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CATGRAD is an open-source compiler for deep learning.1 Models are represented as string diagrams:
morphisms constructed by tensor and composition from a set of generating operations. This is a
completely syntactic representation which is then compiled to a target backend. Instead of using
autograd for differentiation, models are mapped functorially into a category of optics to produce a
morphism representing a single optimization step of the model. Practically, this means that catgrad
can compile a model into static training code which runs without requiring a deep learning framework
or autograd implementation.

As a demonstration of the compiler, we provide CATGPT: a string-diagrammatic implementation
of a GPT model in CATGRAD. 2

CATGRAD is a deep learning compiler, as opposed to a framework. This distinction highlights that
models are represented purely syntactically as morphisms in a strict monoidal category, as opposed to as
arbitrary code in the host language.

Users construct models (i.e. morphisms) inductively by tensor and composition from generating
operations. Internally, morphisms are represented as ‘open hypergraphs’ [3, 4]–specifically using the
data-parallel datastructure described in [13] (c.f. [12]) based on structured cospans of acsets [9, 1].3

As a simple example, a linear model in CATGRAD is represented by the following string diagram.

MatMul

This morphism is constructed from two generating operations: a matrix multiplication, and a Parameter :
0→ 1 operation depicted as indicating a value to be learned. The model is constructed in code as
follows, using the @ and >> operators for tensor and composition, respectively.

def linear(A: NdArrayType, B: NdArrayType, C: NdArrayType):

return (identity(obj(A+B)) @ parameter(obj(B+C))) >> op(Compose(A,B,C))

Each A,B,C in the above is a generating object of the category: a value of type NdArrayType

consisting of a shape and dtype. For example, NdArrayType((4,3,2),Dtype.int32) is the generating
object representing 3D arrays with 4 ·3 ·2 = 24 elements, each a 32-bit integer.

Once a model has been constructed as a morphism, it can be compiled. The linear model depicted
above compiles to the following Python code, where variable names p,x,y have been changed for read-
ability.

1https://github.com/statusfailed/catgrad
2https://github.com/statusfailed/catgpt.
3The original datastructure library is available at github.com/yarrow-id/diagrams. We have made several improvements and

optimizations in our version: github.com/statusfailed/open-hypergraphs.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/statusfailed/catgrad
https://github.com/statusfailed/catgpt
https://github.com/yarrow-id/diagrams
https://github.com/statusfailed/open-hypergraphs


2 CATGRAD

class Dynamic:

... # omitted code

def predict(self, p, x):

y = x @ p # here @ denotes matrix multiplication

return [y]

Notice that model parameters appear as inputs to the compiled predict function. Before compiling
a model f : X → Y , it is factored as f = (p⊗ idX) # f ′, where p is a tensoring of Parameter operations in
f . The morphism f ′ : P×X → Y is then passed to the backend for compilation.

Training, differentiation, and optimization
In order to train a model, it is transformed into an optic using the algorithm defined in [13, Section
10], itself inspired by observations from [2, 11, 7]. The example below depicts a string diagram for the
function x 7→ x2 and its corresponding ‘optic diagram’ after this transformation.

Fwd

Rev

−→
f

←−
f ←−g

−→g

Fwd
Rev

f g

This ‘bidirectional mapping’ maps each generating operation f into a forward morphism
−→
f , and reverse

morphism
←−
f (a reverse derivative [5]), and a residual object. The residual dictates what information is

passed from the forward to reverse map: in the case of linear morphisms like , the residual is the
unit object: no information is passed. Some generators like : A×A→ A are lenses: the residual is
the source object, and inputs are copied and passed to the reverse map.

Note that this map represents the computation of both the function x 7→ x2 and its reverse derivative
x,δy 7→ 2x · δy simultaneously. Further, while the optic transformation requires use of Frobenius struc-
ture to ‘bend wires around’, the resulting map is monogamous acyclic [3, 4]. It therefore represents a
morphism of a symmetric monoidal category, meaning it is possible to compile it to a function.

Finally, by pre- and post-composing the model with ‘update’ and ‘displacement’ optics as described
in [6], the bidirectional transformation results in a morphism representing a single optimization step of
the model; theoretical details can be found in [6] and [14].

CATGPT
As a demonstration, we have implemented a GPT model in CATGRAD whose architecture is a simplified
version of nanoGPT [8], itself based on GPT-2 [10]. Code is available at https://github.com/statusfailed/catgpt.

https://github.com/statusfailed/catgpt
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