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This paper uses category theory to guide the development of an entirely new approach to approx-
imate game theory. Game theory is the study of how different agents within a multi-agent system
take decisions. At its core, game theory asks what an optimal decision is in a given scenario. Thus
approximate game theory asks what is an approximately optimal decision in a given scenario. This
is important in practice as — just like in much of computing — exact answers maybe too difficult (or
even impossible) to compute given inherent uncertainty in input.

We consider first Selection Functions which are a simple model of compositional game theory. We
develop i) a simple yet robust model of approximate equilibria; ii) the algebraic properties of ap-
proximation wrt selection functions; and iii) relate approximation to the compositional structure of
selection functions. We then repeat this process for Open Games — a more advanced model of game
theory featuring the key operation of sequential composition of games. Finally, we use approxima-
tion to develop new metrics on game theory and show these yield vital theorems in what one might
term "Quantitative Compositionality".

1 Introduction

This paper uses category theory to develop an entirely new approach to compositional approximate
game theory. Approximation in computation is ubiquitous e.g. it arises in: i) stochastic systems, where
one merely has probability distributions over values induced by inherent/simulated randomness; ii) re-
source limited environments, where exact computation is prohibitively expensive; iii) systems with
imperfect/partial recall, where one only has limited information about what has happened or the in-
tentions/trustworthiness of each agent; and iv) non-exact computation where primitive data (e.g. from
sensors) is inexact and supplied with error bars. These scenarios arise in e.g. cyber-physical systems,
machine learning, robotics, automotive engineering, aerospace, and energy systems.

On the other hand, game theory is the study of how different agents within a multi-agent system take
decisions. The simplest model of game theory we consider are the selection functions which are functions
s : (X →V )→ PX . Here, i) the set X is thought of as a set of actions (or moves, or choices) the agent can
consider playing; ii) the set V is thought of as a type of utilities; and iii) a function X →V is thought of as
assigning, to each possible action, a utility measuring how good that action is deemed to be. A selection
function then maps every utility function to those actions deemed optimal for that utility function. The
canonical selection function is argmax defined by defined by

x ∈ argmax f iff (∀x′ : X) f x ≥ f x′
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Another selection function is ε−argmax defined by

x ∈ ε−argmax f iff (∀x′ : X) f x ≥ f x′− ε

which means for an action x to be ε-optimal it need merely have an associated utility which is within ε

of a true optimal value. This approach aligns with the general approach to approximation of uncertainty
budgets as we track - and therefore can check - how much utility is lost by moving to an approximately
optimal decision. Notice this is NOT saying x is close to an optimal choice of action, rather that the utility
of x is close to being the utility of an optimal action. One might study the former and, indeed, this was
out first intention. However, the mathematical behaviour of that concept was poorer so we switched to
the approach taken in this paper. Nevertheless, this was the first of several moments where key decisions
need to be taken to obtain a well behaved mathematical theory showing the combination of approxima-
tion and game theory to be a delicate and nuanced endeavour.

A second difficulty arises from the desire for compositionality to ensure scalability. Compositional sys-
tems are those where larger systems can be defined by assembling smaller subsystems together which
means that proving properties of larger systems can be reduced to proving properties of smaller (and
hence easier to reason about) subsystems. At its core, compositionality is a story about structure and
so the natural mathematical medium in which to develop compositionality is category theory. Recently,
Compositional Game Theory [6] was introduced to bring the advantages of compositionality to game the-
ory. However, within compositional game theory there are a number of different notions of morphisms
of open games and, as we shall see, certain notions of morphism behave better wrt approximation that
others. Finding the right notion of morphism of open game to interact well with approximation was
another issue we had to solve.

Concretely, we

• introduce a notion of the ε-approximation of a game by defining for any game G, another game
TεG which we think of as containing not just the equilibria of G, but also the ε-equilibria of G —
this is an entirely new approach to approximation of equilibria and shows novelty of methodology.

• show that show Tε has good algebraic structure in that it is i) functorial; and ii) posses graded struc-
ture — this shows our methodology is canonical in being aligned with other work on quantitative
computation.

• show Tε interacts well with the compositional structure of game theory, in particular with Nash
equilibria and sequential composition. There is no particular reason that the approximation of a
large game built from game-constructors should retain that structure — we show this holds for the
key cases of parallel (or Nash) product and sequential composition. This is crucial evidence for
the utility of our approach, namely that preserves the compositional structure of game theory.

• use our approximate game theory to create what one might call Quantitative Compositional Game
Theory which i) not only builds new games from old; but ii) ensures if one substitutes a subgame
with another which has similar behaviour, the overall system remains similar to the original. The
crucial construction permitting Quantitative Compositional Game Theory is a metric on games
which we build from our approximate game theory.

This third item is particularly surprising and thus our strongest contribution — as mentioned there in not
inherent reason why, for example, the approximations of a Nash equilibria should consist of strategies
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that form a Nash equilibria. Finally, we argue in the conclusions that our methodology is also general
in that it can apply to other forms of game theory, eg Markov Decision Processes, and beyond game
theory into the huge area of machine learning. This latter application area particularly exciting as for-
mally quantifying distance from optimality is a way of expressing how much has been learned and thus
contributing to the XAI agenda.

This paper is structured as follows. In Section 2, we cover preliminaries pertaining to metric spaces,
lenses and selection functions. Section 3 develops approximation for selection functions, discusses the
algebraic properties of approximation and show approximation is compositional. Section 4 extends these
results to open games [6], while Section 5 uses approximation to develop Metric Game Theory. Section
6 concludes the paper with conclusions and directions for future research.

2 Preliminaries: Metric Spaces and Lenses

This paper should be accessible to those with a basic understanding of game theory and category theory.
Introductory texts are [14, 10, 12], for game theory and [11, 9] for category theory.

2.1 Metric Spaces

Let R be the positive reals extended with an infinity ∞

Definition 2.1. Define:

1. An extended metric space is a set X with a function d : X ×X →R satisfying symmetry, the triangle
inequality and d(x,y) = 0 iff x = y.

2. EMet is the category of extended metric spaces and short maps, i.e maps f satisfying d( f x, f y)≤
d(x,y).

We write |X | for the underlying set of a metric space X .

Definition 2.2. If (X ,d) and (Y,d′) are extended metric spaces, then (X ,d)⊗ (Y,d′) is the extended
metric space with underlying set X ×Y , where

dX⊗Y ((x,y),(x′,y′)) = max{d(x,x′),d(y,y′)}

Other options are possible, eg sum, average etc. The following explains the use of ∞ as a possible
distance — it is needed to ensure the metric on function spaces is well defined.

Definition 2.3. Let X ,Y be a metric spaces. Then a non-expansive (or short) map f : X →Y is a function
f : X → Y such that

d( f x, f y)≤ d(x,y)

The set of non-expansive functions [X ,Y ] is a metric space via the sup-metric:

d( f ,g) = sup
x∈X

d( f x,gx).
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2.2 Lenses

While lenses can be built over categories with appropriate structure, to keep our presentation simple, we
work with lenses over sets.

Definition 2.4. A lens is given by a pair of sets (X ,V ). A map of lenses f : (X ,V )→ (Y,Z) is given by a
pair ( f0, f1) consisting of functions f0 : X → Y and f1 : X ×Z →V .

The following is well known:

Lemma 2.5. Lenses from a symmetric monoidal category Lens with tensor given by (X ,V )⊗ (X ′,V ′) =
(X ×X ′,V ×V ′) and with unit given by I = (1,1).

Note i) an element of X is a lens-map I → (X ,V ); and ii) a function X → V is equivalently a lens map
(X ,V ) → I. These two observations are useful, eg we can often represent complex functions X → V
more simply as composites of lens maps.

2.3 Selection Functions

A basic form of game theory is given by selection functions [2] which, given sets X ,Y , are defined by
Sel(X ,Y ) = (X →Y )→ PX where PX is the set of powersets of X . Intuitively, a selection function maps
a utility function (which assigns to each potential action x ∈ X a resulting utility y ∈Y ) to a set of actions
deemed to be optimal for that specific utility function. Give two selection functions s, t : (X →V )→ PX ,
we write s ⊆ t iff (∀ f :X →V ) s f ⊆ t f . The canonical selection function is argmax defined as follows:

Example 2.6. Define the argmax selection function argmax : (X → Y )→ PX by

argmax f = { x ∈ X | (∀x′ ∈ X) f x ≥ f x′}

Note that the selection function model of game theory deals with not merely one utility function but,
rather, all utility functions. This is also the case of open games and is a hallmark — indeed key dis-
tinguishing feature — of compositional models of game theory. When it comes to maps of selection
functions, we choose the following for reasons that will become clearer later.

Definition 2.7. Let s : Sel(X ,V ) and t : Sel(X ′,V ′). A map from s to t consists of a map of lenses
α : (X ,V )→ (X ′,V ′) such that

(∀k : X ′ →V ′)(∀x : X) αx ∈ tk ⇒ x ∈ s(kα)

Note in the above we write the map X →V as the composite of lens maps kα as this is much cleaner than
a direct definition. This is an one example of the power of lens composition to simplify definitions as
we remarked earlier. We continue to use lens composition via juxtaposition through the rest of the paper
without remarking on it. The above definition has also possesses a contravariance akin to how maps
of containers (aka dependent lenses) are contravariant in their position maps. An alternative covariant
definition for a map of selection functions would have been to require

(∀k : X ′ →V ′) x ∈ s(kα)⇒ αx ∈ tk

but, as we shall see later, this does not give a functorial theory of approximation. Henceforth we write
Sel for the category of all selection functions and the maps between them. Selection functions are a
compositional model of game theory as they support a Nash product. This arises by extending the
monoidal product on lenses to one on selection functions:
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Definition 2.8. The category Sel of selection functions and maps of selection functions is monoidal with
monoidal product

⊗ : Sel(X ,Y )×Sel(X ′,Y ′)→ Sel(X ×X ′,Y ×Y ′)

defined by

(x,x′) ∈ (s⊗ t) f iff x ∈ s(π0 f (−,x′))

∧
x′ ∈ t(π1 f (x,−))

Note as an example, we have the beautiful equation showing Nash equilibria are not a primitive but rather
a derived concept.

Nash = argmax⊗argmax

This equation also highlights how our tensor of selection functions can be seen concretely as the two
games played in parallel with Nash as a specific example of two argmaxes run in parallel. Not only will
we develop approximate game theory, we will ensure it is compositional in that approximation interacts
well with compositional operators such as the Nash product.

3 Approximation and Selection Functions

Given selection functions form a compositional model of game theory we can ask two natural questions:
i) can we account for approximate equilibria in selection functions; and ii) is approximation composi-
tional in that — for example — if we approximate a Nash product of two games, do we get the Nash
product of two approximations? We answer both questions positively — the second to our surprise as
there is no particular reason to believe that approximation of a structured game preserves that structure.
The fact it does suggests the compositional approach to game theory and the approach to approxima-
tion advocated here are well designed concepts capturing fundamental logical structure which other
approaches have missed. We begin by defining approximation in selection functions via a function

T : (ε : R)→ Sel(X ,V )→ Sel(X ,V )

by
x ∈ (TεG)k iff (∃k′ ∼ε k) x ∈ Gk′

where we write k′ ∼ε k for d(k′,k)≤ ε . What is nice about this definition is that not only is it extremely
simple and thus elegant, but it also formalises the intuition that an ε-optimal choice for a utility function
k is an actual optimal choice, but for a utility function k′ differing no more than ε from k. Getting
this definition right, and getting the right notion of morphism between selection functions, were the
fundamental keys required to achieving the smooth mathematical theory we have been able to develop
in this paper. The first thing to do is to relate our notion of approximation to the traditional notion of
approximation that one finds in the literature.

Lemma 3.1. Let ε ≥ 0. Then Tε(argmax)⊆ 2ε−argmax

Proof. Let x ∈ Tε(argmax)k for some utility function k : X → V . Then there is a k′ ∼ε k such that
x ∈ argmax(k′), ie for all x′ ∈ X , we have k′x ≥ k′x′. But since k′ ∼ε k, we thus have kx ≥ kx′−2ε . Thus
x ∈ 2ε−argmax k
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Assuming X has a decidable equality, which includes the key case where X is finite, we can go further

Lemma 3.2. Let ε ≥ 0. If X has a decidable equality, then

ε−argmax ⊆ Tε(argmax)

Proof. Let x ∈ ε−argmax(k) for a utility function k : X → V . Then forall y ∈ X , kx ≥ ky− ε . Define
k′ : X → V by k′x = kx+ ε and k′y = ky for all y ̸= x. Clearly k ∼ε k′. Further, for any y ̸= x, we have
k′x ≥ k′y. Thus x ∈ argmax(k′) and so x ∈ Tε(argmax)(k)

Moving to a categorical analysis, the first thing we would like to establish is the functoriality of Tε . This
is non-trivial as the needs of approximation put constraints on how lens maps back-propagate values. In
essence, we must restrict to short lens maps which we define now

Definition 3.3. A short lens map is a lens map α : (X ,V )→ (X ′,V ′) where, for every x ∈ X, α(x,−) :
V ′ →V is a short map, ie non-expanding.

Short maps are a natural condition — the condition reflects desire that coutility (or backpropagation)
doesn’t inflate differences in the values to be backpropagated. Were we to allow such inflation, system
behaviour could well become chaotic as small amounts of sub-optimality would be magnified into large
system recongifuratation. Note the identity is a short map and the composite of short maps is short and
hence the category of lenses restricts to a category of lenses and short maps denoted Lenss. Similarly, we
define the category of selection functions and maps whose underlying lens map is short by Sels. And,
finally, the tensor product on lenses and selection functions restricts to a monoidal structure on Sels

Lemma 3.4. Let α : (X ,V )→ (X ′,V ′) be a short lens map. If k,k′ : X ′ → V ′ is such that k ∼ε k′, then
kα ∼ε k′α

Proof. Direct from the definition of what a short lens map is.

We can now prove functoriality:

Lemma 3.5. Let α : s → t be a map of selection functions over the short lens map α : (X ,V )→ (X ′,V ′)
of lenses. Then α also defines a map of selection functions Tεs → Tεt

Proof. Consider x ∈ X and k : X ′ → V ′. We need to show if αx ∈ (Tεt)k, then x ∈ (Tεs)(kα). The
assumption implies there is a k1 : X ′ → V ′ such that k ∼ε k1 and αx ∈ tk1. As α : s → t, this means
x ∈ s(k1α). By the previous lemma, kα ∼ε k1α and so x ∈ Tεs(kα) as required.

Next we consider the role/structure of the parameter ε in approximation. The following graded structure
is what one expects in many quantitative situations.

Lemma 3.6. The following are easily provable

• T0G = G

• If ε ≤ ε ′, then TεG ⊆ Tε ′G

• Tε(Tδ G)⊆ Tε+δ G

Proof. Straightforward
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3.1 Compositional Approximation

In this subsection we discuss the relationship between the compositional structure of selection functions
and approximation of selection functions. To do this we first prove a small lemma
Lemma 3.7. Let k,k′ : X ×X ′ →V ×V ′ be functions such that k ∼ε k′. Then for every x and x′,

π0k(−,x′) ∼ε π0k′(−,x′) and π1k(x,−) ∼ε π1k′(x,−)

Proof. Straightforward calculation

Now, imagine we take a Nash equilibrium of selection functions G and H defined by the monoidal
product of selection function as G⊗H. What do its approximate equilibria look like? Is there any
structure here or does it just consist of a fuzzy ball of extra equilibria enveloping G and H. The following
shows that structure is preserved, ie that an approximate equilibrium of a Nash equilibrium is still a Nash
equilibrium.
Lemma 3.8. Let G : Sel(X ,V ) and H : Sel(X ′,Y ′) be selection functions. Then

Tε(G⊗H)⊆ TεG⊗TεH

Proof. Let (x,x′) ∈ X ×X ′ and k : X ×X ′ →V ×V ′. Further assume (x,x′) ∈ Tε(G⊗H) k. Then there is
a k′ : X ×X ′ →V ×V ′ such that k ∼ε k′ and (x,x′) ∈ (G⊗H) k′. By definition of G⊗H, this means

x ∈ G (π0k′(−,x′)) and x′ ∈ H (π1k′(x,−))

By the previous lemma

x ∈ Tε(G) (π0k(−,x′)) and x′ ∈ Tε(H) (π1k(x,−))

and hence (x,x′) ∈ (TεG ⊗ TεH) k. Thus Tε(G⊗H)⊆ TεG⊗TεH as required.

The above lemma states that the approximation of a Nash equilibrium is itself a Nash equilibrium. Noting
the contravariance in our notion of morphism of selection functions, we can summarise the above as:
Lemma 3.9. The functor Tε : Sels ×Sels → Sels is lax monoidal functor
However, it would be nice if the reverse were true as then we could find and approximate equilibrium for
a Nash equilibria by merely approximating the components. Not suprisingly, the ability to take this extra
step depends on the existence of sufficient utility functions as we saw in lemma 3.2 which in turn rests
on the decidability of equality on actions. The key lemma is the following
Lemma 3.10. Let X ,X ′ have decidable equality. Further, let k : X ×X ′ → V ×V ′, x ∈ X and x′ ∈ X ′.
Even further, let g ∼ε π0k(−,x′) and h ∼ε π1k(x,−). Then there is a k′ : X ×X ′ →V ×V ′ such that

• k′ ∼ε k

• g = π0k′(−,x′); and

• h = π1k′(x,−).

Proof. Define k′ : X ×X ′ →V ×V ′ as follows

k′(z,z′) = k(z,z′) iff z ̸= x,z′ ̸= x′

k′(x,z′) = (π0k(x,z′),hz′) iff z′ ̸= x′

k′(z,x′) = (gz,π1k(z,x′)) iff z ̸= x

k′(x,x′) = (gx,hx′) otw

The required properties of k′ are now easy to verify.
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Now we can prove the reverse containment

Lemma 3.11. Let X ,X ′ have decidable equality. Let G : Sel(X ,V ) and H : Sel(X ′,Y ′) be selection
functions. Then

TεG⊗TεH ⊆ Tε(G⊗H)

Proof. Let (x,x′) ∈ X ×X ′ and k : X ×X ′ →V ×V ′ be such that (x,x′) ∈ (TεG⊗TεH)k. Then

x ∈ (TεG)(π0k(−,x′)) and x′ ∈ (TεH)(π1k(x,−))

Thus there is a function g : X →V and one h : X ′ →V ′ such that

x ∈ Gg and x′ ∈ Hh and g ∼ε π0k(−,x′) and h ∼ε π1k(x,−)

By lemma 3.10, there is a map k′ : X ×X ′ →V ×V ′ such that

x ∈ G(π0k′(−,x′)) and x′ ∈ H(π1k′(x,−)) and k′ ∼ε k

Thus (x,x′) ∈ (G⊗H)k′ and hence (x,x′) ∈ Tε(G⊗H)k

This is a very strong — and surprising result — that for decidable action sets, approximation is not
merely lax monoidal, but actually monoidal. This we did not expect and, indeed, when it comes to
sequential composition of open games, we can only show one containment. Sequential composition of
games leads us from selection functions to Open Games.

4 Approximation and Open Games

Selection functions form a simple model of compositional game theory via the Nash product/parallel
composition of selection functions. However, what about the sequential composition of selection func-
tions — afterall parallel and sequential composition are intimately bound in monoidal categopry theory,
string diagrams etc. Sequential composition of selection functions have been considered [2] but the util-
ity function of the first game is modelled exogenously ... what happens in practice is that the utility
function of the first game is actually computed endogenously. Open Games [6] address this problem per-
fectly. For the price of a little more algebraic structure, they form a compositional model of game theory
which includes a number of operators for compositionally building large complex games from smaller
and simpler games. Chief amongst these operators are sequential composition but also choice operators,
and operators for iterated game theory [7]. This section generalises approximation to open games.

4.1 Open Games

The key concept which introduced open games is the following:

Definition 4.1 (Open Game). Let X ,Y,R and S be sets. An open game G = (ΣG,PG,CG,EG) : (X ,S)→
(Y,R) consists of:

• a set ΣG of strategy profiles,

• a play function PG : ΣG → (X → Y ),

• a coutility function CG : ΣG → (X ×R → S), and

• an equilibrium function EG : X × (Y → R)→ P(ΣG).
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Intuitively, the set X contains the states of the game, Y the moves, R the utilities and S the coutilities. The
set ΣG contains the strategies we are trying to pick an optimal one from. The play function PG selects a
move given a strategy and a state, while the coutility function CG computes the coutility extruded from
the game, given a strategy, state and utility. Finally, if σ ∈ EG x k, then σ is an optimal strategy in state
x and with utility given by k : Y → R. Just as lenses systematise the presentation of selection functions,
they also systematise the presentation of open games.
Lemma 4.2. An open game G : (X ,S)→ (Y,R) is given by a set Σ of strategies and, for each σ ∈ Σ: i)
a lens Gσ : (X ,S)→ (Y,R); and ii) a predicate

Eσ ⊆ X × (Y → R)

We now restrict all lenses occurring in open games to be short. This is important not only in functoriality
as before, but also for the compositional treatment of approximation for sequential games. Notice the
similarity of the lens predicate Eσ and a selection function. But notice also differences — a selection
function is defined over a pair of sets, ie an object of Lens, while an open game is defined over a family
of lens maps. There are other notions of open games, in particular Gavranovic Games [1] which deepen
the relationship with lenses by defining open games to be parameterised maps in the category of lenses.
We expect our techniques apply to Gavranovic games in the obvious way.

4.2 Approximation and Open Games

The methodology developed for selection function clearly generalises to open games as follows:
Definition 4.3. Let G : (X ,S)→ (Y,R) be an open game with strategy set Σ and equilibrium predicates
Eσ for σ ∈ Σ. Further let ε ∈ R. Then define TεG : (X ,S)→ (Y,R) to be the open game with i) the same
strategy set Σ; ii) lens structure (TεG)σ = Gσ ; and iii) equilibrium given by

x ∈ ETε G,σ k iff (∃k′ ∼ε k) x ∈ EG,σ k′

The similarity of approximation for open games with that for selection functions is obvious and highlights
a strength of the methodology developed here — it is likely to generalise to many other situations as
discussed in the conclusions and future work. This similarity also means that lemma 3.6 carries over to
the setting of open games. Next we consider functoriality of approximation for open games
Definition 4.4. The category of open games Op has open games as objects, and a morphism from the
open game (Σ,G,E) : (X ,S) → (Y,R) to the open game (Σ′,G′,E ′) : (X ′,S′) → (Y ′,R′) consists of a
function f : Σ → Σ′, (short) lens maps α : (X ,S)→ (X ′,S′) and β : (Y,R)→ (Y ′,R′) such that

(∀σ ∈ Σ)(∀x ∈ X)(∀k : Y ′ → R′) αx ∈ E ′
f σ k implies x ∈ Eσ (k.β )

Notice how the contravariance in maps of selection functions is replicated here in maps of open games.
This will be another hallmark of a general theory of approximation for systems consisting of utility
indexed predicates. And again notice the use of the shortness of the lens maps α and β . The proof of the
following lemma is the natural generalisation of the analogous one for selection functions.
Lemma 4.5. For ε ∈ R, the assignment sending an open game G to an open game TεG extends to a
functor Tε : Op → Op
The final part of the mathematical development of approximation for selection functions considered the
monoidal product formalising Nash equilibria which showed that Tε(G⊗H)⊆ TεG⊗TεH, and that ⊆
can be replaced by = when moves are decidable. Again, this lemma generalises to open games — see [6]
for exact the definition of the Nash tensor for open games.
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Lemma 4.6. The functor Tε : Op → Op is lax monoidal with respect to the Nash tensor on open games,
and monoidal where the type of moves (inputs to utility) is decidable.

Proof. The proof follows the same structure as Lemma 3.9.

One of the great advantages of open games is they compositionally model the sequential composition of
games. Indeed, if we were to form a category whose objects are pairs of sets and whose morphisms are
open games, the sequential composition of open games would be the composition in that category.
Definition 4.7. Let (Σ,G,E) : (X ,S)→ (Y,R) be an open game and (Ω,H,B) : (Y,R)→ (Z,T ) be another
open game. Their sequential composition is the open game H ◦G : (X ,S)→ (Z,T ) defined by

• Strategies of H ◦G are Σ×Ω

• The lens (H ◦G)(σ ,τ) is defined to be the lens composition Hτ.Gσ

• The equilibirum predicate is defined by

x ∈ EHG,(σ ,τ)(k : Z → T ) iff x ∈ EG,σ (k.Hτ) ∧ Gσ x ∈ EH,τ k

Just like with the Nash product, we can ask ourselves the if the approximate equilibria of a sequential
game has any structure, eg is it composed of equilibria for the sequential composition of two approxi-
mated games. Once more, the answer is yes!
Lemma 4.8. Let (Σ,G,E) : (X ,S)→ (Y,R) and (Ω,H,B) : (Y,R)→ (Z,T ) be open games. Then

x ∈ ETε (H◦G),(σ ,τ) (k : Z → T ) implies x ∈ ETε H◦Tε G,(σ ,τ) (k : Z → T )

for any x ∈ X, k : Z → T , σ ∈ Σ and τ ∈ Ω

Proof. Assume x ∈ X , k : Z → T , σ ∈ Σ and τ ∈ Ω and x ∈ ETε (H◦G),(σ ,τ) (k : Z → T ). By definition of
Tε , we have a k′ : Z → T such that k ∼ε k′ and x ∈ EH◦G,(σ ,τ) (k′ : Z → T ). By definition, this means
x ∈ EG,σ (k′.Hτ) and Gσ x ∈ EH,τ k′. Since Hτ is short, we have k.Hτ ∼ε k′.Hτ and hence

x ∈ ETε G,σ (k.Hτ) and Gσ x ∈ ETε H,τ k

Thus x ∈ ETε H◦Tε G,(σ ,τ) (k : Z → T )

Unlike with the Nash product, it is unlikely we can prove the reverse direction as, given x∈ETε G,σ (k.Hτ),
all we could conclude is there is a k′ ∼ε k.Hτ such that x ∈ EG,σ k′ but vital and needed structure is lost.

5 Metric Game Theory

Apart from solving the concrete problem of when is a move almost optimal in a selection function or
open game, our Approximate Game Theory permits further theoretical developments. The one we sketch
here we call Metric Game Theory which seeks to ask the question of how far apart are two games. This
is important, eg in a compositional model we might want to know if replace sub-games/components of
one game with other sub-game/components, can we quantitatively measure the effect. In more detail, we
might ask question such as if G ∼ε G′, what can we say about the distance between G⊗H and G′⊗H. In
this section we develop the basics of Metric Game Theory. We focus on selection functions as the theory
seems to generalise to open games. We also only measure distances between selection functions over
the same lens — we expect we can use fibrational structure of selection functions over lenses to enable
the computation of distances between selection functions over different lenses. But we leave a proper
treatment of Metric Game Theory to a full paper as the subject clearly warrants.



Neil Ghani 11

Definition 5.1. Let s,s′ ∈ Sel(X ,V ) be selection functions. We define

d(s,s′) = (inf ε : ℜ) (s ⊆ Tεs′ ∧ s′ ⊆ Tεs)

In the above, we are essentially using the Hausdorff distance on subsets in the above definition. As a
result, the above construction gives a pesudometric, ie there is no requirement that d(x,y) = 0 implies
x = y. We list two obvious properties of the pseudometric on Sel(X ,V ) showing how distances between
games are preserved by compositional structure.

Lemma 5.2. Assuming a decidable equality on X ,X ′, the following are true

• Let s be a selection function. Then d(s,Tεs)≤ ε

• Let s,s′ ∈ Sel(X ,V ) and t, t ′ ∈ Sel(X ′,V ′). If d(s,s′)≤ ε and d(t, t ′)≤ ε , then d(s⊗ t,s′⊗ t ′)≤ ε

Proof. The first property follows from the graded structure of Tε . For the second, note s ⊆ Tεs′ and
t ⊆ Tεt ′. Thus s⊗ t ⊆ Tεs′⊗Tεt ′ = Tε(s′⊗ t ′)

Finally, note this states if we replace a subcomponent of a Nash product by one ε-different, the overall
Nash product is no further than ε-apart. This is an ideal property to have in a quantitative compositional
theory of games. The analogous property for the Nash product of open games also holds. However, note
that for sequential composition of open games we only have Tε(H ◦G) ⊆ TεH ◦TεG. Thus, replacing
subgames with other subgames can increase distance between the overall games but (not shown here) in
a bounded way — enough to give a theory of uncertainty budgets for approximation of open games.

6 Conclusions and Future Work

In summary, we have tackled the important problem of approximation for game theory. This is impor-
tant as exact equilibria are often either impossible to determine due to inherent uncertainty in underlying
data, or undesirable because the cost of exact computation is too high in comparison to approximate
computation. In developing our approach to approximate game theory, it was vital to ensure our theory
of approximation was compositional in that it respected the compositionality of game theory. Our fun-
damental idea was that a strategy was approximately optimal for a given utility function if it is optimal
for an approximation of that utility function. This idea was developed for two models of game theory -
firstly selection functions and secondly open games. In both, approximation was shown to preserve com-
positional structure. Finally, we showed how approximation and compositionality can be used to develop
Metric Game Theory and then Quantitative Compositionality which allows one to replace approximately
equal subcomponents and producing guarantees on how close the overall resulting systems are.

By opening up a new field, this paper has much that can be done to expand it. Firstly, there are a number
of other operators in open games which the methods developed here could be applied to. These include
choice, contextualisation and infinite iteration [7]. Secondly, these methods could also be extended to
more advanced forms of open games, eg i) probabilistic open games using distance metrics such as
Kantorovich on probability distributions; or ii) games based upon optics [13]. Thirdly, the generality
of our ideas means applications to other forms of games are natural For example, in Markov Decision
Processes [3], one can consider coalgebras

⟨u, t⟩ : X → R× (A → DX)
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where X is a state space, R is a type of utility, A is a set of actions, D is the probability monad, u : X → R
is a utility function and t : X ×A → DX is a probabilistic transition function. Within MDPs one defines
optimal policies which we can denote Opt. Our methodology suggests defining an approximate version

π ∈ Opt Tε⟨u, t⟩ iff π ∈ Opt ⟨u′, t⟩

where u′ ∼ε u. One could even be more general and consider tweaks to the structure of t! Most ex-
citingly, there is ample evidence that machine learning is fundamentally the same thing as game theory
apart from in the former one looks for small step improvements in performance while in the latter one
seeks exact equilibria. Thus it is possible that the ideas developed here could align with the learning
based upon back propagation [4] of losses based upon utility and, in particular, the categorical deep
learning [5] programme advocated recently (and as a special case, geometric deep learning). This would
be a contribution to the huge problem of XAI. It would be good to see what an implementation in code of
our ideas looks like, eg in the implementation of open games [8]. The breadth of application areas also
suggests more theoretical work unifying these disparate examples, eg via a theory of approximation for
utility indexed predicates, or maybe predicates fibred over metric spaces, or just fibrations over metric
spaces!
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