
Pattern runs on matter: The free monad monad as a module
over the cofree comonad comonad

Sophie Libkind and David I. Spivak

Interviews run on people, programs run on operating systems, voting schemes run on voters,

games run on players. Each of these is an example of the abstraction pattern runs on matter.
Pattern determines the decision tree that governs how a situation can unfold, while matter

responds with decisions at each juncture.

In this article, we will give a straightforward and concrete construction of the free monad

monad for (Poly,⊳,y), the category of polynomial functors with the substitution monoidal

product. Although the free monad has been well-studied in other contexts, the construction

we give is streamlined and explicitly illustrates how the free monad represents terminating

decision trees. We will also explore the naturally arising interaction between the free monad

and cofree comonad. Again, while the interaction itself is known, the perspective we take is

the free monad as a module over the cofree comonad. Lastly, we will give four applications of

the module action to interviews, computer programs, voting, and games. In each example, we

will see how the free monad represents pattern, the cofree comonad represents matter, and the

module action represents runs on.

1 Introduction

The etymology of matter and pattern are "mother" and "father"; this pair of terms offers a very

basic sense in which to carve up the world. “Like two parents, matter and pattern represent a

fundamental dichotomy: matter is the pure material, unconcerned with our ideas about it; pattern

is pure structure, unconcerned with what substantiates it” [Spi]. And yet one may have an intuitive

sense that pattern "runs on"—must be instantiated in—matter. In this paper, we show that this

idea matches both our intuition and the mathematics of a module structure by which free monads

are a module over cofree comonads.

Intuitively, interviews, programs, voting schemes, and games represent patterns. But what is

an interview without a person to be interviewed; what is a program without a operating system to

run it on; what is a voting scheme without voters to do the voting; what is a game without players

to play it? In each case, the pattern runs on a material substrate.

In this paper we give an account for this intuition in terms of free monads 𝔪 and cofree

comonads 𝔠 on polynomial functors. We show that for any 𝑝, 𝑞 : Poly, there is a natural map

Ξ𝑝,𝑞 : 𝔪𝑝 ⊗ 𝔠𝑞 →𝔪𝑝⊗𝑞 . (1)

In fact, this map gives 𝔪 the structure of a 𝔠-module, in a precise sense; see Section 3.2.

Consider the behavior of a Moore machine, which transforms lists of 𝐴-inputs into lists of

𝐵-outputs for sets 𝐴,𝐵. This behavior is determined by an element 𝑏 : y → 𝔠𝐵y𝐴 of the terminal

coalgebra on the polynomial 𝑞 B 𝐵y𝐴. But how does one apply this behavior to a list of 𝐴’s? The

latter is a map ℓ : y→𝔪𝐴y. To actually apply the behavior 𝑏 to the list ℓ , we use an obvious map

𝜑 : 𝐴y⊗ 𝐵y𝐴 → 𝐵y and the module structure (1) to obtain a list of 𝐵’s.

y � y⊗ y
ℓ⊗𝑏−−→𝔪𝐴y ⊗ 𝔠𝐵y𝐴

Ξ
𝐴y,𝐵y𝐴−−−−−→𝔪𝐴y⊗𝐵y𝐴

𝔪𝜑
−−→𝔪𝐵y (2)



2 Pattern runs on matter

Whereas patterns start and end, matter is never destroyed. One can think of 𝔪𝑝 as the type

of terminating programs and of 𝔠𝑞 as the type of operating systems or online algorithms. This

intuition is captured by the fact that elements of the free monad𝔪𝑝 are "well-founded trees" [GK12;

AGM01]—in the case 𝑝 is finitary, a wellfounded tree is one with finite height—whereas elements

of the cofree comonad 𝔠𝑞 are generally non-wellfounded, e.g. infinite in height even for finitary

𝑞. The module map Ξ𝑝,𝑞 pairs the wellfounded tree with the non-wellfounded tree, following the

shape of the wellfounded one; for example the list of 𝐵’s in (2) will have exactly the same length as

the list of 𝐴’s.

Related work. A construction of the free monad for much more general (than polynomial)

endofunctors was given by Kelly in [Kel80]. The treatment was greatly simplified by Shulman and

others in [nLa24c]. The case of polynomial endofunctors is more restrictive, and as such has a far

more straightforward construction.

A monad-comonad interaction law, again in more general settings, was described in [KRU20].

This paper structures interaction laws in an interesting and useful but somehow ad hoc way, as a

category whose objects are triples (𝑇,𝐶, 𝑓 ), where𝑇 is a monad, 𝐶 is a comonad, and 𝑓 : 𝑇 ⊗𝐶 → id

is a map satisfying certain natural conditions, and whose morphisms are maps 𝑇 →𝑇′
and 𝐶′ → 𝐶

satisfying certain constraints. It should also be noted that this paper includes no proofs.

Contributions.
1. Simple concrete constructions of both free monads and cofree comonads in (Poly,⊳,y).
2. A proof that the free monad is a module over the cofree comonad.

3. Four applications of this module, each having the form pattern runs on matter.
For these, see Definition 2.2 and Proposition 3.1; Theorem 3.4; and Section 4, respectively. We also

give a precise definition of the notion of "dual" functor, defined in [KRU20], and generalize it to be

functorial in a monad 𝑡; see (5).

Notation. We often denote the identity on an object 𝑥 by the object name itself rather than id𝑥 .

We denote the cardinality of a set 𝑋 by #𝑋. If 𝐿 ⊣ 𝑅 is an adjunction, we denote it

C D
𝐿

⇒
𝑅

so that the 2-cell shown indicates the direction of both the unit C→ 𝑅◦𝐿 and the counit 𝐿◦𝑅→D.

Acknowledgements. The authors thanks Harrison Grodin and Brandon Shapiro for many useful

conversations. This material is based upon work supported by the Air Force Office of Scientific

Research under award numbers FA9550-20-1-0348 and FA9550-23-1-0376.

1.1 Preliminaries

Although we will assume basic familiarity with the category Poly of univariate polynomial functors

on Set and natural transformations between them, we will begin by clarifying notation. We write

a polynomial functor 𝑝 : Poly as 𝑝 =
∑

𝑃:𝑝(1)y
𝑝[𝑃]

where 𝑝(1) are the positions of 𝑝 and 𝑝[𝑃] are the

directions at the position 𝑃. With this notation, a map 𝜙 : 𝑝 → 𝑞 in Poly consists of

• A function on positions 𝜙(1) : 𝑝(1) → 𝑞(1).
• For each position 𝑃 : 𝑝(1), a function backwards on directions 𝜙#

𝑃
: 𝑞[𝜙1(𝑃)] → 𝑝[𝑃].



S. Libkind and D. I. Spivak 3

There are many monoidal products in Poly [NS22], however in this article we focus on the Dirichlet

and substitution products. The substitution product has unit y and is defined by

𝑝 ⊳ 𝑞 =
∑
𝑃:𝑝(1)

∏
𝑝[𝑃]

∑
𝑄:𝑞(1)

∏
𝑞[𝑄]

y

Using the distributive law, a position in 𝑝 ⊳ 𝑞 is a position 𝑃 in 𝑝 and for every direction in 𝑝[𝑃]
a position in 𝑞. It will be useful to consider the corolla forest view on polynomials and the ⊳-
monoidal product, since these will be the building blocks of the decision trees represented by the

free monad monad.

Consider 𝑝 = y3 +y2
. We can notate 𝑝 using a corolla forest in which each position 𝑃 : 𝑝(1) is a

tree with 𝑝[𝑃]-many branches. The root of each tree is labeled by its corresponding position and

branches correspond to directions.

1 2

Likewise, the polynomial 𝑞 = 2y4 +y2 +1 is notated by the corolla forest:

1 2 3 4

Then the positions of 𝑝 ⊳ 𝑞 can be represented by trees of height 2, whose building blocks are

the trees corresponding to the positions of 𝑝 and 𝑞. In particular, a position of 𝑝 ⊳ 𝑞 is a position of

𝑝 and for each branch, a position of 𝑞. The directions are the number of dangling leaves. Here are

three examples of positions in 𝑝 ⊳ 𝑞 with eight, eight, and two directions respectively.

1

1 3 3

1

1 4 2

2

3 4

2 The free monad monad

For a polynomial 𝑝, we will define the free monad 𝔪𝑝 through transfinite induction by defining

polynomials 𝑝(𝛼) for each ordinal 𝛼 and inclusions 𝑝(𝛼) → 𝑝(𝛽) for ordinals 𝛼 < 𝛽.

• Base case: Define 𝑝(0) B y.

• For successor ordinals 𝛼+1: Define 𝑝(𝛼+1)B y+𝑝 ⊳𝑝(𝛼). For the inclusions define 𝜄(0) : y→ y+𝑝

to be the inclusion; note that it is cartesian. Then, given 𝜄(𝛼), define 𝜄(𝛼+1) to be

𝑝(𝛼+1) = y+ 𝑝 ⊳ 𝑝(𝛼)
y+𝑝⊳𝜄(𝛼)−−−−−−→ y+ 𝑝 ⊳ 𝑝(𝛼+1) = 𝑝(𝛼+2).

which is also cartesian.

• For limit ordinals 𝛼: Define 𝑝(𝛼) B colim𝛼′<𝛼 𝑝(𝛼′). For each 𝛼′ < 𝛼, let 𝜄(𝛼′) : 𝑝(𝛼′) → 𝑝(𝛼) be

the natural inclusion. These are cartesian by Proposition A.7. Lastly, we define the inclusion

𝜄(𝛼) : 𝑝(𝛼) → 𝑝(𝛼+1) to be induced by the cocone of maps which are defined for 𝛼′ < 𝛼 by

𝑝(𝛼′)
𝜄(𝛼′)−−→ 𝑝(𝛼′+1) = y+ 𝑝 ⊳ 𝑝(𝛼′)

y+𝑝⊳𝜄(𝛼′)−−−−−−→ y+ 𝑝 ⊳ 𝑝(𝛼) = 𝑝(𝛼+1).

Remark 2.1. By construction each 𝜄(𝛼) is cartesian. ♢



4 Pattern runs on matter

For ease of notation, we will also use 𝜄(𝛼) : 𝑝(𝛼) → 𝑝(𝛽) to represent the composite of inclusions for

any pair of ordinals 𝛼 < 𝛽. We will also define 𝜆(𝛼) : 𝑝 ⊳ 𝑝(𝛼) → 𝑝(𝛼+1) to be the coproduct inclusion.

Definition 2.2. If 𝑝 is 𝜅-small, then define 𝔪𝑝 B 𝑝(𝜅). ♢

We will show in Theorem 2.10 that 𝔪𝑝 is the free monad on 𝑝. Therefore, 𝔪𝑝 is unique and

hence well-defined.

Think of the positions of 𝔪𝑝 as decision trees whose building blocks are the positions of 𝑝. For

instance, suppose that a position 𝑃 : 𝑝(1) is a question and the directions 𝑝[𝑃] are possible answers

to question 𝑃. Then y is a unique question with a unique answer, which we think of as "no further

questions". Then, consider the positions of 𝔪𝑝 that factor through 𝑝(𝛼). For example, the positions

of 𝑝(2) = y+𝑝 ⊳ (y+𝑝) is either (1) no further questions or (2) a question and for each possible answer

either no further questions or another question. Therefore 𝑝(2) represents interviews with at most
two questions, and in general for finite 𝑖, 𝑝(𝑖) represents interviews with at most 𝑖 questions.

Example 2.3. For finitary 𝑝, the positions of 𝔪𝑝 are 𝑝-trees with finite height and whose directions

are the dangling leaves. ♢

Example 2.4. A finitey-tree is determined by its height and has one dangling leaf; thus,𝔪y �Ny. ♢

2.1 Monad structure on 𝔪𝑝

Let Mod(Poly) denote the category of monoids in (Poly,y,⊳). Note that when viewed as endofunc-

tors on Set, a ⊳-monoid is in fact a monad on Set. Therefore we refer to the objects of Mod(Poly)
as ⊳-monoids, polynomial monads, or simply monads.

Next we will give a ⊳-monoid structure on 𝔪𝑝 . The unit 𝜂 : y→𝔪𝑝 is defined to be the inclusion

𝜄(0) : y= 𝑝(0) →𝔪𝑝 . The multiplication is more complicated so we begin with the following Lemma.

Lemma 2.5. For ordinals 𝛼,𝛽 there exist maps 𝜇(𝛼,𝛽) : 𝑝(𝛼) ⊳ 𝑝(𝛽) → 𝑝(𝛼+𝛽) such that for all 𝛼′ < 𝛼 and
𝛽′ < 𝛽 the following diagram commutes

𝑝(𝛼′) ⊳ 𝑝(𝛽′) 𝑝(𝛼′+𝛽′)

𝑝(𝛼) ⊳ 𝑝(𝛽) 𝑝(𝛼+𝛽)𝜇(𝛼,𝛽)

𝜇(𝛼′ ,𝛽′)

𝜄(𝛼′)⊳𝜄(𝛽′) 𝜄(𝛼′+𝛽′) (3)

Proof. We define the maps 𝜇(𝛼,𝛽) transinductively on 𝛼.

For 𝛼 = 0, 𝜇(𝛼,𝛽) is the identity on 𝑝(𝛽).
For successor ordinals 𝛼+1, suppose we have already defined 𝜇(𝛼,𝛽). Note that

𝑝(𝛼+1) ⊳ 𝑝(𝛽) = (y+ 𝑝 ⊳ 𝑝(𝛼)) ⊳ 𝑝(𝛽) = 𝑝(𝛽)+ 𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽).

So we define 𝜇(𝛼+1,𝛽) to be the copairing of the inclusion 𝜄(𝛽) : 𝑝(𝛽) → 𝑝(𝛼+𝛽) with the map

𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽)
𝑝⊳𝜇(𝛼,𝛽)
−−−−−→ 𝑝 ⊳ 𝑝(𝛼+𝛽)

𝜆(𝛼+𝛽)
−−−−→ 𝑝(𝛼+𝛽+1).

That the diagram in (3) commutes for 𝛼′ = 𝛼+1 can be shown inductively on 𝛼.

Next suppose that 𝛼 is a limit ordinal and suppose we have defined 𝜇(𝛼′,𝛽) : 𝑝(𝛼′) ⊳ 𝑝(𝛽) → 𝑝(𝛼′+𝛽)
for 𝛼′ < 𝛼. Then we define 𝜇(𝛼,𝛽) to be the composite

𝑝(𝛼) ⊳ 𝑝(𝛽) =
(
colim

𝛼′<𝛼
𝑝(𝛼′)

)
⊳ 𝑝(𝛽) � colim

𝛼′<𝛼
(𝑝(𝛼′) ⊳ 𝑝(𝛽)) → colim

𝛼′<𝛼
𝑝(𝛼′+𝛽) → 𝑝(𝛼+𝛽).

The second isomorphism follows from Proposition A.8. That these maps make the diagram in (3)

commute is immediate. □



S. Libkind and D. I. Spivak 5

This Lemma implies that for ordinals 𝛼,𝛽 < 𝜅 the maps

𝑝(𝛼) ⊳ 𝑝(𝛽)
𝜇(𝛼,𝛽)
−−−→ 𝑝(𝛼+𝛽) →𝔪𝑝

form a cocone into 𝔪𝑝 . Define the multiplication 𝜇 : 𝔪𝑝 ⊳𝔪𝑝 →𝔪𝑝 using the universal property:

𝔪𝑝 ⊳𝔪𝑝 =

(
colim

𝛼<𝜅
𝑝(𝛼)

)
⊳

(
colim

𝛽<𝜅
𝑝(𝛽)

)
� colim

𝛼<𝜅
colim

𝛽<𝜅
(𝑝(𝛼) ⊳ 𝑝(𝛽)) →𝔪𝑝 .

The second isomorphism follows from Proposition A.3 and Proposition A.8.

From this definition and Lemma (2.5), the following Lemma is immediate.

Lemma 2.6. Let 𝑝 be 𝜅-small. Then for all 𝛼,𝛽 < 𝜅, the following diagram commutes.

𝑝(𝛼) ⊳ 𝑝(𝛽) 𝑝(𝛼+𝛽)

𝔪𝑝 ⊳𝔪𝑝 𝔪𝑝

𝜄(𝛼+𝛽)

𝜇

𝜇(𝛼,𝛽)

𝜄(𝛼)⊳𝜄(𝛽)

As a predecessor to proving the associativity law for (𝔪𝑝 ,𝜂,𝜇) as a ⊳-monoid, we present the

following variant of Lemma 2.5 whose proof appears in Appendix B.

Lemma 2.7. For ordinals 𝛼,𝛽,𝛾, the following diagram commutes:

𝑝(𝛼) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼) ⊳ 𝑝(𝛽+𝛾)

𝑝(𝛼+𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾)

𝜇(𝛼,𝛽)⊳𝑝(𝛾)

𝑝(𝛼)⊳𝜇(𝛽,𝛾)

𝜇(𝛼,𝛽+𝛾)

𝜇(𝛼+𝛽,𝛾)

Proposition 2.8. For every polynomial 𝑝 : Poly, there is a ⊳-monoid structure on 𝔪𝑝 , for which the unit
and multiplication 𝜂 : y→𝔪𝑝 and 𝜇 : 𝔪𝑝 ⊳𝔪𝑝 →𝔪𝑝 are defined as above.

Proof. First we show the left unit law. Since y ⊳𝔪𝑝 is isomorphic to colim𝛽<𝜅(y ⊳ 𝑝(𝛽)), the left unit

law follows from Lemma 2.6 with 𝛼 = 0. Likewise, for the right unit law.

Second we show associativity. Due to the isomorphism𝔪𝑝 ⊳𝔪𝑝 ⊳𝔪𝑝 � colim𝛼,𝛽,𝛾<𝜅
(
𝑝(𝛼) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾)

)
,

it suffices to show that for 𝛼,𝛽,𝛾 < 𝜅, the outer diagram in the following commutes.

𝑝(𝛼) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼) ⊳ 𝑝(𝛽+𝛾) 𝔪𝑝 ⊳𝔪𝑝

𝑝(𝛼+𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾)

𝔪𝑝 ⊳𝔪𝑝 𝔪𝑝

𝜇(𝛼,𝛽)⊳𝑝(𝛾)

𝑝(𝛼)⊳𝜇(𝛽,𝛾)

𝜇(𝛼,𝛽+𝛾)

𝜇(𝛼+𝛽,𝛾)

𝜄(𝛼+𝛽+𝛾)

𝜇

𝜇

𝜄(𝛼+𝛽)⊳𝜄(𝛾)

𝜄(𝛼)⊳𝜄(𝛽+𝛾)

The upper left-hand square commutes by Lemma 2.7 and the other squares commute by Lemma 2.6.

□



6 Pattern runs on matter

2.2 The monad 𝔪𝑝 is free

Now that we have verified that𝔪𝑝 is indeed a monad, we want to justify calling it the free monad by

giving a left adjoint 𝔪− : Poly → Mod(Poly) to the forgetful functor 𝑈 : Mod(Poly) → Poly which

takes a ⊳-monoid (𝑞,𝜂𝑞 ,𝜇𝑞) to its carrier 𝑞.

We begin by defining the action of 𝔪− on morphisms. Let 𝑓 : 𝑝 → 𝑞 in Poly. We will define

𝔪 𝑓 : 𝔪𝑝 → 𝔪𝑞 by inductively defining morphisms 𝑓(𝛼) : 𝑝(𝛼) → 𝑞(𝛼) such that for all 𝛼 < 𝛽 the

following diagram commutes:

𝑝(𝛼) 𝑝(𝛽)

𝑞(𝛼) 𝑞(𝛽)

𝑓(𝛼) 𝑓(𝛽)

𝜄(𝛼)

𝜄(𝛼)

(4)

Define 𝑓(0) : 𝑝(0) → 𝑞(0) to be the identity on y. For a successor ordinal 𝛼+ 1, suppose that we

have already defined 𝑓(𝛼) : 𝑝(𝛼) → 𝑞(𝛼). Then we define 𝑓(𝛼+1) : 𝑝(𝛼+1) → 𝑞(𝛼+1) to be

y+ 𝑝 ⊳ 𝑝(𝛼)
y+ 𝑓 ⊳ 𝑓(𝛼)−−−−−−→ y+ 𝑞 ⊳ 𝑞(𝛼).

To show that the diagram in Equation (4) commutes for successor ordinals, it suffices to show that

for all 𝛼, the diagram with 𝛽 = 𝛼+1 commutes. By induction this is immediate by the definitions

of 𝜄(𝛼+1) and 𝑓(𝛼+1).
Suppose that 𝛼 is a limit ordinal and that we have defined 𝑓(𝛼′) : 𝑝(𝛼′) → 𝑞(𝛼′) for all 𝛼′ < 𝛼. For

each 𝛼′ < 𝛼 we have maps

𝑝(𝛼′)
𝑓(𝛼′)−−−→ 𝑞(𝛼′)

𝜄(𝛼′)−−→ 𝑞(𝛼).

Since the diagram in Equation (4) commutes for all pairs of ordinals less than 𝛼, these maps form

a cocone into 𝑞(𝛼). So, by the universal property of the colimit, 𝑝(𝛼) = colim𝛼′<𝛼 𝑝(𝛼′), there is an

induced map 𝑓(𝛼) : 𝑝(𝛼) → 𝑞(𝛼). That the diagram in Equation (4) commutes when 𝛽 is a limit ordinal

follows from the uniqueness of the universal map.

Let 𝜅 be such that both 𝑝 and 𝑞 are 𝜅-small. Then we define 𝔪 𝑓 B 𝑓(𝜅). We defer the proof that

𝔪 𝑓 is a map of ⊳-monoids to Appendix B.

Proposition 2.9. For 𝑓 : 𝑝 → 𝑞 in Poly, the polynomial map 𝔪 𝑓 : 𝔪𝑝 →𝔪𝑞 is a map of ⊳-monoids.
It is straightforward to show by transfinite induction that the action of 𝔪− on morphisms is

functorial. Therefore, Proposition 2.8 and Proposition 2.9 define a functor 𝔪− : Poly → Mod(Poly).
Theorem 2.10. There is an adjunction

Poly Mod(Poly)
𝔪−
⇒
𝑈

.

Therefore 𝔪𝑝 is the free monad on the polynomial 𝑝 and 𝔪− is the free monad monad. We

defer the proof of Theorem 2.10 and its requisite Lemmas to Appendix B.1.

3 Interactions between free monad and cofree comonad

3.1 The cofree comonad comonad

It is a beautiful fact that in Poly the ⊳-comonoids are categories and ⊳-comonoid maps are co-

functors. Thus, we use Cat♯ to denote the category of ⊳-comonoids and their maps. Dual to



S. Libkind and D. I. Spivak 7

the construction of the free monad monad in Section 2, here we define the cofree comonad and

show that it is right adjoint to the forgetful functor 𝑈 : Cat♯ → Poly given by 𝑈(𝑐, 𝜖, 𝛿) B 𝑐. In

Appendix C we prove the statements presented in this Section.

Proposition 3.1. There is a functor 𝔠− : Poly → Poly such that 𝔠𝑝 has the structure of a ⊳-comonoid for
each 𝑝 : Poly,

𝔠𝑝 → y and 𝔠𝑝 → 𝔠𝑝 ⊳ 𝔠𝑝 .

For a polynomial functor 𝑞 : Poly, the positions of the cofree comonad are 𝑞-behavior trees.

These are defined coinductively as a position 𝑄 : 𝑞(1) and a map from directions of 𝑞[𝑄] to 𝑞-

behavior trees.

Theorem 3.2. There is an adjunction

Cat♯ Poly
𝑈

⇒
𝔠−

.

Hence 𝔠𝑞 is the cofree comonad on the polynomial 𝑞 and 𝔠− is the cofree comonad comonad.

3.2 The module structure 𝔪𝑝 ⊗ 𝔠𝑞 →𝔪𝑝⊗𝑞

For polynomials 𝑝 and 𝑞 consider the map

𝑝 ⊗ 𝔠𝑞 → 𝑝 ⊗ 𝑞 →𝔪𝑝⊗𝑞

where the first map is induced by the counit of 𝔠𝑞 and the second map is the unit of 𝔪𝑝⊗𝑞 . This

composite induces a map of polynomials 𝑝 → [𝔠𝑞 ,𝔪𝑝⊗𝑞]. By duoidality of ⊗ and ⊳, the internal

hom [𝔠𝑞 ,𝔪𝑝⊗𝑞] is a ⊳-monoid as well. Therefore, by the adjunction in Theorem 2.10 the map of

polynomials 𝑝 → [𝔠𝑞 ,𝔪𝑝⊗𝑞] induces a map of ⊳-monoids 𝔪𝑝 → [𝔠𝑞 ,𝔪𝑝⊗𝑞], which is equivalent to a

polynomial map

Ξ𝑝,𝑞 : 𝔪𝑝 ⊗ 𝔠𝑞 →𝔪𝑝⊗𝑞 .

This map is the free monad-comonad interaction law described in [KRU20, Section 3.3]. In

Appendix D we prove the statements presented in this Section.

Proposition 3.3. The maps Ξ𝑝,𝑞 are natural in 𝑝 and 𝑞.
Note that 𝔠 is lax monoidal (see Proposition C.1)

𝔠𝑝 ⊗ 𝔠𝑞 → 𝔠𝑝⊗𝑞 and y→ 𝔠y

so in this sense we would say "matter can also take the place of pattern."

Recall from [nLa24b] the notion of a module over a monoidal functor.

Theorem 3.4. There is a left-module over 𝔠− : (Poly,⊗,y) → (Poly,⊗,y) consisting of:
• Poly as a left module category over (Poly,⊗,y).
• The functor 𝔪− : Poly → Poly.
• The natural transformation Ξ : 𝔪− ⊗ 𝔠− ⇒𝔪−⊗−.

4 Applications

In this Section, we will give four applications of the module structure introduced in Section 3. Each

consists of:

• A pattern of type 𝑝, represented by a map into 𝔪𝑝 .

• Matter of type 𝑞, represented by a map into 𝔠𝑞 .

• A runs on map 𝑝 ⊗ 𝑞 → 𝑟.

Then the composite 𝔪𝑝 ⊗ 𝔠𝑞 →𝔪𝑝⊗𝑞 →𝔪𝑟 represents the interaction pattern runs on matter.



8 Pattern runs on matter

4.1 Interviews run on people

As in Section 2, suppose that the positions of 𝑝 are questions and the directions are possible answers

to each question. For example consider the polynomial, 𝑝 = {Tea?}y{yes,no}+{Kind?}y{green,black,herbal}

which we can view as the corolla forest:

Tea?

yes no

Kind?

green
black herbal

Essentially, 𝑝 consists of the questions:

• "Do you want tea?", with possible answers "yes" or "no".

• "What kind of tea do you like?", with possible answers "green", "black", or "herbal".

Consider the pattern y→𝔪𝑝 which selects the following interview:

Tea?

Kind? Tea?

Kind?

The polynomial [𝑝,y] =
(∏

𝑃:𝑝(1) 𝑝[𝑃]
)
y𝑝(1) is the universal answerer for the polynomial 𝑝. Its

positions are a choice of answer for each question in 𝑝(1) and its directions are the questions 𝑝(1).
A person is a map y → 𝔠[𝑝,y]. In other words, a person is a behavior tree in which a node is an

answer for each question and a branch is one such question. Each answer may depend on the

sequence of questions asked so far.

Note that [𝑝,y] is what is referred to in [KRU20, Section 2.5] as duals. We will see in Section 4.4

that it is also interesting to consider generalizations of this duality to [𝑝, 𝑡] for any polynomial

monad 𝑡. Indeed, for any monad 𝑡, there is a map

𝔪𝑝 ⊗ 𝔠[𝑝,𝑡] →𝔪𝑡 → 𝑡 (5)

The evaluation map 𝑝 ⊗ [𝑝,y] → y describes how to run a question on a universal answerer.

Given an interview and a person we get the composite

y→𝔪𝑝 ⊗ 𝔠[𝑝,y] →𝔪𝑝⊗[𝑝,y] →𝔪y =Ny,

which sends the single position of y to the number of questions asked when the interview is run

on the person. For example, consider the person who would always respond that he does not want

tea and he likes herbal tea. Running the tea interview on this person will cause two questions:

"Tea?" then "Tea?". Conversely, consider the person who would at first respond that she does not

want tea and that she likes black tea. Then after the first question, she would respond that she

does want tea and she likes black tea. Running the tea interview on this person will cause three

questions: "Tea?", "Tea?", then "Kind?".

4.2 Programs run on operating systems

Consider the following program.



S. Libkind and D. I. Spivak 9

def guessing_game(max_guesses, goal):
if max_guesses==0:

return False
guess=read()
if guess==goal:

return True
return guessing_game(max_guesses-1, goal)

We represent the argument/return type with the polynomial 𝑟 =
∑

𝑚:N,𝑔:Ny
Bool

where 𝑚 rep-

resents the variable max_guesses and 𝑔 represents the variable goal. We represent the effect

type that reads in natural numbers with the polynomial 𝑝 = yN. Finally, we will represent this

program with a map 𝑟 →𝔪𝑝 that we define inductively using the decomposition 𝑟 =
∑

𝑚:N 𝑟𝑚 with

𝑟𝑚 =
∑

𝑔:Ny
Bool

. We start by defining the following maps:

• Define a map 𝑟0 → y. Each position of 𝑟0 is sent to the single position of y. The single

direction of y is sent to False : Bool.

• Define a map 𝑟𝑚+1 → 𝑝 ⊳ (y+ 𝑟𝑚). On positions, for each position 𝑔 : 𝑟𝑚+1(1), we need a

function from N to the positions of y+ 𝑟𝑚 . In particular, we send 𝑔 to the map sending 𝑔′ : N
to y if 𝑔 = 𝑔′ and to the position 𝑔 : 𝑟𝑚(1) otherwise. Then on directions, if 𝑔 = 𝑔′, the single

direction of y is sent to True : Bool and if 𝑔 ≠ 𝑔′, then we use the identity on directions.

Now we will define maps 𝑟𝑚 → 𝔪𝑝 inductively using the isomorphism 𝔪𝑝 � y+ 𝑝 ⊳𝔪𝑝 and the

inclusion 𝜄(0) : y→𝔪𝑝 . As a base case, we have the composite 𝑟0 → y
𝜄(0)−−→𝔪𝑝 .Given 𝑟𝑚 →𝔪𝑝 , we

define

𝑟𝑚+1 → 𝑝 ⊳ (y+𝔪𝑝)
𝑝⊳(𝜄(0) ,𝔪𝑝)
−−−−−−−→ 𝑝 ⊳𝔪𝑝 →𝔪𝑝 .

A operating system with effects in [𝑝,y] � Ny is a map y→ 𝔠[𝑝,y] � (Ny)N. It consists of a stream of

natural numbers, which are the responses it will give to the read() effect.

Using the interaction Ξ𝑝,[𝑝,y] and the evaluation map 𝑝 ⊗ [𝑝,y] → y, we get the composite

𝑟 � 𝑟 ⊗ y→𝔪𝑝 ⊗ 𝔠[𝑝,y] →𝔪𝑝⊗[𝑝,y] →𝔪y � Ny,

which expresses how the program runs on the chosen operating system. On positions it maps

(𝑚 : N,𝑔 : N) to the minimum of 𝑚 and the number of responses the operating system takes to

guess the goal 𝑔. On directions, it maps the single direction to True if the goal was guessed in at

most 𝑚 guesses and to False otherwise.

4.3 Voting schemes run on voters

For a finite set of candidates 𝑋, consider the polynomial 𝑝 =
∑

𝐴⊆𝑋 y𝐴. The positions of 𝑝 are

ballots and the directions are winners. A voting scheme with 𝑀 voters is a map 𝑝 → 𝔪⊗
𝑀 𝑝

where

⊗
0
𝑝 B y and

⊗
𝑀+1

𝑝 B 𝑝 ⊗
⊗

𝑀 𝑝. On positions, a subset of candidates 𝐴 ⊆ 𝑋 maps to a

terminating decision tree in which each node is a personalized ballot given to each of the 𝑀 voters

and each branch corresponds to the tuple of each voter’s selection. On directions, each leaf of this

decision tree maps to an overall winner.

Exhaustive run-off is a voting scheme in which each voter selects their preference from the

𝐴 candidates, and then the candidates with the fewest number of votes are eliminated. If only a

single candidate remains, then they are elected the winner. Otherwise, another round of voting

proceeds with the remaining candidates. This voting scheme can be encoded into a polynomial

map 𝑝 → 𝔪⊗
𝑀 𝑝 . As in Section 4.2 we define the map inductively. Consider the decomposition

𝑝 =
∑

#𝑋
𝑛=0

𝑝𝑛 where 𝑝𝑛 =
∑

𝐴⊆𝑋,#𝐴=𝑛 y
𝐴

. Then consider the following maps:



10 Pattern runs on matter

• Note that 𝑝0 = 1 is isomorphic to

⊗
𝑀 𝑝0 =

⊗
𝑀 1. There is an inclusion of 𝑝0 into 𝑝 and

hence a map 𝑝0 �
⊗

𝑀 𝑝0 →
⊗

𝑀 𝑝.

• There is a unique map 𝑝1 → y.

• Define 𝑝𝑛+1 →
(⊗

𝑀 𝑝
)
⊳
(∑𝑛

𝑘=0
𝑝𝑘

)
as follows. On positions 𝐴 ⊆ 𝑋 maps to the product∏

𝑀 𝐴 :

∏
𝑀 𝑝(1) and the map

∏
𝑀 𝐴→∑𝑛

𝑘=0
𝑝𝑘(1) defined by

(𝑎1 , · · · , 𝑎𝑀) ↦→ 𝐴′ B 𝐴 \argmin#(𝑎1 ,··· ,𝑎𝑛)

where #(𝑎1 ,··· ,𝑎𝑛) : 𝐴→N counts the number of votes for each candidate and so argmin#(𝑎1 ,··· ,𝑎𝑛)
is the set of candidates with the fewest votes. On directions, it is the inclusion 𝐴′ → 𝐴.

Now, we define 𝑝 →𝔪⊗
𝑀 𝑝 inductively as follows. As base cases we have the composites

𝑝0 = 1 =
⊗
𝑀

1 →
⊗
𝑀

𝑝 →𝔪⊗
𝑀 𝑝 and 𝑝1 → y→𝔪⊗

𝑀 𝑝 .

Given a maps 𝑝𝑘 →𝔪⊗
𝑀 𝑝 for 𝑘 < 𝑛+1, we define

𝑝𝑛+1 →
(⊗

𝑀

𝑝

)
⊳

(
𝑛∑

𝑘=0

𝑝𝑘

)
→𝔪⊗

𝑀 𝑝 ⊳

(
𝑛∑

𝑘=0

𝔪⊗
𝑀 𝑝

)
→𝔪⊗

𝑀 𝑝 ⊳𝔪
⊗

𝑀 𝑝

𝜇
−→𝔪⊗

𝑀 𝑝 .

A voter selects a candidate from every subset of candidates. Such a voter is represented by

a polynomial map y → [𝑝,y]. Running 𝑀 elections on 𝑀 voters is represented by the compos-

ite

(⊗
𝑀 𝑝

)
⊗

(⊗
𝑀[𝑝,y]

)
�

⊗
𝑀(𝑝 ⊗ [𝑝,y]) →

⊗
𝑀 y = y. Therefore, given 𝑀 voters, we get a

composite

𝑝 →𝔪⊗
𝑀 𝑝 ⊗

(⊗
𝑀

[𝑝,y]
)
→𝔪⊗

𝑀 𝑝 ⊗ 𝔠⊗
𝑀 [𝑝,y] →𝔪y =Ny.

On positions it maps a set of candidates 𝐴 ⊆ 𝑋 to the number of run-offs required to elect a

candidate. On directions, it maps the single direction of y to the winner.

It is tempting to expect that the maps 𝑝 → 𝔪⊗
𝑀 𝑝 define an operad enriched in the Kleisli

category Poly𝔪 in the sense of [SS22]. However exhaustive run-off is gerrymander-able meaning

that the division of voters into districts can affect the end-result of the election. This observation

suggests the following definition of gerrymandering.

Definition 4.1. A voting scheme 𝑝→𝔪⊗
𝑀 𝑝 can be gerrymandered if and only if it does not extend

to an operad enriched in Poly𝔪. ♢

4.4 Games run on players

For a game such as tic-tac-toe, let 𝑝 be the polynomial whose positions are game states and whose

directions are next possible moves. Then we can represent the game play as a position in 𝔪𝑝 . In

the game tic-tac-toe, a game state is a placement of ×’s and ⃝’s on a 3×3 grid. In other words, it

is a map 𝑏 : 9 → {×,⃝,−} where − represents an open grid position. For 𝑚 = 1, . . . ,9, let 𝐵𝑚 be the

set of valid board states with 𝑚 open positions. Assuming that × always plays first, these are

𝐵𝑚 B {𝑏 : 9 → {×,⃝,−} | #(𝑏−1(−)) = 𝑚,#(𝑏−1(⃝)) ≤ #(𝑏−1(×)) ≤ #(𝑏−1(⃝))+1}.

If there are an odd number of open positions, then it is ×’s turn. Otherwise, it is ⃝’s turn.

Given a board state 𝑏 : 𝐵𝑚 , the next possible moves are the open positions 𝑏−1(−). Therefore,

the polynomial 𝑝× =
∑

𝑏:𝐵1+𝐵3+···+𝐵9

y𝑏
−1(−)

represents the board states and next possible moves for ×.



S. Libkind and D. I. Spivak 11

Likewise the polynomial 𝑝⃝ =
∑

𝑏:𝐵2+𝐵4+···+𝐵8

y𝑏
−1(−)

represents the board states and next possible

moves for ⃝.

Consider the polynomial 𝑝 = 𝑝× ⊳ (y+ 𝑝⃝). This polynomial represents an × move followed by

either game over or an ⃝ move. There exists a polynomial map 𝑇 : y{×,⃝,−} →𝔪𝑝 which selects the

decision-tree in 𝔪𝑝 corresponding to the rules of tic-tac-toe, and maps directions to the winner of

a completed game or − if the game is tied. We will define the map 𝑇 inductively. For 𝑚 = 1, · · · ,9,

let 𝑟𝑚 = 𝐵𝑚y
{×,⃝,−}

.

• Define 𝑟1 → y, as follows. Given a board 𝑏 : 𝐵1 with a single open position, send the single

direction in y to either the winner or to − if the game is tied.

• Define 𝑟𝑚+1 → 𝑝⃝ ⊳ (y+ 𝑟𝑚) for odd 𝑚, and define 𝑟𝑚+1 → 𝑝× ⊳ (y+ 𝑟𝑚) for even 𝑚, as follows.

On positions send a board state 𝑏 : 𝐵𝑚+1 to itself in 𝑝⃝(1) (resp. 𝑝×(1)). Then for each valid

move 𝑚 : 𝑏−1(−) let 𝑏′ : 𝐵𝑚 be the updated board state. If 𝑏′ contains a winner, then send 𝑚

to y and send the single direction of y to the winner. Otherwise, send 𝑚 to 𝑏′ : 𝑟𝑚(1) and let

the map on directions be the identity.

Using these maps, we can inductively define maps 𝑟𝑚 →𝔪𝑝 for odd 𝑚 as follows. As a base case

we have the composite 𝑟1 → y→𝔪𝑝 . Given a map 𝑟𝑚 →𝔪𝑝 , we have the composite

𝑟𝑚+2 → 𝑝× ⊳ (y+ 𝑝⃝ ⊳ (y+ 𝑟𝑚)) → 𝑝× ⊳ (y+ 𝑝⃝ ⊳ (y+𝔪𝑝)) → 𝑝× ⊳ (y+ 𝑝⃝ ⊳𝔪𝑝)
→ 𝑝× ⊳ (y+ 𝑝⃝) ⊳𝔪𝑝 = 𝑝 ⊳𝔪𝑝 →𝔪𝑝 .

The second to last map is induced by the composite

y+ 𝑝⃝ ⊳𝔪𝑝 = y ⊳y+ 𝑝⃝ ⊳𝔪𝑝 → y ⊳𝔪𝑝 + 𝑝⃝ ⊳𝔪𝑝 → (y+ 𝑝⃝) ⊳𝔪𝑝 .

Below is the image of a board state in 𝑟3(1) under the map 𝑟3 →𝔪𝑝 . From left to right the directions

are sent to ⃝, −, −, −, and ×, as these are the win/loss/tie results of the games as shown.

× ⃝ ×
⃝ ⃝ ×

× ⃝ ×
⃝ ⃝ ×
×

× ⃝ ×
⃝ ⃝ ×
× ⃝

× ⃝ ×
⃝ ⃝ ×
× ⃝

× ⃝ ×
⃝ ⃝ ×

×

× ⃝ ×
⃝ ⃝ ×
⃝ ×

× ⃝ ×
⃝ ⃝ ×

× ⃝

× ⃝ ×
⃝ ⃝ ×

×

Define 𝑇 to be the map 𝑟9 = y{×,⃝,−} →𝔪𝑝 .

Let (𝑡 ,𝜂,𝜇) be a ⊳-monad. A polynomial map 𝜑× : y → [𝑝× , 𝑡] represents an × player and a

polynomial map 𝜑⃝ : y→ [𝑝⃝ , 𝑡] represents an ⃝ player. If 𝑡 is the trivial monad y, then for each

board state, the player’s next move is deterministic. If 𝑡 is the lottery monad lott=
∑

𝑀:N

∑
𝑃:Δ𝑀 y𝑀

,

then the players’ next moves are stochastic.

By duoidality we have

𝑝 ⊗ [𝑝× , 𝑡] ⊗ [𝑝⃝ , 𝑡] → 𝑝 ⊗ [𝑝× , 𝑡] ⊗ [y+ 𝑝⃝ , 𝑡] → (𝑝𝑥 ⊗ [𝑝𝑥 , 𝑡]) ⊳ ((y+ 𝑝⃝) ⊗ [y+ 𝑝⃝ , 𝑡]) → 𝑡 ⊳ 𝑡 → 𝑡



12 Pattern runs on matter

where the first map is induced by the monoidal unit of 𝑡. Given an × player and an ⃝ player, we

have a map y{×,⃝,−} � y{×,⃝,−} ⊗y⊗y
𝑇⊗!⊗!−−−−→𝔪𝑝 ⊗ 𝔠y ⊗ 𝔠y. Then, the game play is represented by the

composite

y{×,⃝,−} →𝔪𝑝 ⊗ 𝔠y ⊗ 𝔠y

𝔪𝑝⊗𝔠𝜑×⊗𝔠𝜑⃝−−−−−−−−−−→𝔪𝑝 ⊗ 𝔠[𝑝× ,𝑡] ⊗ 𝔠[𝑝⃝ ,𝑡] →𝔪𝑝⊗[𝑝× ,𝑡]⊗[𝑝⃝ ,𝑡] →𝔪𝑡 → 𝑡 (6)

which maps directions in 𝑡 to winners of completed games.

We can promote this setup to players which learn, in other words players whose strategy

dynamically changes after each completed game. A dynamic × player consists of a set of states 𝑆×
and a polynomial map 𝑆×y𝑆× → y{×,⃝,−} ⊗ 𝔠[𝑝× ,𝑡]. Likewise for a dynamic ⃝ player. Such a player

consists of the following:

• For each state, a behavior tree describing the player’s strategy.

• For a winner or tied game and each finite path of the behavior tree, a new state.

Creating maps like 𝜑 is the subject of reinforcement learning [SB18]. As a typical such algorithm,

take 𝑆× to be the set of functions that assign a score in N to each move (direction in 𝑝×). Let

𝑆×y𝑆× → y{×,⃝,−} ⊗ 𝔠[𝑝× ,lott] be defined as follows:

• On positions, it takes a score for each move and assigns a (stochastic) strategy which selects

moves based on their relative scores.

• On directions, note that a direction of 𝔠[𝑝× ,lott] contains a finite number of moves played by ×
in the game. If the winner is ×, then we add 1 to the score for each played move. Otherwise,

we keep the original scores.

Using the copy-on-directions map y{×,⃝,−} ⊗ y{×,⃝,−} → y{×,⃝,−}
, we have the composite

𝑆×y
𝑆× ⊗ 𝑆⃝y𝑆⃝ → y{×,⃝,−} ⊗ y{×,⃝,−} ⊗ 𝔠[𝑝× ,𝑡] ⊗ 𝔠[𝑝⃝ ,𝑡]

→ y{×,⃝,−} ⊗ 𝔠[𝑝× ,𝑡] ⊗ 𝔠[𝑝⃝ ,𝑡]
𝑇−→𝔪𝑝 ⊗ 𝔠[𝑝× ,𝑡] ⊗ 𝔠[𝑝⃝ ,𝑡] → 𝑡.

This map takes a state for each player, runs the game using each player’s strategy, and returns an

updated state for each player based on the winner and the player’s strategy.

5 Conclusion

In this paper, we constructed the free monad 𝔪𝑝 and cofree comonad 𝔠𝑞 on arbitrary polynomial

functors 𝑝, 𝑞 : Poly, and defined a module structure 𝔪𝑝 ⊗ 𝔠𝑞 → 𝔠𝑝⊗𝑞 . We also gave a series of

examples to explain how this models the intuition "pattern runs on matter."

From here, it is not hard to show that 𝔪 and 𝔠 respectively extend to a monad and a comonad on

Org, the double category which serves as the base of enrichment for dynamic categorical structures

for deep learning, prediction markets, etc., as defined in [SS22]. We (or others) may show in future

work that for any polynomial monad 𝑡, there is a functor [−, 𝑡] : Orgop

𝔪 → Org𝔠
from opposite of

the 𝔪-Kleisli category to the 𝔠-coKleisli category. The latter offers the ability for different machines

to operate at different rates in wiring diagrams, and the former offers the ability to call multiple

subprocesses before returning, though we have not found compelling examples of either; this again

is future work.

The constructions in this paper should generalize straightforwardly to free monads and cofree

comonads for familial functors between copresheaf categories, as in [Web07; LSS23]. One should

check that there is again a module structure of the same form in that setting.



S. Libkind and D. I. Spivak 13

References

[AGM01] Samson Abramsky, Dov M Gabbay, and Thomas SE Maibaum. Handbook of Logic in
Computer Science: Volume 5. Algebraic and Logical Structures. OUP Oxford, 2001 (cit. on

p. 2).

[AR94] Jiri Adamek and Jiri Rosicky. Locally presentable and accessible categories. London Math-

ematical Society Lecture Note Series 189. Cambridge University Press, 1994 (cit. on

p. 16).

[GK12] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial monads”. In:

Mathematical Proceedings of the Cambridge Philosophical Society 154.1 (Sept. 2012), pp. 153–

192 (cit. on p. 2).

[Kel80] G Max Kelly. “A unified treatment of transfinite constructions for free algebras, free

monoids, colimits, associated sheaves, and so on”. In: Bulletin of the Australian Mathe-
matical Society 22.1 (1980), pp. 1–83 (cit. on p. 2).

[KRU20] Shin-ya Katsumata, Exequiel Rivas, and Tarmo Uustalu. “Interaction Laws of Monads

and Comonads”. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’20. Saarbrücken, Germany: Association for Computing Ma-

chinery, 2020, pp. 604–618 (cit. on pp. 2, 7, 8).

[LSS23] Owen Lynch, Brandon T. Shapiro, and David I. Spivak. All Concepts are Cat#
. 2023.

arXiv: 2305.02571 [math.CT] (cit. on p. 12).

[nLa24a] nLab authors. Exact square. https://ncatlab.org/nlab/show/exact+square. Revi-

sion 17. Mar. 2024 (cit. on p. 15).

[nLa24b] nLab authors. Module over a monoidal functor. https://ncatlab.org/nlab/show/
module+over+a+monoidal+functor. Revision 4. Mar. 2024 (cit. on p. 7).

[nLa24c] nLab authors. Transfinite construction of free algebras. https://ncatlab.org/nlab/
show/transfinite+construction+of+free+algebras. Revision 13. Mar. 2024 (cit. on

p. 2).

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: a general theory of interaction. In
preparation. 2022 (cit. on p. 3).

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018 (cit. on p. 12).

[Spi] David I. Spivak. Where matter & pattern meet. url: https://topos.site/blog/2022-
11-08-matter-and-pattern/ (cit. on p. 1).

[SS22] Brandon T. Shapiro and David I. Spivak. “Dynamic categories, dynamic operads: From

deep learning to prediction markets”. In: Electronic Proceedings in Theoretical Computer
Science (2022) (cit. on pp. 10, 12).

[Web07] Mark Weber. “Familial 2-Functors and Parametric Right Adjoints”. In: Theory and Ap-
plications of Categories 18 (2007), Paper No. 22, 665–732 (cit. on p. 12).

A Distributing colimits over ⊳

In general, colimits do not distribute over the subsitution product ⊳. However, in this section we

give hypotheses under which the natural maps

colim

𝑗∈J
(𝑝 ⊳ 𝑞 𝑗) → 𝑝 ⊳ (colim

𝑗∈J
𝑞 𝑗) and colim

𝑗∈J
(𝑝 𝑗 ⊳ 𝑞) → (colim

𝑗∈J
𝑝 𝑗) ⊳ 𝑞

are in fact isomorphisms.

https://arxiv.org/abs/2305.02571
https://ncatlab.org/nlab/show/exact+square
https://ncatlab.org/nlab/revision/exact+square/17
https://ncatlab.org/nlab/revision/exact+square/17
https://ncatlab.org/nlab/show/module+over+a+monoidal+functor
https://ncatlab.org/nlab/show/module+over+a+monoidal+functor
https://ncatlab.org/nlab/revision/module+over+a+monoidal+functor/4
https://ncatlab.org/nlab/show/transfinite+construction+of+free+algebras
https://ncatlab.org/nlab/show/transfinite+construction+of+free+algebras
https://ncatlab.org/nlab/revision/transfinite+construction+of+free+algebras/13
https://topos.site/blog/2022-11-08-matter-and-pattern/
https://topos.site/blog/2022-11-08-matter-and-pattern/


14 Pattern runs on matter

A.1 Right distribution

We begin with hypotheses under which colimits right distribute over ⊳.

Definition A.1. For an ordinal 𝜅, a polynomial 𝑝 is called 𝜅-small if for all 𝜅-filtered categories J

and all diagrams 𝑄 : J→ Set

𝑝 ⊳

(
colim

𝑗 : J
𝑄 𝑗

)
= colim

𝑗 : J

(
𝑝 ⊳𝑄 𝑗

)
. ♢

Remark A.2. A polynomial 𝑝 : Poly is 𝜅-small if and only if all of its direction-sets have cardinality

less than 𝜅. It is called finitary if and only if it is 𝜔-small. ♢

Proposition A.3. If a polynomial 𝑝 is𝜅-small, then for all𝜅-filtered categoriesJ and diagrams 𝑞 : J→Poly

𝑝 ⊳

(
colim

𝑗 : J
𝑞 𝑗

)
= colim

𝑗 : J

(
𝑝 ⊳ 𝑞 𝑗

)
.

Proof. That this map is an isomorphism on positions follows directly from the definition of 𝜅-small.

That this map is an isomorphism on directions follows from the definition of colimits in Poly and

the fact that connected limits preserve coproducts. □

A.2 Left distribution

Next we consider hypotheses under which colimits left distribute over ⊳. A map 𝜙 : 𝑝 → 𝑞 in Poly
is cartesian if for every position 𝑃 : 𝑝(1), the map on directions 𝜙#

𝑃
is an isomorphism (equivalently,

when all 𝜙’s naturality squares are pullbacks). Let PolyCart be subcategory of Poly consisting of

cartesian maps. If 𝜙 is cartesian, then so is 𝑝 ⊳ 𝜙 and 𝑝+𝜙 for any 𝑝 : Poly.

First we give a series of Lemmas which allow us to prove Proposition A.8.

Lemma A.4. A polynomial map 𝑝 → 𝑞 is an isomorphism if and only if for all sets 𝑋, the induced function
𝑝 ⊳𝑋 → 𝑞 ⊳𝑋 is a bĳection.

Proof. This is just a restatement of the fact that Ext : Poly → SetSet
is fully faithful; indeed,

Ext(𝑝)(𝑋) � 𝑝 ⊳𝑋. □

The coproduct completion ΣC of a category C has as objects pairs (𝑆,𝐶) where 𝑆 : Set and

𝐶 : 𝑆 → C is a discrete diagram, and it has as morphisms lax triangles

𝑆1 𝑆2

C

𝑓

𝐶1 𝐶2

𝑓 ♭

A diagram I → ΣC consists of a pair (𝑆,𝐶), where 𝑆 : I → Set is a diagram and 𝐶 : El𝑆 → C is a

functor from the category of elements of 𝑆 to C.

Lemma A.5. Let C be a category and let ΣC be its coproduct completion. If C has I-shaped colimits, then
so does ΣC, and they are computed as follows.

Given a diagram (𝑆,𝐶) : I→ ΣC, consider the Kan extension

El𝑆 C

𝜋0(El𝑆)

𝐶

Lan



S. Libkind and D. I. Spivak 15

where 𝜋0 : Cat → Set is the connected components reflection. Then the colimit is given by

colim(𝑆,𝐶) � (𝜋0(El𝑆),Lan). (7)

For each element 𝑠0 : 𝜋0(El𝑆), its image object Lan(𝑠0) : ObC is given by the colimit over all (𝑖 , 𝑠𝑖) ↦→ 𝑠 of
𝐶(𝑠𝑖).

Proof. First consider the case C = 1, so that ΣC � Set. We need to check that for any 𝑆 : I → Set,
there is a bĳection

colim𝑆 � 𝜋0(El𝑆). (8)

This follows from the fact that the inclusion of diagrams of sets into diagrams of categories is a left

adjoint, the Grothendieck construction taking diagrams of categories to categories is a left adjoint,

and 𝜋0 taking categories to sets is a left adjoint.

Given 𝑇 : Set, a discrete diagram 𝐷 : 𝑇 → C, and diagrams (𝑆𝑖 , 𝐶𝑖) → (𝑇,𝐷), coherently over

𝑖 : I, one obtains a diagram as left, which factors uniquely as right:

El𝑆 𝑇

C
𝐶 𝐷

El𝑆 𝜋0(El𝑆) 𝑇

C
𝐶

Lan

𝐷

This gives (7). For the last statement, note that since 1 → 𝜋0(El𝑆) is a map of sets, the pullback of

categories

• El𝑆

1 𝜋0(El𝑆)

⌟

𝑠0

is also a comma square. Hence it is exact in the sense of [nLa24a], completing the proof. □

Lemma A.5 provides a formula for computing colimits in Poly, since Poly � ΣSetop

is the

coproduct completion of Setop

. Namely, the position-set of the colimit of 𝑝 : I→ Poly is given by

the colimit colim𝑖 𝑝𝑖(1) of the position-sets, and the directions at a position 𝑃 : colim𝑖 𝑝𝑖(1) are given

by the limit (taken in Set, i.e. the colimit taken in Setop

) of the associated connected diagram E𝑃 of

direction sets.

E𝑃 El𝑝(1) Setop

1 colim𝑖 𝑝𝑖(1)

𝑝[−]

𝑃

Lan

⌟

Proposition A.6. The inclusion PolyCart → Poly reflects all colimits.

Proof. Suppose given a category 𝐼, a functor 𝑝 : 𝐼 → PolyCart, a polynomial 𝑝 : Poly, and cartesian

maps 𝜑𝑖 : 𝑝𝑖 → 𝑝 forming a cone. Suppose further that in Poly it is a colimit cone. To see that it

is a colimit cone in PolyCart we need only check that for any 𝑞 and cone 𝜓𝑖 : 𝑝𝑖 → 𝑞 in PolyCart,
the induced map 𝜓 : 𝑝 → 𝑞 in Poly is in fact in PolyCart, i.e. for any position 𝑃 : 𝑝(1), the induced

function 𝜓♯
𝑃

: 𝑞[𝜑(𝑃)] → 𝑝[𝑃] is bĳective.

By Lemma A.5, the position-set of a colimit is the colimit of the position-sets for any diagram

of polynomials, meaning there exists some 𝑖 : 𝐼 and 𝑃𝑖 : 𝑝𝑖(1) representing 𝑃, i.e. with 𝜑𝑖(𝑃𝑖) = 𝑃.

Since 𝑝𝑖 → 𝑝 is cartesian, we have a commuting triangle of functions 𝑞[𝜑(𝑃)] → 𝑝[𝑃] → 𝑝𝑖[𝑃𝑖] of

which two are bĳections; it follows that the required one is as well. □



16 Pattern runs on matter

Proposition A.7. The inclusion PolyCart → Poly creates coproducts and filtered colimits. Moreover, the
composite

PolyCart → Poly
Ext−−→ SetSet

creates coproducts and filtered colimits.

Proof. The functor Ext : Poly → SetSet
is fully faithful and hence reflects all colimits; by Proposi-

tion A.6, PolyCart → Poly does too. It suffices to show that PolyCart has coproducts and filtered

colimits, because and that the two functors PolyCart → Poly and PolyCart → SetSet
preserve them.

Coproduct inclusions of polynomials are cartesian, so the coproduct cone exists in PolyCart,
and hence it is a coproduct. Since Ext preserves coproducts, this concludes the case for coproducts.

By [AR94], a category has (resp. a functor preserves) all filtered colimits iff it has (resp. pre-

serves) all directed colimits, so let I be a directed category and 𝑝 : I→ PolyCart a directed sequence

of polynomials and cartesian maps. Then the induced map I→ Poly has a colimit, say 𝑝, and it is

easy to check that all the structure maps 𝑝𝑖 → 𝑝 are cartesian. Hence 𝑝 � colim𝑖 𝑝𝑖 is a colimit in

PolyCart, and it is preserved by the inclusion.

It remains to check that 𝑝 is a colimit in SetSet
. That is, we need to check that for any 𝑋 : Set,

the function ∑
𝑃:𝜋0(El𝑝)

colim

𝑒:E𝑃
𝑋𝑝[𝑒] −→

∑
𝑃:𝜋0(El𝑝)

𝑋 lim𝑒:E𝑃
𝑝[𝑒]

is a bĳection. Choose any 𝑃; it suffices to show that colim𝑒:E𝑃 𝑋
𝑝[𝑒] → 𝑋 lim𝑒:E𝑃

𝑝[𝑒]
is a bĳection. But

E𝑃 is filtered and for any 𝑒 → 𝑒′ in E𝑃 , the map 𝑝[𝑒′] → 𝑝[𝑒] is a bĳection. Hence we can pick any

object 𝑒′ : E𝑃 , replace all 𝑝𝑒 with 𝑝𝑒′, and have an isomorphic diagram. Now the colimit and limit

are both constant, meaning that both sides of the desired map are isomorphic to 𝑋𝑝[𝑒′]
, and hence

to each other. □

Proposition A.8. For any polynomial 𝑞, filtered category I, and diagram 𝑝 : I → PolyCart, the natural
map

colim

𝑖:𝐼
(𝑝𝑖 ⊳ 𝑞) → (colim

𝑖:𝐼
𝑝𝑖) ⊳ 𝑞

is an isomorphism in Poly.

Proof. By Lemma A.4 it suffices to show that the function colim𝑖:𝐼(𝑝𝑖 ⊳ 𝑞)⊳𝑋 →(colim𝑖:𝐼 𝑝𝑖)⊳ 𝑞 ⊳𝑋 is

a bĳection for any 𝑋 : Set. This is just two uses of Proposition A.7:

colim

𝑖:𝐼
(𝑝𝑖 ⊳ 𝑞) ⊳𝑋 � colim

𝑖:𝐼
(𝑝𝑖 ⊳ 𝑞 ⊳𝑋) � (colim

𝑖:𝐼
𝑝𝑖) ⊳ 𝑞 ⊳𝑋. □

B Proofs for the free monad monad

Lemma 2.7. For ordinals 𝛼,𝛽,𝛾, the following diagram commutes:

𝑝(𝛼) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼) ⊳ 𝑝(𝛽+𝛾)

𝑝(𝛼+𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾)

𝜇(𝛼,𝛽)⊳𝑝(𝛾)

𝑝(𝛼)⊳𝜇(𝛽,𝛾)

𝜇(𝛼,𝛽+𝛾)

𝜇(𝛼+𝛽,𝛾)



S. Libkind and D. I. Spivak 17

Proof. We prove this lemma by transfinite induction on 𝛼. First, for 𝛼 = 0 the result is immediate.

Next, suppose that the result holds for 𝛼, and we will show that it holds for the successor

ordinal 𝛼+ 1. By definition of 𝑝(𝛼+1), it suffices to show that the outer square in the following

diagram commutes.

𝑝(𝛽) ⊳ 𝑝(𝛾)+ 𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛽+𝛾)+ 𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽+𝛾)

𝑝(𝛽) ⊳ 𝑝(𝛾)+ 𝑝 ⊳ 𝑝(𝛼+𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛽+𝛾)+ 𝑝(𝛼+𝛽+𝛾)

𝑝(𝛼+𝛽+1) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾+1)

𝜇(𝛽,𝛾)+𝑝⊳𝑝(𝛼)⊳𝜇(𝛽,𝛾)

𝑝(𝛽)⊳𝑝(𝛾)+𝑝⊳𝜇(𝛼,𝛽)⊳𝑝(𝛾)

(𝜄(𝛽)⊳𝑝(𝛾) ,𝜆(𝛼+𝛽)⊳𝑝(𝛾))

𝑝(𝛽+𝛾)+𝑝⊳𝜇(𝛼,𝛽+𝛾)

(𝜄(𝛽+𝛾) ,𝜆(𝛼+𝛽+𝛾))

𝜇(𝛽,𝛾)+𝑝(𝛼)𝜇(𝛼+𝛽,𝛾)

𝜇(𝛼+𝛽+1,𝛾)

The top square commutes by the induction hypothesis. To check that the bottom squares

commute, it suffices to show that the following diagrams commute as well.

𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛽+𝛾)

𝑝(𝛼+𝛽+1) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾+1)

𝜇(𝛽,𝛾)

𝜇(𝛼+𝛽+1,𝛾)

𝜄(𝛽)⊳𝑝(𝛾) 𝜄(𝛽+𝛾) and

𝑝 ⊳ 𝑝(𝛼+𝛽) ⊳ 𝑝(𝛾) 𝑝 ⊳ 𝑝(𝛼+𝛽+𝛾)

𝑝(𝛼+𝛽+1) ⊳ 𝑝(𝛾) 𝑝(𝛼+𝛽+𝛾+1)

𝑝⊳𝜇(𝛼+𝛽,𝛾)

𝜇(𝛼+𝛽+1,𝛾)

𝜆(𝛼+𝛽+𝛾)𝜆(𝛼+𝛽)⊳𝑝(𝛾)

The diagram on the left commutes by Equation (3). The diagram on the right commutes by the

inductive definition of 𝜇(𝛼+𝛽+1,𝛾).
Finally, suppose that 𝛼 is a limit ordinal and suppose that the diagram commutes for all 𝛼′ < 𝛼.

Recall that 𝑝(𝛼) = colim𝛼′<𝛼 𝑝(𝛼′). So it suffices to show that the outer diagram in the following

diagram commutes.

𝑝(𝛼′) ⊳ 𝑝(𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼′) ⊳ 𝑝(𝛽+𝛾)
(
colim𝛼′<𝛼 𝑝(𝛼′)

)
⊳ 𝑝(𝛽+𝛾)

𝑝(𝛼′+𝛽) ⊳ 𝑝(𝛾) 𝑝(𝛼′+𝛽+𝛾)

(
colim𝛼′<𝛼 𝑝(𝛼′+𝛽)

)
⊳ 𝑝(𝛾) colim𝛼′<𝛼 𝑝(𝛼′+𝛽+𝛾)𝜇(𝛼+𝛽,𝛾)

𝜇(𝛼,𝛽+𝛾)𝜇(𝛼′+𝛽,𝛾)

𝜇(𝛼′ ,𝛽+𝛾)𝜇(𝛼′ ,𝛽)⊳𝑝(𝛾)

𝑝(𝛼′)⊳𝜇(𝛽,𝛾)

The upper left square commutes by the induction hypothesis and the remaining diagrams commute

by the definition of 𝜇 for limit ordinals. □

Proposition 2.9. For 𝑓 : 𝑝 → 𝑞 in Poly, the polynomial map 𝔪 𝑓 : 𝔪𝑝 →𝔪𝑞 is a map of ⊳-monoids.



18 Pattern runs on matter

Proof. To show that 𝔪 𝑓 respects the identity it suffices to show that the outer diagram in the

following commutes:

y 𝑝(0) 𝔪𝑝

𝑞(0) 𝔪𝑞

y

𝑓(0)y

𝜄(0)

𝜄(0)

𝔪 𝑓

The left triangle commutes because each map is the identity on y. The square commutes as it is

the diagram in Equation (4).

To show that 𝔪 𝑓 respects multiplication, it suffices to show that the following diagram com-

mutes for all 𝛼 and 𝛽.

𝑝(𝛼) ⊳ 𝑝(𝛽) 𝑝(𝛼+𝛽)

𝑞(𝛼) ⊳ 𝑞(𝛽) 𝑞(𝛼+𝛽)

𝜇(𝛼,𝛽)

𝜇(𝛼,𝛽)

𝑓(𝛼+𝛽)𝑓(𝛼)⊳ 𝑓(𝛽)

We show this by induction on 𝛼. For 𝛼 = 0 this diagram commutes because the horizontal maps

are the identity and the vertical maps are 𝑓(𝛽). Suppose that the diagram commutes for 𝛼. Then for

the successor ordinal 𝛼+1, following the definitions of 𝜇(𝛼+1,𝛽) and 𝑓(𝛼+1,𝛽) we want to show that

the following diagram commutes.

𝑝(𝛽)+ 𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽) 𝑝(𝛼+𝛽+1)

𝑞(𝛽)+ 𝑞 ⊳ 𝑞(𝛼) ⊳ 𝑞(𝛽) 𝑞(𝛼+𝛽+1)

(𝜄(𝛽) ,(𝑝⊳𝜇(𝛼,𝛽))#𝜆(𝛼+𝛽))

(𝜄(𝛽) ,(𝑝⊳𝜇(𝛼,𝛽))#𝜆(𝛼+𝛽))

𝑓(𝛼+𝛽+1)𝑓(𝛽)+ 𝑓 ⊳ 𝑓(𝛼)⊳ 𝑓(𝛽)

The diagram commutes on the first term of the coproduct because the diagram in Equation (4)

commutes with the pair 𝛽 < 𝛼+ 𝛽. To show that the diagram commutes on the second term, it

suffices to show that the outer diagram in the following commutes.

𝑝 ⊳ 𝑝(𝛼) ⊳ 𝑝(𝛽) 𝑝 ⊳ 𝑝(𝛼+𝛽) 𝑝(𝛼+𝛽+1)

𝑞 ⊳ 𝑞(𝛼) ⊳ 𝑞(𝛽) 𝑞 ⊳ 𝑞(𝛼+𝛽) 𝑞(𝛼+𝛽+1)

𝑓 ⊳ 𝑓(𝛼)⊳ 𝑓(𝛽)

𝑝⊳𝜇(𝛼,𝛽)

𝑞⊳𝜇(𝛼,𝛽)

𝑓 ⊳ 𝑓(𝛼+𝛽) 𝑓(𝛼+𝛽+1)

𝜆(𝛼+𝛽)

𝜆(𝛼+𝛽)

The left-hand square commutes by the induction hypothesis and the right-hand square commutes

by definition of 𝑓(𝛼+𝛽+1). □

B.1 Proof of Theorem 2.10

The trickiest part of proving the adjunction in Theorem 2.10 is defining the co-unit so we do it

separately in the following series of Lemmas.

Lemma B.1. Let (𝑞,𝜂𝑞 ,𝜇𝑞) be a ⊳-monoid. For each ordinal 𝛼, there exist a cocone of maps

𝜖(𝛼) : 𝑞(𝛼) → 𝑞.



S. Libkind and D. I. Spivak 19

Proof. We will define the cocone of maps 𝜖(𝛼) inductively. First, define 𝜖(0) : 𝑞(0) = y→ 𝑞 to be the

unit 𝜂𝑞 .
Next, suppose that we have a cocone of maps 𝜖(𝛼′) : 𝑞(𝛼′) → 𝑞 for all 𝛼′ < 𝛼. If 𝛼 is a limit ordinal

then we define 𝜖(𝛼) : 𝑞(𝛼) → 𝑞 to be the universal map induced by the cocone. If 𝛼+1 is a successor

ordinal, then we define 𝜖(𝛼+1) to be the composite

𝑞(𝛼+1) = y+ 𝑞 ⊳ 𝑞(𝛼)
𝜂𝑞+𝑞⊳𝜖(𝛼)−−−−−−−→ 𝑞+ 𝑞 ⊳ 𝑞

(1,𝜇𝑞)
−−−−→ 𝑞.

To show that these maps form a cocone, it suffices to show that the following diagram commutes

for all 𝛼′ < 𝛼.

𝑞(𝛼′)

𝑞(𝛼) 𝑞

𝜖(𝛼′)

𝜖(𝛼)

𝜄(𝛼′)

If 𝛼 is a limit ordinal, then this is immediate. Otherwise, 𝛼 is a successor ordinal, say 𝛼 = 𝛽+1.

It suffices to show that the following diagram commutes.

𝑞(𝛽)

𝑞(𝛽+1) 𝑞

𝜖(𝛽)

𝜖(𝛽+1)

𝜄(𝛽)

Consider the following three cases.

• Suppose that 𝛽 = 0, then it is immediate that the desired diagram commutes as we see below.

𝑞(0) = y

𝑞(1) = y+ 𝑞 ⊳y 𝑞+ 𝑞 𝑞

𝜄(0)

(1,1)𝜂𝑞+𝜇𝑞◦(𝑞⊳𝜂𝑞)

𝜂𝑞

• Next suppose that 𝛽 is a successor ordinal. In particular 𝛽 = 𝛾+1. To show that

𝑞(𝛾+1)

𝑞(𝛾+2) 𝑞

𝜄(𝛾+1)
𝜖(𝛾+1)

𝜖(𝛾+2)

commutes, it suffices to show that

y+ 𝑞 ⊳ 𝑞(𝛾)

y+ 𝑞 ⊳ 𝑞(𝛾+1) 𝑞+ 𝑞 ⊳ 𝑞𝜂𝑞+𝑞⊳𝜖(𝛾+1)

y+𝑞⊳𝜄(𝛾)
𝜂𝑞+𝑞⊳𝜖(𝛾)

commutes. This is immediate from the induction hypothesis.



20 Pattern runs on matter

• Finally, suppose that 𝛽 is a limit ordinal. Then we want to show that the outer diagram in

the following commutes.

𝑞(𝛽′)

𝑞(𝛽′+1) = y+ 𝑞 ⊳ 𝑞(𝛽′)

y+ 𝑞 ⊳ 𝑞(𝛽) 𝑞+ 𝑞 ⊳ 𝑞 𝑞

𝜄(𝛽′)

y+𝑞⊳𝜄(𝛽′)

(1,𝜇𝑞)

𝜖(𝛽′)

𝜂𝑞+𝑞⊳𝜖(𝛽)

𝜖(𝛽′+1)𝜂𝑞+𝑞⊳𝜖(𝛽′)

The top and bottom triangles commute by the induction hypothesis and the middle triangle

commutes by definition of 𝜖(𝛽′+1).

□

Lemma B.2. For all ordinals 𝛼,𝛽 the following diagram commutes.

𝑞(𝛼) ⊳ 𝑞(𝛽) 𝑞(𝛼+𝛽)

𝑞 ⊳ 𝑞 𝑞𝜇𝑞

𝜖(𝛼+𝛽)𝜖(𝛼)⊳𝜖(𝛽)

𝜇(𝛼,𝛽)

Proof. We induct on 𝛼. Suppose that for all 𝛼′ < 𝛼 the diagram commutes. Consider the following

cases.

• For 𝛼 = 0, we have that

y ⊳ 𝑞(𝛽) 𝑞(𝛽)

𝑞 ⊳ 𝑞 𝑞𝜇𝑞

1𝑞(𝛽)

𝜂𝑞⊳𝜖(𝛽) 𝜖(𝛽)

commutes by the unit law of the monoid (𝑞,𝜂𝑞 ,𝜇𝑞).
• Suppose that 𝛼 is a successor ordinal, say 𝛼 = 𝛼′ + 1. We must show that the following

diagram commutes.

y ⊳ 𝑞(𝛽)+ 𝑞 ⊳ 𝑞(𝛼′) ⊳ 𝑞(𝛽) 𝑞(𝛼′+𝛽+1)

𝑞 ⊳ 𝑞 𝑞

(𝜂⊳𝜖(𝛽) ,(𝜇𝑞◦(𝑞⊳𝜖(𝛼′)))⊳𝜖(𝛽))

(𝜄𝛽 ,𝜆(𝛼′+𝛽)◦(𝑞⊳𝜇(𝛼′ ,𝛽)))

𝜖(𝛼′+𝛽+1)

𝜇𝑞

We will show that the diagram commutes on each component of the coproduct indepen-



S. Libkind and D. I. Spivak 21

dently. For the first term observe that

y ⊳ 𝑞(𝛽) 𝑞(𝛽) 𝑞(𝛼′+𝛽+1)

𝑞 ⊳ 𝑞 𝑞

𝜂⊳𝜖(𝛽)

1𝑞(𝛽) 𝜄𝛽

𝜖(𝛽)

𝜇𝑞

𝜖(𝛼′+𝛽+1)

commutes because of the unit law of the monoid (𝑞,𝜂𝑞 ,𝜇𝑞) and because the maps 𝜖(𝛽) form

a cocone.

For the second term consider the following diagram.

𝑞 ⊳ 𝑞(𝛼′) ⊳ 𝑞(𝛽) 𝑞 ⊳ 𝑞(𝛼′+𝛽) 𝑞(𝛼′+𝛽+1)

𝑞 ⊳ 𝑞 ⊳ 𝑞 𝑞 ⊳ 𝑞

𝑞 ⊳ 𝑞 𝑞

𝑞⊳𝜖(𝛼′)⊳𝜖(𝛽)

𝜇𝑞⊳𝑞

𝑞⊳𝜇𝑞

𝜇𝑞

𝜇𝑞

𝑞⊳𝜇(𝛼′ ,𝛽)

𝑞⊳𝜖(𝛼′+𝛽)

𝜆(𝛼′+𝛽)

𝜖(𝛼′+𝛽+1)

The upper left square commutes by the induction hypothesis. The bottom square com-

mutes by associativity of 𝜇𝑞 , and the right-most square commutes by definition of 𝜖(𝛼′+𝛽+1).
Therefore the outer square commutes as desired.

• Suppose that 𝛼 is a limit ordinal. Recall that

𝑞(𝛼) ⊳ 𝑞(𝛽) � colim

𝛼′<𝛼
𝑞(𝛼′+𝛽).

The composite 𝜖(𝛼+𝛽) ◦𝜇(𝛼,𝛽) is induced by the cocone defined for 𝛼′ < 𝛼 by

𝑞(𝛼′) ⊳ 𝑞(𝛽)
𝜇(𝛼′ ,𝛽)
−−−−→ 𝑞(𝛼′+𝛽)

𝜄(𝛼′+𝛽)
−−−−→ 𝑞(𝛼+𝛽)

𝜖(𝛼+𝛽)
−−−−→ 𝑞

while the composite 𝜇𝑞 ◦ (𝜖(𝛼) ⊳ 𝜖(𝛽)) is induced by the cocone defined for 𝛼′ < 𝛼 by

𝑞(𝛼′) ⊳ 𝑞(𝛽)
𝜖(𝛼′)⊳𝜖(𝛽)
−−−−−−→ 𝑞 ⊳ 𝑞

𝜇𝑞

−→ 𝑞.

For each 𝛼′ < 𝛼 these composites are identical by the induction hypothesis. Therefore by

uniqueness of the induced maps

𝜖(𝛼+𝛽) ◦𝜇(𝛼,𝛽) = 𝜇𝑞 ◦ (𝜖(𝛼) ⊳ 𝜖(𝛽))

as desired.

□

Theorem 2.10. There is an adjunction

Poly Mod(Poly)
𝔪−
⇒
𝑈

.



22 Pattern runs on matter

Proof. For 𝑝 : Poly define the unit of the adjunction, 𝜁𝑝 : 𝑝 →𝔪𝑝 , to be the composite

𝑝
𝜆(0)−−→ 𝑝(1)

𝜄(1)−−→𝔪𝑝 .

For 𝑓 : 𝑝 → 𝑞 in Poly, consider the following diagram.

𝑝 y+ 𝑝 = 𝑝(1) 𝔪𝑝

𝑞 y+ 𝑞 = 𝑞(1) 𝔪𝑞

𝑓 y+ 𝑓= 𝑓(1)

𝜆(0)

𝜆(0)

𝔪 𝑓

𝜄(1)

𝜄(1)

The square on the left commutes by definition of 𝑓(1) while the square on the right commutes by

the commuting diagram in Equation (4). Therefore, the outer square commutes and 𝜁 is natural.

For the ⊳-monoid (𝑞,𝜂𝑞 ,𝜇𝑞), we define the counit of the adjunction 𝜖𝑞 : (𝔪𝑞 ,𝜂,𝜇) → (𝑞,𝜂𝑞 ,𝜇𝑞)
to be 𝜖(𝜅) : 𝔪𝑞 → 𝑞 for 𝜅 such that 𝑞 is 𝜅-small. The map 𝜖𝑞 preserves the unit because the maps

𝜖(𝛼) form a cocone. That 𝜖𝑞 preserves multiplication is a direct result of Lemma B.2. Therefore 𝜖𝑞
is indeed a map of ⊳-monoids.

Next we want to show that 𝜖 is natural. Let 𝑓 : (𝑝,𝜂𝑝 ,𝜇𝑝) → (𝑞,𝜂𝑞 ,𝜇𝑞) in Mod(Poly). It suffices

to show for all 𝛼 the following diagram commutes.

𝑝(𝛼) 𝑞(𝛼)

𝑝 𝑞

𝜖(𝛼) 𝜖(𝛼)

𝑓(𝛼)

𝑓

We show this by induction on 𝛼. For 𝛼 = 0, 𝑓(𝛼) is the identity on y and the diagram commutes

because 𝑓 preserves the unit.

Suppose that the diagram commutes for all 𝛼′ < 𝛼. If 𝛼 is a successor ordinal — say 𝛼 = 𝛼′+1

— then we want to show that the following diagram commutes.

y+ 𝑝 ⊳ 𝑝(𝛼′) y+ 𝑞 ⊳ 𝑞(𝛼′)

𝑝 𝑞

y+ 𝑓 ⊳ 𝑓(𝛼′)

𝑓

(𝜂𝑝 ,𝜇𝑝◦(𝑝⊳𝜖(𝛼′))) (𝜂𝑞 ,𝜇𝑞◦(𝑞⊳𝜖(𝛼′)))

It commutes on the first term of the coproduct, again because 𝑓 preserves the unit. To show

that it commutes on the second term, we want to show that the outer diagram in the following

commutes.

𝑝 ⊳ 𝑝(𝛼′) 𝑞 ⊳ 𝑞(𝛼′)

𝑝 ⊳ 𝑝 𝑞 ⊳ 𝑞

𝑝 𝑞

𝑓 ⊳ 𝑓(𝛼′)

𝑝⊳𝜖(𝛼′) 𝑞⊳𝜖(𝛼′)

𝑓 ⊳ 𝑓

𝜇𝑝 𝜇𝑞

𝑓

The top square commutes by the induction hypothesis and the bottom square commutes because

𝑓 preserves multiplication.



S. Libkind and D. I. Spivak 23

If 𝛼 is a limit ordinal, consider the cocones

𝑝(𝛼′)
𝑓(𝛼′)−−−→ 𝑞(𝛼′)

𝜖(𝛼′)−−−→ 𝑞 and 𝑝(𝛼′)
𝜖(𝛼′)−−−→ 𝑝

𝑓
−→ 𝑞.

By uniqueness, the cocone on the left induces the map 𝑝(𝛼)
𝑓(𝛼)−−→ 𝑞(𝛼)

𝜖(𝛼)−−→ 𝑞. Also by uniqueness, the

cocone on the right induces the map 𝑝(𝛼)
𝜖(𝛼)−−→ 𝑝

𝑓
−→ 𝑞. Furthermore, these cocones are identical by

the induction hypothesis and so their induced maps are equal, as desired.

Finally, to show that the unit and counit form an adjunction we must show that for a polynomial

𝑝

𝔪𝑝

𝜁𝔪𝑝

−−→𝔪𝔪𝑝

𝜖𝔪𝑝

−−→𝔪𝑝

is the identity and that for a ⊳-monoid (𝑞,𝜂𝑞 ,𝜇𝑞)

𝑞
𝜁𝑞
−→𝔪𝑞

𝜖𝑞
−→ 𝑞

is the identity as well. It suffices to show the second as the first follows with 𝑞 = 𝔪𝑝 .

Since the diagrams below commutes, it suffices to show that 𝜖(1) ◦𝜆(0) is the identity. This is

immediate from the definition of 𝜖(1) and the unit law for (𝑞,𝜂𝑞 ,𝜇𝑞).

𝑞 𝑞(1) 𝔪𝑞 𝑞
𝜖𝑞𝜄(1)𝜆(0)

𝜖(1)

□

C Proofs for the cofree comonad monad

Proposition 3.1. There is a functor 𝔠− : Poly → Poly such that 𝔠𝑝 has the structure of a ⊳-comonoid for
each 𝑝 : Poly,

𝔠𝑝 → y and 𝔠𝑝 → 𝔠𝑝 ⊳ 𝔠𝑝 .

Proof. Given a polynomial 𝑝, define polynomials 𝑝(𝑖) for 𝑖 ∈ N by

𝑝(0) B y and 𝑝(1+𝑖) B y×
(
𝑝 ⊳ 𝑝(𝑖)

)
There is a projection map 𝜋(0)

: 𝑝(1) → 𝑝(0), and if 𝜋(𝑖)
: 𝑝(1+𝑖) → 𝑝(𝑖) has been defined, then we can

define 𝜋(1+𝑖) B y×(𝑝 ⊳𝜋(𝑖)). Now define the polynomial

𝔠𝑝 B lim

(
· · · 𝜋(2)

−−→ 𝑝(2)
𝜋(1)
−−→ 𝑝(1)

𝜋(0)
−−→ 𝑝(0)

)
(9)

and we note that this construction 𝑝 ↦→ 𝔠𝑝 is natural in 𝑝 : Poly.

This polynomial comes equipped with a counit 𝜖 : 𝔠𝑝 → y = 𝑝(0) given by the projection. We

next construct the comultiplication 𝛿 : 𝔠𝑝 → 𝔠𝑝 ⊳ 𝔠𝑝 . Since ⊳ commutes with connected limits, we

have

𝔠𝑝 ⊳ 𝔠𝑝 =

(
lim

𝑖1
𝑝(𝑖1)

)
⊳

(
lim

𝑖2
𝑝(𝑖2)

)
� lim

𝑖1 ,𝑖2

(
𝑝(𝑖1) ⊳ 𝑝(𝑖2)

)



24 Pattern runs on matter

To obtain the comultiplication lim𝑖 𝑝
(𝑖) → lim𝑖1 ,𝑖2(𝑝(𝑖1) ⊳ 𝑝(𝑖2)), it suffices to produce a natural choice

of polynomial map 𝜑𝑖1 ,𝑖2 : 𝑝(𝑖1+𝑖2) → 𝑝(𝑖1) ⊳ 𝑝(𝑖2) for any 𝑖1 , 𝑖2 : N. When 𝑖1 = 0 or 𝑖2 = 0, we use the

unit identity for ⊳. By induction, assume given 𝜑𝑖1 ,1+𝑖2 ; we construct 𝜑1+𝑖1 ,1+𝑖2 as follows:

𝑝(1+𝑖1+1+𝑖2) = y×
(
𝑝 ⊳ 𝑝(𝑖1+1+𝑖2)

)
→ y×

(
𝑝 ⊳ 𝑝(𝑖1) ⊳ 𝑝(1+𝑖2)

)
(10)

→
(
y× 𝑝 ⊳ 𝑝(𝑖1)

)
⊳ 𝑝(1+𝑖2) (11)

= 𝑝(1+𝑖1) ⊳ 𝑝(1+𝑖2)

where (10) is 𝜑𝑖1 ,1+𝑖2 and it remains to construct (11). Since − ⊳ 𝑞 preserves products for any 𝑞,

constructing (11) is equivalent to constructing two maps

y×
(
𝑝 ⊳ 𝑝(𝑖1) ⊳ 𝑝(1+𝑖2)

) 𝜙(𝑖
1
,𝑖

2
)

−−−−→ 𝑝(1+𝑖2) and y×
(
𝑝 ⊳ 𝑝(𝑖1) ⊳ 𝑝(1+𝑖2)

)
→ 𝑝 ⊳ 𝑝(𝑖1) ⊳ 𝑝(1+𝑖2).

For the latter we use the second projection. The former, 𝜙(𝑖1 ,𝑖2)
: 𝑝(1+𝑖1+1+𝑖2) → 𝑝(1+𝑖2), is the more

interesting one; for it we also use projections 𝑝(𝑖1) → 𝑝(0) = y and 𝜋(𝑖2)
: 𝑝(𝑖2+1) → 𝑝(𝑖2) to obtain:

y×
(
𝑝 ⊳ 𝑝(𝑖1) ⊳ 𝑝(1+𝑖2)

)
→ y×

(
𝑝 ⊳y ⊳ 𝑝(𝑖2)

)
� 𝑝(1+𝑖2)

We leave the naturality of this to the reader.

It remains to check that 𝜖 and 𝛿 satisfy unitality and coassociativity. The base cases above imply

unitality. Proving coassociativity amounts to proving that the following diagram commutes:

𝑝(1+𝑖1+1+𝑖2+1+𝑖3) 𝑝(1+𝑖2+1+𝑖3)

𝑝(1+𝑖3) 𝑝(1+𝑖3)

𝜙(𝑖
1
,𝑖

2
+1+𝑖

3
)

𝜙(𝑖
1
+1+𝑖

2
,𝑖

3
) 𝜙(𝑖

2
,𝑖

3
)

This can be shown by induction on 𝑖3. □

Proposition C.1. There is a monoidal structure on 𝔠 : Poly → Poly

y→ 𝔠y and 𝔠𝑝 ⊗ 𝔠𝑞 → 𝔠𝑝⊗𝑞 .

Proof. The polynomial 𝔠y � yN has a unique position, and this defines the first map. However,

it is conceptually cleaner to realize that comonads are closed under ⊗ by duoidality, and hence

both y and 𝔠𝑝 ⊗ 𝔠𝑞 carry comonad structures. Thus the desired maps are induced by the obvious

polynomial maps y � y and 𝔠𝑝 ⊗ 𝔠𝑞 → 𝑝 ⊗ 𝑞. It is straightforward to check that these are unital and

associative. □

Theorem 3.2. There is an adjunction

Cat♯ Poly
𝑈

⇒
𝔠−

.



S. Libkind and D. I. Spivak 25

Proof. We will abuse notation and denote the comonoid (𝑐, 𝜖, 𝛿) : Cat♯ simply by its carrier 𝑐. We

first provide the counit and unit of the desired adjunction. The counit

𝜖𝑝 : 𝔠𝑝 → 𝑝

is given by composing the projection map 𝔠𝑝 → 𝑝(1) from construction (9) with the projection

𝑝(1) � y× 𝑝 → 𝑝. Since 𝔠𝑐 is defined as a limit, the unit

𝜂𝑐 : 𝑐↛ 𝔠𝑐

will be given by defining maps 𝜂(𝑖) : 𝑐 → 𝑐(𝑖) commuting with the projections 𝜋(𝑖)
: 𝑐(1+𝑖) → 𝑐(𝑖), for

each 𝑖 : N, and then showing that the resulting polynomial map 𝜂𝑐 is indeed a cofunctor. Noting

that 𝑐(0) = y, we define

𝜂(0) B 𝜖

Given 𝜂(𝑖) : 𝑐 → 𝑐(𝑖), we define 𝜂(1+𝑖) as the composite

𝑐
(𝜖,𝛿)
−−−→ y×(𝑐 ⊳ 𝑐)

y×(𝑐⊳𝜂(𝑖))
−−−−−−−→ y×

(
𝑐 ⊳ 𝑐(𝑖)

)
= 𝑐(1+𝑖).

Clearly, we have 𝜂(0) = 𝜋(0) ◦𝜂(1). It is easy to check that if 𝜂(𝑖) = 𝜋(𝑖) ◦𝜂(1+𝑖) then 𝜂(1+𝑖) = 𝜋(1+𝑖) ◦𝜂(2+𝑖).
Thus we have constructed a polynomial map 𝜂 : 𝑐 → 𝔠𝑐 . It clearly commutes with the counit, so it

suffices to show that 𝜂 commutes with the comultiplication, which amounts to showing that the

following diagram commutes

𝑐 𝑐 ⊳ 𝑐
(
y×(𝑐 ⊳ 𝑐)

)
⊳
(
y×(𝑐 ⊳ 𝑐)

)
y×(𝑐 ⊳ 𝑐) y×(𝑐 ⊳ 𝑐(𝑖1+1+𝑖2))

(
y×(𝑐 ⊳ 𝑐(𝑖1))

)
⊳
(
y×(𝑐 ⊳ 𝑐(𝑖2))

)
𝛿

(𝜖,𝛿)

(𝜖,𝛿)⊳(𝜖,𝛿)

(y×𝑐⊳𝜂(𝑖1))⊳(y×𝑐⊳𝜂(𝑖2))

y×𝑐⊳𝜂(𝑖1+1+𝑖
2
) 𝜑1+𝑖

1
,1+𝑖

2

for all 𝑖1 , 𝑖2 : N, where 𝜑1+𝑖1 ,1+𝑖2 is the map constructed in Equation (10) and Equation (11). Com-

mutativity follows from the counitality and coassociativity of the comonoid 𝑐.

The triangle identities are straightforward as well. Indeed, for any comonoid 𝑐 : Cat♯, the

composite 𝑐
𝑈◦𝜂𝑐−−−→ 𝔠𝑐

𝜖𝑈𝑐−−→ 𝑐 is equal to the composite of 𝑐
(𝜖,𝑐)
−−−→ 𝑐(1) = y× 𝑐, with the projection

𝑐(1) → 𝑐, the result of which is the identity. Finally, for any polynomial 𝑝 : Poly, the composite

𝔠𝑝

𝜂𝔠𝑝
−−→ 𝔠𝔠𝑝

𝔠𝜖𝑝
−−→ 𝔠𝑝 is given by taking a limit of maps of the form

𝔠𝑝
(𝜖,𝛿)
−−−→ y×(𝔠𝑝 ⊳ 𝔠𝑝)

y×(𝔠𝑝⊳𝜂(𝑖))
−−−−−−−→ y×(𝔠𝑝 ⊳ 𝔠(𝑖)𝑝 )

y×(𝜖𝑝⊳𝜖(𝑖)𝑝 )
−−−−−−−→ y×(𝑝 ⊳ 𝑝(𝑖))

Each one is in fact the projection 𝔠𝑝 → 𝑝(𝑖+1)
, so the resulting map is the identity on 𝔠𝑝 , completing

the proof. □

D Proofs for the module structure 𝔪𝑝 ⊗ 𝔠𝑞 →𝔪𝑝⊗𝑞

Proposition 3.3. The maps Ξ𝑝,𝑞 are natural in 𝑝 and 𝑞.



26 Pattern runs on matter

Proof. To show that 𝜓 is natural in 𝑝, it suffices to show that for a maps 𝑝 → 𝑝′ and 𝑞 → 𝑞′ in Poly
the following diagram commutes:

𝑝 [𝔠𝑞 ,𝔪𝑝⊗𝑞]

𝑝′ [𝔠𝑞′ ,𝔪𝑝′⊗𝑞′]

This follows immediately from the commutativity of the following diagram.

𝑝 ⊗ 𝔠𝑞 𝑝 ⊗ 𝑞 𝔪𝑝⊗𝑞

𝑝′⊗ 𝔠𝑞′ 𝑝′⊗ 𝑞′ 𝔪𝑝′⊗𝑞′

Note that the square on the left commutes by naturality of the counit of the adjunction in The-

orem 3.2. The square on the right commutes by naturality of unit of the adjunction in Theo-

rem 2.10. □

Theorem 3.4. There is a left-module over 𝔠− : (Poly,⊗,y) → (Poly,⊗,y) consisting of:
• Poly as a left module category over (Poly,⊗,y).
• The functor 𝔪− : Poly → Poly.
• The natural transformation Ξ : 𝔪− ⊗ 𝔠− ⇒𝔪−⊗−.

Proof. We must show that two diagrams commute. First, we will show that the following diagram

commutes.

y⊗𝔪𝑟 𝔪𝑟

𝔠y ⊗𝔪𝑟 𝔪y⊗𝑟

�

Ξy,𝑟

�

It suffices to show that the diagram below commutes:

y⊗ 𝑟 𝑟 𝔪𝑟

𝔠y ⊗ 𝑟 y⊗ 𝑟 𝔪y⊗𝑟

The square on the left commutes because y → 𝔠y → y is the identity. The square on the right

commutes by the naturality of the unit of the adjunction in Theorem 2.10.

Next we must show that the following diagram commutes.

𝔠𝑝 ⊗ 𝔠𝑞 ⊗𝔪𝑟 𝔠𝑝 ⊗𝔪𝑞⊗𝑟

𝔠𝑝⊗𝑞 ⊗𝔪𝑟 𝔪𝑝⊗𝑞⊗𝑟

It suffices to show that the following diagram commutes.

𝔠𝑝 ⊗ 𝔠𝑞 ⊗ 𝑟 𝔠𝑝 ⊗ 𝑞 ⊗ 𝑟 𝔠𝑝 ⊗𝔪𝑞⊗𝑟

𝔠𝑝⊗𝑞 ⊗ 𝑟 𝑝 ⊗ 𝑞 ⊗ 𝑟 𝔪𝑝⊗𝑞⊗𝑟

Ξ𝑝,𝑞⊗𝑟



S. Libkind and D. I. Spivak 27

The square on the left commutes by definition of the laxator of 𝔠− while the square on the right

commutes by definition of Ξ𝑝,𝑞⊗𝑟 . □


	Introduction
	Preliminaries

	The free monad monad
	Monad structure on mp
	The monad mp is free

	Interactions between free monad and cofree comonad
	The cofree comonad comonad
	The module structure mp cq mp q

	Applications
	Interviews run on people
	Programs run on operating systems
	Voting schemes run on voters
	Games run on players

	Conclusion
	Distributing colimits over 
	Right distribution
	Left distribution

	Proofs for the free monad monad
	Proof of Theorem 2.10

	Proofs for the cofree comonad monad
	Proofs for the module structure mp cq mp q

