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Decomposition methods such as primal and
dual decomposition are fundamental tools to de-
velop distributed solution algorithms for large
scale optimization problems arising in machine
learning [I], optimal control [2], and operations
research [3]. These methods generally work
by splitting a large problem into several sim-
pler subproblems and repeatedly solving these
to arive at a solution to the original problem.
As such, decomposition methods are most nat-
urally applicable to problems which themselves
are composites of subproblems, for some appro-
priate notion of composition. We say that such
problems have compositional structure.

This talk, based on our arXiv preprint [4], in-
troduces a category theoretic framework which
unifies various first-order optimization decompo-
sition methods under the single abstraction of a
morphism of operad algebras. Specifically, we use
algebras on the operad of undirected wiring dia-
grams (UWDs) [5, 6] to model the compositional
structure of various classes of optimization prob-
lems. The central idea of our framework can then
be summarized as follows. If a first-order opti-
mization algorithm defines an algebra morphism
from a UWD-algebra of optimization problems
to a UWD-algebra of dynamical systems, that
algorithm decomposes problems defined on arbi-
trary UWDs. Furthermore, applying such a mor-
phism to a problem generates a dynamical sys-
tem to solve the problem in a distributed fashion
using message passing semantics. Our main con-
tribution is to construct several instances of this
general pattern, shown in Figure, and demon-
strate how these can be used to recover primal
and dual decomposition algorithms for problems
with arbitrary UWD structure.

This novel perspective on decomposition al-
gorithms allows us to derive a new sufficient
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Figure 1: The hierarchy of results presented in
our paper. Nodes represent the various UWD-
algebras developed including those for compos-
ing saddle problems, convex problems, concave
problems, all with and without differentiabil-
ity assumptions, as well as composing determin-
istic and non-deterministic dynamical systems.
Hooked arrows indicate that there is an inclusion
of one algebra into another. Non-hooked arrows
are the algebra morphisms including gradient de-
scent (gd), gradient ascent-descent (ga-d) and
the primal-dual subgradient method (pd-subg).
Composing the inclusions with the gradient al-
gebra morphisms yields (sub)gradient descent for
convex problems and (super)gradient ascent for
concave problems.
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Figure 2: A graphical depiction of primal decomposition for a given problem in our framework.
The left diagram is an Opt-UWD while the right diagram is a Dynam-UWD. Gradient descent gives

a structure preserving map.

condition for when a problem is decomposable:
namely, if the translation of problem data into
the associated optimization problem furnishes an
algebra morphism from a UWD-algebra of data
to one of our algebras of optimization problems.
We refer to this as the compositional data con-
dition. To demonstrate the use of this suffi-
cient condition, we show that the minimum cost
network flow (MCNF) problem defines an alge-
bra morphism from a UWD-algebra of flow net-
works to the UWD-algebra of unconstrained con-
cave optimization problems, which when com-
posed with the gradient ascent morphsim recov-
ers a generalization of the standard dual decom-
position algorithm for solving MCNF which re-
spects arbitrary hierarchical decompositions of
flow networks. We briefly discuss our implemen-
tation of this framework in the Julia program-
ming language and provide experiments showing
that exploiting hierarchical compositional struc-
ture yields faster solution algorithms.

References

[1] Stephen Boyd. Distributed Optimization and
Statistical Learning via the Alternating Di-
rection Method of Multipliers. Foundations
and Trends®) in Machine Learning, 3(1):1-
122, 2010.

[2] Pontus Giselsson, Minh Dang Doan, Tamés
Keviczky, Bart De Schutter, and Anders
Rantzer. Accelerated gradient methods and
dual decomposition in distributed model pre-
dictive control. Automatica, 49(3):829-833,
March 2013.

[3] J. F. Benders. Partitioning procedures for
solving mixed-variables programming prob-
lems. Numer. Math., 4(1):238-252, dec 1962.

[4] Tyler Hanks, Matthew Klawonn, Evan Pat-
terson, Matthew Hale, and James Fairbanks.
A compositional framework for first-order op-
timization. arXiv preprint arXiw:2403.05711,
2024.

[5] David I. Spivak. The operad of wiring dia-
grams: formalizing a graphical language for
databases, recursion, and plug-and-play cir-
cuits, May 2013. arXiv:1305.0297 [cs, math].

[6] Brendan Fong
Hypergraph Categories,
arXiv:1806.08304 [cs, math].

and David 1. Spivak.
January 2019.



