
spaces on which these matrices act, making a non-obvious equation more believable.

7 Future Directions

ViCAR provides a framework for visualization and automated rewriting by defining typeclasses for categori-
cal and monoidal structure. The language of string diagrams can further describe rigid symmetric monoidal
categories, with the unit and counit of the category depicted as half turns [19]. ViCAR can be extended with
this structure, allowing it to capture a wide variety of process theories.

The coherence conditions in our typeclass definitions have been proven sufficient to show the coherence
of the respective categorical structures. If formalized in Coq, these results could enable much stronger
diagrammatic reasoning by allowing large purely structural rewrites to be performed immediately, rather than
having to manually prove the specific instance of coherence necessary to perform the replacement.

12 7 FUTURE DIRECTIONS

Figure 10: Visualization of the Kronecker mixed-product, (A⊗C)× (B⊗D)≡ (A×B)⊗ (C×D).

Many symmetric monoidal categories are interpreted using a semantics function. In fact, the semantics
are often used to define morphism equivalence. We aim to provide infrastructure within ViCAR to allow
translation between different symmetric monoidal categories for semantic interpretation. This would greatly
simplify constructs in categories equipped with a ViCAR-based semantics by lifting them.

Seeing the advantage that the assoc_rw tactic gives us, we want to further expand the capabilities of
rewriting structure. In fact, we would like to completely be able to rewrite without worrying about structure.
To achieve this goal, we are working on an e-graph equality saturation-based solver for different structural
configurations. The solver will work by ingesting Coq statements into a custom AST and then the e-graph
solver will use the structural rewrite rules in ViCAR. Once a proof is found, it will be exported into Coq and
checked.

References

[1] Hector Bombin, Daniel Litinski, Naomi Nickerson, Fernando Pastawski & Sam Roberts (2023): Unifying flavors
of fault tolerance with the ZX calculus. arXiv:2303.08829.

[2] Thomas Braibant & Damien Pous (2011): Tactics for reasoning modulo AC in Coq. In: International Conference
on Certified Programs and Proofs, Springer, pp. 167–182.

[3] Jonathan Castello, Patrick Redmond & Lindsey Kuper (2023): Inductive diagrams for causal reasoning.
arXiv:2307.10484.

[4] Bob Coecke (2023): Basic ZX-calculus for students and professionals. arXiv:2303.03163.

[5] Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz, editors: Automata, Languages and
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 298–310, doi:10.1007/978-3-540-70583-3_25.

[6] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and
Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.

[7] The Coq Development Team (2012): The Coq Reference Manual, version 8.4. Available electronically at
http://coq.inria.fr/doc.

[8] The Coq LSP Developers (2023): GitHub - ejgallego/coq-lsp: Visual Studio Code Extension and Language Server
Protocol for Coq — github.com. https://github.com/ejgallego/coq-lsp.

[9] Samuel Eilenberg & G Max Kelly (1966): Closed categories. In: Proceedings of the Conference on Categorical
Algebra: La Jolla 1965, Springer, pp. 421–562.

https://arxiv.org/abs/2303.08829
https://arxiv.org/abs/2307.10484
https://arxiv.org/abs/2303.03163
http://dx.doi.org/10.1007/978-3-540-70583-3_25
http://dx.doi.org/10.1017/9781316219317
http://coq.inria.fr/doc
https://github.com/ejgallego/coq-lsp

13

[10] Jason Gross, Adam Chlipala & David I Spivak (2014): Experience implementing a performant category-theory
library in Coq. In: Interactive Theorem Proving: 5th International Conference, ITP 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings 5, Springer, pp. 275–291.

[11] INQWIRE Developers (2022): INQWIRE QuantumLib. Available at https://github.com/inQWIRE/
QuantumLib.

[12] John Wiegley (2022): Category Theory in Coq. Available at https://github.com/jwiegley/
category-theory.

[13] Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning. In Bob
Coecke & Matthew Leifer, editors: Proceedings 16th International Conference on Quantum Physics and Logic,
Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical Computer
Science 318, Open Publishing Association, pp. 229–241, doi:10.4204/EPTCS.318.14.

[14] Aleks Kissinger & John van de Wetering (2022): Simulating quantum circuits with ZX-calculus reduced stabiliser
decompositions. Quantum Science and Technology 7(4), p. 044001.

[15] Alex Kissinger (2023): GitHub - akissinger/chyp: An interactive theorem prover for string diagrams — github.com.
https://github.com/akissinger/chyp.

[16] Adrian Lehmann, Ben Caldwell, Bhakti Shah & Robert Rand (2023): VyZX: Formal Verification of a Graphical
Quantum Language. arXiv:2311.11571.

[17] Jan R. Magnus & H. Neudecker (1979): The Commutation Matrix: Some Properties and Applications. The
Annals of Statistics 7(2), pp. 381–394. Available at http://www.jstor.org/stable/2958818.

[18] Robert Rand, Jennifer Paykin & Steve Zdancewic (2018): Phantom Types for Quantum Programs. Available at
https://popl18.sigplan.org/event/coqpl-2018-phantom-types-for-quantum-programs. Talk at
The Fourth International Workshop on Coq for Programming Languages (CoqPL ’18).

[19] P. Selinger (2010): A Survey of Graphical Languages for Monoidal Categories. In: New Structures for Physics,
Springer Berlin Heidelberg, pp. 289–355, doi:10.1007/978-3-642-12821-9_4.

[20] Matthieu Sozeau & Nicolas Oury (2008): First-Class Type Classes. In: Proceedings of the 21st Inter-
national Conference on Theorem Proving in Higher Order Logics, TPHOLs ’08, Springer-Verlag, Berlin,
Heidelberg, p. 278–293, doi:10.1007/978-3-540-71067-7_23. Available at https://doi.org/10.1007/
978-3-540-71067-7_23.

[21] John van de Wetering (2020): ZX-calculus for the working quantum computer scientist. arXiv:2012.13966.

https://github.com/inQWIRE/QuantumLib
https://github.com/inQWIRE/QuantumLib
https://github.com/jwiegley/category-theory
https://github.com/jwiegley/category-theory
http://dx.doi.org/10.4204/EPTCS.318.14
https://github.com/akissinger/chyp
https://arxiv.org/abs/2311.11571
http://www.jstor.org/stable/2958818
https://popl18.sigplan.org/event/coqpl-2018-phantom-types-for-quantum-programs
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://arxiv.org/abs/2012.13966

	Introduction
	Background
	Constructively defining categories in Coq
	Visualization
	Automation
	Example uses of ViCAR
	VyZX
	Calculus of Relations
	Matrices

	Future Directions

