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Organizing physics has been a long-standing preoccupation of applied category theory, going back at
least to Lawvere. We contribute to this research thread by noticing that Hamiltonian mechanics and
gradient descent depend crucially on a consistent choice of transformation—which we call a reaction
structure—from the cotangent bundle to the tangent bundle. We then construct a compositional theory
of reaction structures. Reaction-based systems offer a different perspective on composition in physics
than port-Hamiltonian systems or open classical mechanics, in that reaction-based composition does
not create any new constraints that must be solved for algebraically.

The technical contributions of this paper are the development of symmetric monoidal categories of
open energy-driven systems and open differential equations, and a functor between them, functioning
as a “functorial semantics” for reaction structures. This approach echoes what has previously been
done for open games and open gradient-based learners, and in fact subsumes the latter. We then
illustrate our theory by constructing an n-fold pendulum as a composite of n-many pendula.

1 Introduction

A long-standing goal of applied category theory is to provide compositional frameworks for physical
systems [Law80]. In this paper, we introduce a compositional framework for a generalization of both
systems based on Hamiltonian mechanics and general systems which perform gradient descent. In this
framework, systems interact by sending each other gradients. These gradients are converted to motion
(that is, tangent vectors) by what we call a reaction. In Hamiltonian dynamics, the reaction arises from
the symplectic structure and in gradient descent, the reaction arises from a Riemannian structure.

In Section 2 we explain the basic intuition: at the core, Hamiltonian dynamics and gradient descent
on a manifold X both depend on a map R : T ∗X −→ T X , which translates gradients into motion. One
can imagine this as a functional version of argmax, in that given a “valuation” function ϕ : TxX −→ R,
one obtains a choice of element R(ϕ) ∈ TxX . But whereas gradient descent really does choose a tangent
direction that maximizes change along the gradient, Hamiltonian dynamics does almost the opposite,
choosing a tangent direction with zero change along the gradient.

Our compositional framework is bidirectional but oriented. This means that some parts of an open
system are deemed inputs whereas other parts are deemed outputs. For example, in a pendulum, the input
is the position and momentum of the pivot point, and the output is the position and momentum of the
bob, which another system may take as input. However, the system receives gradients on its output, and
sends gradients to its input. This can be pictured in the following way.
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We begin in Section 2 by reviewing Hamiltonian and gradient descent systems and their commonalities,
motivating the ensuing developments. Then we define symmetric monoidal category of open energy-driven
systems in Section 3; there the bidirectionality is not explicit, but instead there is an explicit choice of
reaction R. In Section 4 we define a functor that assigns these systems a bidirectional semantics in terms
of parametric lenses. We do so in two steps, the first of which is more likely generalizable and the second
of which is conceptually simpler. These semantics land in lens categories, which are now well-known in
categorical machine learning literature. In fact our semantics in inspired by [FST19, CGG+22], which
we extend to general smooth manifolds.

Finally, Section 5 we give examples of these ideas, including a n-fold pendulum constructed by
composing single pendula.

1.1 Related work

This framework is connected to a variety of other attempts to formalize physical systems within applied
category theory.

• The title of this paper is a pun based on the double category Org that was first developed by the
third-named author in [Spi22, SS23]. One way of thinking about this paper is that it develops a
“continuous version of Org.”

• Another approach to “systems exerting force on each other” is port-Hamiltonian systems, which
has been developed categorically by the second-named author in [Lyn22], [LLL24]. However, the
doctrine of composition developed for port-Hamiltonian systems is undirected and relational, and
so a computer implementation of this composition would require solving differential-algebraic
equations in a similar way to [MGA+21] rather than just differential equations. In contrast,
the framework in the current paper gives an “input-output” view on physical systems, and thus
composition does not introduce new constraints that must be solved for. In future work, we hope to
give an account of the relationship between the directed and undirected accounts of composition.

• Classical mechanics has been previously treated from a category theoretic viewpoint via spans
of symplectic manifolds [BWY21]. However, like port-Hamiltonian systems, this approach is
essentially relational, necessitating semantics in differential-algebraic equations.

• We heavily rely on the Para construction and its functoriality, as well as using roughly the same
techniques of [CGHR22] for constructing our symmetric monoidal categories of open systems.

• The pattern of having a simple description of feedback systems that then gets compiled down to
parametric lenses of some sort follows what [Cap23] has shown for open games. The analogy with
gradient-based systems, formulated in terms of changes and valuations, already in appears in ibid.

• Resource sharing machines are another method of composing dynamical systems which has been
applied to dynamical systems for physics [LBPF22]. In contrast with the present approach, resource
sharing machines do not derive their dynamics from potentials and forces; rather a resource sharing
machine takes the vector field as primitive. However, we hope that in the future “resource-sharing
composition” will be available to use with the formalism of this paper.

1.2 Notational conventions

For composition, we use # to denote diagrammatic order.
For a bundle π : E −→ B, we denote the set of global sections by Γ(π) := {s : B −→ E | s #π = 1}. Given

another bundle π ′ : E ′ −→ B, we denote the bundle (over B) of fiberwise maps between them by [π,π ′].
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We denote by (Mfd,R0,×) the cartesian monoidal category of smooth manifolds and smooth maps
between them, although everything we’re saying works in well-behaved generalizations, such as diffeo-
logical spaces [Sou06]. We denote the circle by S1 ∈ Mfd. The wide subcategory of smooth manifolds
and isomorphisms between them is denoted Mfdiso; from which it inherits the (no longer cartesian)
monoidal structure (R0,×).

1.3 Prerequisites

In order for the framework of this paper to be comprehensible, a certain amount of context must be given,
but also a certain amount of context must be omitted for brevity.

The context that we omit and we assume the reader to be already acquainted with is basic differential
geometry (definition and functoriality of tangent and cotangent bundles), and especially the theory
of vector bundles (we reference [KMS93]). We also expect the reader to be familiar with the Para
construction (see [FST19, CGHR22, CGG+22]) and its functorial properties, but we nonetheless spell
out the result when we invoke it.

It will also be help the reader to be familiar with Hamiltonian mechanics and gradient descent, but
we will briefly review these so that a sufficiently determined reader may get through this paper without
too much prior experience.

Lastly, while we kept this work strictly in the land of 1-categories for brevity, we use ideas from
categorical systems theory and think of our constructions as shadows of their essentially double-categorical
nature. So being aware of [Mye23a] is not required (except in passages where we explictly draw a
connection) but might help understanding the subtext.

2 Intuition

Hamiltonian mechanics and gradient descent have a common mathematical structure. We start by
reviewing them.

2.1 Hamiltonian mechanics

A Hamiltonian system consists of a state space X ∈ Mfd with a full-rank symplectic form ω ∈ Γ(T ∗X ∧
T ∗X) and a function H : X −→ R, called the Hamiltonian, which represents the system’s energy at any
x ∈ X . Applying ω and the sequence of maps

T ∗X ∧T ∗X −→ T ∗X ⊗T ∗X ∼= [T X ,T ∗X ]

we produce a section Kω ∈ Γ[T X ,T ∗X ], i.e. a linear map T X −→ T ∗X over X , which is invertible because
ω is full-rank. Call its inverse Jω ∈ Γ[T ∗X ,T X ]; we refer to it as the reaction associated to ω . Then the
dynamics of the system (X ,ω,H) are given by Hamilton’s equation, i.e. the differential equation

dx
dt

= Jω(x) dH(x) (1)

Note that the dynamics only depend on the reaction Jω rather than ω; we started with the symplectic
form to connect to the more conventional way of doing things, but we will almost exclusively only work
with reactions in the future.
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Remark 1. Notice how the assumptions on ω (non-degeneracy and antisymmetry) are not necessary for
J to be well-defined. In fact we get a reaction also from a Poisson structure [CFM21], this being simply a
symplectic structure for which the non-degeneracy axiom is relaxed. Practically, these can be used to
model dissipative Hamiltonian systems.

For any smooth manifold M ∈ Mfd of dimension n, there is a canonical symplectic structure on its
cotangent space X := T ∗M. Given a coordinate chart for M and the induced coordinate chart on T ∗M and
T M, the corresponding reaction J : T ∗

x X −→ TxX over x ∈ X has the following form

J(x) =
[

0 In

−In 0

]
(2)

where In is the (n×n)-identity matrix. Note that J(x) is independent of the choice of coordinate chart
[Arn13, Chapter 8].

Example 2. Consider the pendulum of fixed length l and mass m shown here

m

l

v

θ

(3)

The little dot is called the pivot and the big dot is called the bob. We can model this as a Hamiltonian
system by letting X = T ∗S1 with coordinates (θ ,L) representing angle and angular momentum. Then (2)
becomes

J(x) =
[

0 −1
1 0

]
because S1 is 1-dimensional. For a given map H : T ∗S1 −→ R, Eq. (1) reads

dθ

dt
=

∂H
∂L

,
dL
dt

=−∂H
∂θ

To model a pendulum as in (3) with kinetic and gravitational energy, we would make the following
Hamiltonian. First, we can compute several derived quantities from the variables of the system.

I = ml2 (moment of inertia)

ω =
L
I

(rotational velocity)

x = l
[

cosθ

sinθ

]
(position of the mass)

v = lω
[
−sinθ

cosθ

]
(velocity of the mass)

h = x2 = l sinθ (height of the mass)

The Hamiltonian is then the sum of kinetic and gravitational energy, written as

H(θ ,L) =
1
2

m∥v∥2 +mgh



M. Capucci, O. Lynch & D.I. Spivak 5

where g is gravitational acceleration. Plugging this H into Eq. (1) gives

dθ

dt
=

L
I

dL
dt

=−mgl cos(θ)

Definition 3. For any manifold X ∈ Mfd, a reaction on X is a map J : T ∗X −→ T X over X . The set of reac-

tions on X is denoted React(X). Given a diffeomorphism f : X
∼=−→Y , we denote by React( f ) : React(X)−→

React(Y ) the map sending J to the composite T ∗Y
T ∗ f−−→ T ∗X J−→ T X

T f−→ TY .

Remark 4. Reactions are also functorial on étale maps, i.e local diffeomorphisms.

2.2 Gradient descent

Gradient descent (or gradient ascent) is a very similar story. We start with a state space X along with a
Riemmanian metric g ∈ Γ(T ∗X ⊗T ∗X) and a function S : X −→ R. We apply the exact same procedure to
g that we did to ω in order to get a section M ∈ React(X), and then we get the equation

v(x) = M(x) dS(x)

Example 5. Let X = R2 with the Euclidean metric. Then gradient ascent for a function S : X −→ R looks
like

dx1

dt
=

∂S
∂x1

,
dx2

dt
=

∂S
∂x2

It is more traditional to write this as dx
dt = ∇S(x)T . It may seem like this doesn’t use any fancy

Riemannian structure, but in fact transposing a row vector into a column vector is made possible using the
isomorphism (Rn)∗ ∼= Rn, the same isomorphism on which the natural inner product for Rn is built.

From Hamiltonian system and gradient descent systems we can provide the following common
generalization:

Definition 6. An energy-driven system consists of a state space X ∈ Mfd, a reaction R ∈ React(X), and
an energy functional E : X −→ R.

The reaction embodies the “laws of physics”, turning energies (given by E) into forces.

3 Open Energy-driven Systems

Most, if not all, systems are in practice open, meaning they are amenable to composition with other
systems.

Example 7. Take, for instance, the pendulum system from Example 2. In there we considered the pivot to
be a fixed point, but in practice both pivot and both are physical locations at which other systems can be
attached. This means one can consider the pendulum as parametrized by A = TR2, the phase space of
the pivot, and to influence the location and velocity of the bob by exposing such quantities in B = TR2.
Again, X = T ∗S1, but now, rather than E : X −→ R, we have E : A×X −→ R defined by

E((x0,v0),(θ ,L)) =
1

2m
∥v0 + v∥2 +mg(h0 +h)
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This E represents the potential plus kinetic energy of a pendulum whose pivot is at position x0 and moving
at velocity v0.

We then define w : TR2 ×T ∗S1 −→ TR2 by

w((x0,v0),(θ ,L)) = (x0 + x,v0 + v)

This gives the position and velocity of the bob.

The “open pendulum” we just described is but an example of a general definition:

Definition 8. Given A,B ∈ Mfd, an open energy-driven system with parameters A and outputs B consists
of a manifold X , a reaction R ∈ Γ[T ∗X ,T X ], a function E : A×X −→ R, and a function w : A×X −→ B.
We call A the parameters, X the state, and B the output.

The fact that A = B in Example 7 is tantalizing, because it makes the pendulum something like a
“parametric endomorphism” of TR2. Could we somehow “compose the pendulum with itself” to make a
double pendulum? Also, how can we describe the differential equation attached to an open energy-driven
system; i.e. what is the semantics of an open energy-driven system? Answering these questions is the
subject of the remainder of this paper.

3.1 Composing Open Energy-driven Systems

The purpose of this section is to develop a symmetric monoidal category where the morphisms are open
energy-driven systems.

We begin with the following straightforward proposition.

Proposition 9. The functor React : Mfdiso −→ Set from Definition 3 is lax symmetric monoidal, with
unitor 1 −→ React(1) given by the unique element of React(1) (the zero map R0 −→ R0) and compositor

⊕X1,X2 : React(X1)×React(X2)−→ React(X1 ×X2) (4)

defined by sending R1 ∈ React(X1),R2 ∈ React(X2) to

T ∗
(x1,x2)

(X1×X2)∼= T ∗
x1

X1 ×T ∗
x2

X2
R1(x1)×R2(x2)−−−−−−−−→ Tx1X1 ×Tx1X2 ∼= T(x1,x2)(X1×X2).

Definition 10. Let
∫

React πReact−−−→ Mfdiso be the monoidal Grothendieck construction of React (see
[MV20]). An object of

∫
React is a pair (X ,R) consisting of a space and a reaction on it, a morphism is a

diffeomorphism which preserves the reactions, and the monoidal product (X1,R1)⊗ (X2,R2) is given by
(X1 ×X2,R1 ⊕R2) as above

Example 11. The category of symplectic manifolds and symplectomorphisms embeds faithfully into∫
React by sending a symplectic manifold (X ,ω) to (X ,Jω), where Jω is the reaction associated to ω , as

constructed in Section 2.1. A symplectomorphism is an diffeomorphism that preserves the symplectic
structure, and it is not to hard to show that preserving the symplectic structure implies preserving the
reaction structure.

Now, as the composite
∫

React πReact−−−→ Mfdiso U−→ Mfd is strong monoidal, we have a monoidal action
of

∫
React on Mfd, simply given by (X ,R)⊗U Y := X ×Y . The technique of decorating an action with

data coming from a monoidal Grothendieck construction was introduced by [CGHR22].
We can then construct a category OpenReact by applying the Para construction [FST19, CGHR22]

to ⊗U , and in fact we use this opportunity to recall how the latter is performed.
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Definition 12. Let OpenReact be the symmetric monoidal category of open reaction systems defined as
the local skeleton1 of Para(⊗U).

Concretely, an object in OpenReact is a manifold, a morphism A −→ B is an open reaction system
and is given by a pair (X ,R) ∈

∫
React together with a smooth map w : X ×A −→ B. Morphisms (X ,R,w)

and (X ′,R′,w′) are considered equivalent if there is an isomorphism i : X −→ X ′ with React(i)(R) = R′

and w = (i×A) # w′. The monoidal structure is the same as Mfd.
We reserve to spell out composition later, since this is almost, but not quite, equivalent to our definition

of open energy-driven system from before. In fact, compared to energy-driven systems, reaction systems
lack the data of an energy functional. We add this by considering such a functional as an effect. In fact
(R,0,+) is a monoid in OpenReact, because it is a monoid in Mfd and Mfd embeds into OpenReact,
and thus (−)×R is a monad on OpenReact.

Definition 13. Let OpenErg be the symmetric monoidal category of open energy-driven systems, defined
as the Kleisli category of (−)×R on OpenReact.

A morphism in OpenErg from A to B is then a states space X with a reaction R ∈ React(X) and
a smooth function ⟨w,E⟩ : A × X −→ B ×R, which is precisely an open energy-driven system as in
Definition 8.

Remark 14. Notice the parameters of w as a parametric morphism correspond to the states of the
energy-driven system, while the parameters of the latter are the domain of the former.

The composition of (X ,R,⟨w,E⟩ : A×X −→ B) and (X ′,R′,⟨w′,E ′⟩ : B×X ′ −→C) is the energy-driven
system:

(X ×X ′,R⊕R′,⟨w #w′,E +w∗E ′⟩ : A× (X ×X ′)−→C)

where w∗E ′ : A× (X ×X ′)−→ R is given by (a,x,x′) 7→ E ′(w(a,x),x′) and we abuse notation by writing
E for πA,X # E.

Remark 15. There are more natural higher-category structures that we could use instead of just symmetric
monoidal categories. For instance, the Para construction naturally produces a double category. In fact
the generalized Para construction of [Mye23b, CM23] can even define OpenErg in one fell swoop by
having the component E : A×X −→ R be part of the decoration on the states.

4 The Semantics of Open Energy-driven Systems

In order to develop semantics for open energy-driven systems, we must have some notion of an open
ODE. It is the job of the current section to construct this.

4.1 Open Ordinary Differential Equations

Definition 16. A smooth function p : X̄ ↠ X is a submersion if all (T p)x̄ : TeX̄ −→ Tp(x̄)X are surjective.

Proposition 17. If p : X̄ ↠ X is a submersion, then all pullbacks along p exist, and are computed as in
the category of topological spaces.

Proof. Standard, can be found in [KMS93, Corollary I.2.19].
1Taking the local skeleton of a bicategory means we replace each hom-category by its skeleton, thus locally quotienting by

isomorphism. Notice this yields a well-defined strict 1-category since coherence isomorphisms are turned into equalities.
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Definition 18. Let Subm : Mfdop −→ Cat be the functor which sends a space X to the category of
submersions X̄ −→ X over it, and a smooth function f : X −→ Y to its action by pullback f ∗ : Subm(Y )−→
Subm(X).
Definition 19. Let MfdLens be the symmetric monoidal category of Subm-lenses ([Spi19]), meaning its
objects are given by submersions p : X̄ −→ X and denoted by

(
X̄
X

)
and its morphisms, denoted as below

left, are given by pairs of dashed arrows as below right:

(
f ♯
f

)
:
(

X̄
X

)
⇆

(
Ȳ
Y

) X̄ f ∗Ȳ Ȳ

X X Y
f

p q⌟

f ♯

(5)

The symmetric monoidal product of this category is given by fibrewise product of bundles.
The reader might notice that the form of these Subm-lenses is exactly that of the pullback map on

covectors induced between the cotangent bundles by any smooth map, i.e. if f : X −→ Y is a smooth
map there is a corresponding lens

T ∗X f ∗T ∗Y T ∗Y

X X Y
f

p q⌟

T ∗ f

In fact the assignment f 7→
(

T ∗ f
f

)
defines a functor T ∗ : Mfd −→ MfdLens, which will be central later.

We want to interpret an open energy-driven system on A,B with state space X as a parametric lens:(
T ∗A

A

)
⊗
(

T ∗X
X

)
⇆

(
T ∗B

B

)
where the parameter space X is decorated by the data of a reaction, seen as an open ODE

(
T X
X

)
⇆

(
T ∗X

X

)
.

We do this with a similar Para construction as before.
Definition 20. There is a symmetric monoidal functor ODE : MfdLens −→ Set(

Ȳ
Y

)
7→ ODE

(
Ȳ
Y

)
:=

{
X ∈ Mfd,

(
u♯
u

)
:
(

T X
X

)
⇆

(
Ȳ
Y

)}
, (6)

and with reindexing along a lens
(

Ȳ
Y

)
⇆

(
Ȳ ′

Y ′

)
given by composition. The symmetric monoidal structure

is inherited in the obvious way from that of MfdLens, and leans crucially on the fact that T is a strong
monoidal functor.

Let
∫

ODE be the monoidal Grothendieck construction. This is, like
∫

React, a symmetric monoidal
category with a symmetric monoidal projection functor

∫
ODE −→ MfdLens. It induces an action of the

former on the latter, which we denote ⊗ODE.
Similarly, the tangent bundle functor extends to a symmetric monoidal functor T : Mfdiso −→ MfdLens

sending X 7→
(

T X
X

)
. This defines an action of Mfdiso on MfdLens, which we denote ⊗T .

Definition 21. We call OpenODE the local skeleton of Para(⊗ODE).

Thus a map
(

Ā
A

)
−→

(
B̄
B

)
in OpenODE is a choice of parameter interface

(
X̄
X

)
and of an open ODE

over it, say
(

u♯
u

)
:
(

T X
X

)
⇆

(
X̄
X

)
, and then a choice of smooth lens

(
Ā
A

)
⊗
(

X̄
X

)
⇆

(
B̄
B

)
. Thus the open

ODE is just a decoration of the parameter.
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4.2 An “organized” view

In the symmetric monoidal category OpenODE, systems (the ODEs) and their wiring (the parametric
lens they are grafted on) are kept neatly separated. This is because, in general, the systems might be
very different from their wiring, but in this case they aren’t: both open ODEs and their wiring are
differential lenses, so one can collapse the data of the ODE directly in the wiring, seeing it as all part
of a unique process.

This brings us to define COrg, which is smooth space, continuous time variant of Org, introduced
in [Spi22] We give a sleek definition.

Definition 22. We define COrg to be the local skeleton of Para(⊗T ), with the latter being the action
induced by the symmetric monoidal functor T : Mfd −→ MfdLens.

The categories OpenODE and COrg have the same objects, namely submersions
(

Ā
A

)
, but a

morphism from
(

Ā
A

)
to

(
B̄
B

)
in COrg consists of a manifold X (up to diffeomorphism) and a lens(

Ā
A

)
⊗
(

T X
X

)
⇆

(
B̄
B

)
.

Proposition 23. There is an identity-on-objects, symmetric monoidal functor

collapse : OpenODE −→ COrg

given by (
T X
X

)
(

Ā
A

) (
X̄
X

) (
B̄
B

)
⊗

f

f ♯
u u♯ 7→

(
T X
X

) (
X̄
X

) (
B̄
B

)(
Ā
A

) (
Ā
A

)⊗⊗

u

u♯

f ♯

f

Proof. The fact this is functorial and symmetric monoidal boils down to the interchange law of the
monoidal structure of MfdLens, which allows to map composition in OpenODE (which puts the ODEs
in the parameter side by side) to composition in COrg (which composes sequentially the morphisms).

In fact, this definition applies already to discrete systems, i.e. to (the horizontal 1-category of) Org.
Starting with Poly, we define a functor Coalg : Poly −→ Set which sends a polynomial to its (large) set of
coalgebras. Applying the Para construction to the forgetful functor

∫
Coalg −→ Poly, we get something

similar to OpenODE, where a morphism from p to q is a polynomial r, a coalgebra δ : S −→ r(S), and a
poly map

(
f ♯
f

)
: p⊗ r −→ q. The coalgebra is in fact equivalent to a map δ̂ : SyS −→ r, and thus we can

collapse the pair (δ ,
(

f ♯
f

)
) to a single map p⊗SyS −→ q. In this way we defined a symmetric monoidal

functor Para(⊗Coalg) −→ Org.
Generally speaking, this trick works whenever the indexed set of systems Sys : C −→ Set is ‘free’ in a

specific sense: its elements are the objects of the slice T/C, there T is a functor T : States −→ C which
picks out “state spaces”.2 In that case we can always build a collapse functor Para(⊗Sys)−→ Para(⊗T )
by reproducing the construction of Proposition 23. Systems which are given by slicing under a functor
play a central role in [Mye23a], where Myers shows most theories of systems can be obtained in this way.

2Being a “state space” is an attitude, not a formal mathematical concepts: any functor into C suffices.
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4.3 The Cotangent Functor

The aim of this section is to show how the cotangent functor T ∗ : Mfd −→ MfdLens induces a functor
OpenErg −→ OpenODE:

R React(X)

A X B×R× ⟨w,E⟩

∈
7→

(
T X
X

)
ODE

(
T ∗X

X

)
(

T ∗A
A

) (
T ∗X

X

) (
T ∗B

B

)
×

w

T ∗w+dE

R

∈

(7)

The functor could be obtained in one single step using the technology of the generalized Para
construction we hinted at in Remark 15 with which we can see both OpenErg and OpenODE as Para
constructions and thus induce the desired functor by exhibiting one between the underlying fibred actions
(see [CM23]). Since we don’t have the space to introduce this machinery, we just give a direct construction.

This would make the analogy with [Cap23] total since that’s how the functor from game descriptions
to parametric lenses is obtained. Notably, in this case T ∗ is strong monoidal thus making the semantics
of open energy-driven systems truly compositional.

Theorem 24. The assignment defined in (7) is a well-defined symmetric monoidal functor

T∗ : OpenErg −→ OpenODE.

Proof. It’s easy to see it sends identities to identities. Given composable open energy-driven systems
(X ,R,⟨w,E⟩ : A×X −→ B) and (X ′,R′,⟨w′,E ′⟩ : B×X ′ −→ C), their image yields the composable open
ODEs (

T X
X

)
(

T ∗A
A

) (
T ∗X

X

) (
T ∗B

B

)
⊗

w

T ∗w+dE

R #

(
T X ′

X ′

)
(

T ∗B
B

) (
T ∗X ′

X ′

) (
T ∗C

C

)
⊗

w′

T ∗w′+dE ′

R′

which reduces to

(
T (X×X ′)

X×X ′

)
(

T ∗A
A

) (
T ∗(X×X ′)

X×X ′

) (
T ∗B

B

)
⊗
(

T ∗X ′

X ′

) (
T ∗C

C

)
⊗

w

T ∗w+dE

R⊕R′

w′

T ∗w′+dE ′

Given a ∈ A,x ∈ X ,x′ ∈ X ′, the composite backward map sends a covector α ∈ T ∗C (we omit indexing of
bundles for brevity) to

T ∗w(T ∗w′(α)+dE ′(w(a,x),x′))+dE(a,x) = T ∗(w #w′)(α)+d
(
w∗E ′+E

)
(a,x,x′).
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The latter expression equals the image of the composite energy-driven system (X ×X ′,R⊕R′,⟨w #w′,E +
w∗E ′⟩ : A× (X ×X ′)−→C):

(
T (X×X ′)

X×X ′

)
(

T ∗A
A

) (
T ∗(X×X ′)
(X×X ′)

) (
T ∗C

C

)
⊗

w#w′

T ∗(w#w′)+d(E+w∗E ′)

R⊕R′

Preservation of symmetric monoidal structure is trivial, as it amounts to no more than the analogue
structure on T ∗.

We can further collapse the description of the dynamics of the system by folding the ODE into the
map itself, thus landing in COrg:

OpenErg T∗
−−→ OpenODE collapse−−−−−→ COrg.

5 Examples

We motivated the last three sections by saying that we were going to compose the pendulum with itself
to get an n-fold pendulum. We do this now.

Example 25. For intuition, observe the following diagram of the double pendulum. We will work
out carefully the composition of two pendulums to create a double pendulum, and leave the iterated
composition to the reader.

m

m

l

l

θ1

θ2

Recall that the single pendulum in OpenErg as defined in Example 7 is an endomorphism TR2 −→ TR2,
whose state space is T ∗S1 and whose reaction structure is derived from the canonical symplectic structure

and written in coordinate form as J(x) =
[

0 1
−1 0

]
.

Composing this morphism with itself involves several steps, where we unwind all of the constructions
that we’ve done so far. First of all, we have to take the monoidal product of (T ∗S1,J) with itself in∫

React. This uses the lax monoidal structure of React to produce a reaction J(2) = J⊕J on T ∗S1 ×T ∗S1.
In coordinates, this is the block-diagonal matrix

J(2)(x) =
[

J(x) 0
0 J(x)

]
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Transforming this along the isomorphism T ∗S1 ×T ∗S1 ∼= T ∗(S1 ×S1), this becomes the standard

J(2)(x) =
[

0 I2
−I2 0

]
This gives a new parameter space; we now compose the smooth maps w and E with themselves to get

w(2) : TR2 × (T ∗S1 ×T ∗S1)−→ TR2 defined by

TR2 ×T ∗S1 ×T ∗S
w×1T∗S1−−−−−→ TR2 ×T ∗S1 w−→ TR2

and E(2) : TR2 × (T ∗S1 ×T ∗S1)−→ R defined by

TR2 ×T ∗S1 ×T ∗S
⟨E,w×1T∗S1 ⟩−−−−−−−→ R×TR2 ×T ∗S1 1R×E−−−→ R×R +−→ R

In coordinates, this looks like the following. Assume that x0,v0 are the position and velocity of the
first pivot, and θ1,L1,θ2,L2 are the natural coordinates for T ∗S1 ×T ∗S1.

x1 = x0 + l(cosθ1,sinθ1)

ω1 =
L1

I
v1 == x0 + lω1(−sinθ1,cosθ1)

x2 = x1 + l(cosθ2,sinθ2)

ω2 =
L2

I
v2 == x1 + lω2(−sinθ2,cosθ2)

w(2) = (x2,v2)

E(2) =
1
2

m|v1|2 +
1
2

m|v2|2 +mgh1 +mgh2

We leave it to the reader to apply the functor OpenErg −→ COrg in order to get an open dynamical
system out of this.

6 Epilogue

In this work, we have shown have the structure of an open energy-driven system, involving a reaction
and an energy functional, elegantly subsumes both Hamiltonian and gradient-based systems. Out of
these, we have built a symmetric monoidal category OpenErg which maps to OpenODE, a symmetric
monoidal category of open ODEs, which itself maps to COrg, whose morphisms are lenses ‘evolving
smoothly’ according to a given state space.

While this may seem like a lot of work/abstraction for little gain compared to “just doing physics”
in the way a sophomore in a classical mechanics would, the advantage of working out this theory is to
produce a “plug and play” physics system, where a library of components can be intuitively composed
and all of the algebra is done by the computer.
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