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The ZXW completeness is based on the preprint (https://arxiv.org/abs/2309.13014) and the
ZX completeness is based on a paper that is attached at the end of this abstract.

Finite-dimensional quantum theory serves as the theoretical foundation for quantum inform-
ation and computation. Mathematically, it is formalized in the category FHilb, comprising all
finite-dimensional Hilbert spaces and linear maps between them. The ZX calculus is a graph-
ical language for reasoning about quantum computing and quantum theory. Recently, it was
combined with another graphical language, the ZW calculus, to obtain the ZXW calculus. Both
of these languages have been established for fragments of FHilb such as FHilb2 (qubits), and
FHilbd (qudits). As complete graphical language in fragments of FHilb, they incorporate set
of axioms rich enough to derive any equation of the underlying formalism.

In this talk, we present the generalizations of the ZXW calculus and the ZX calculus that
are universal and complete for FHilb. This is enabled by the generalized Z spiders whose legs
can be of different dimensions:
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. . .

−→r
J·K7−→

min {ai}i−1∑
j=0

rj |j, · · · , j⟩ ⟨j, · · · , j| ,

where −→r = (r0, · · · , rmin {di}i−1). Some new axioms involving these mixed-dimensional spiders
are shown below:
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Theorem 1 (Completeness). The ZX and ZXW calculi are complete for FHilb; that is, any
equation derivable in multilinear algebra can be derived using the rewrite rules of the calculus.

We prove this result for ZXW by demonstrating that any ZXW diagram can be rewritten into
a unique normal form as: (1) all generators can be rewritten into their normal forms, (2) the
tensor product of any two normal forms can be rewritten into a single normal form, and (3) a
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2 Completeness of graphical languages for finite dimensional Hilbert spaces

partially traced normal form can be rewritten into a normal form. On the other hand, we prove
the completeness of the ZX calculus by direct translation to the finite-dimensional ZW calculus.

Building on the completeness result, we prove the following:

Theorem 2. The category ZX and ZXW are monoidally equivalent to the category FHilb.

This result implies that the diagrammatic formalisms of ZX and ZXW have the same reas-
oning power as FHilb. Therefore, any computation of FHilb now can be done solely with
diagrammatic rewriting.

With such a calculus, we can address problems in a wide range of domains based on finite-
dimensional quantum physics. We show that the calculus can be suitable for studying angular
momentum coupling and spin networks by presenting a compact diagram for irreducible repres-
entations of SU(2). For example, the following diagram represents the symmetrizer of spin-n2
for any n ∈ N:

−→a
...

2

...
2

n+1

n+1 2n+1

2n+1

n n ,where −→a =

(
1(
n
1

) , · · · , 1(
n
k

) , · · · , 1(
n
n

)) .

Furthermore, the calculus can be a valuable toolbox for reasoning about the Hamiltonians of in-
teracting systems in quantum chemistry; we illustrate this by representing the Jaynes-Cummings
model diagrammatically.
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Finally, using the Quantum Fourier Transformation as an example, we demonstrate that the
calculus can express complicated quantum computations concisely, and could potentially serve
as a high-level language for quantum algorithms.
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Quantum circuits with mixed-dimensional qudits have advantages in certain applications.
The ZX calculus now allows us to leverage the strength of diagrammatic compilation and op-
timization techniques to the mixed-dimensional case. As an example, we can show that the
qubit-controlled CNOT, when applied d times, is equivalent to the identity:
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The ZX-calculus is a graphical language for reasoning about quantum computing and quantum
information theory. As a complete graphical language, it incorporates a set of axioms rich
enough to derive any equation of the underlying formalism. While completeness of the
ZX-calculus has been established for qubits and the Clifford fragment of prime-dimensional
qudits, universal completeness beyond two-level systems has remained unproven until now.
In this paper, we present a proof establishing the completeness of finite-dimensional ZX-
calculus, incorporating only the mixed-dimensional Z-spider and the qudit X-spider as gen-
erators. Our approach builds on the completeness of another graphical language, the finite-
dimensional ZW-calculus, with direct translations between these two calculi. By proving its
completeness, we lay a solid foundation for the ZX-calculus as a versatile tool not only for
quantum computation but also for various fields within finite-dimensional quantum theory.

1 Introduction

The ZX-calculus [16, 17] is a graphical language for reasoning about quantum computation
and quantum information theory. Thanks to its model-independent representation of quantum
computation and set of intuitive graphical rewrite rules, the ZX-calculus has found applications
across various domains of quantum technologies [56]. These domains include quantum error
correction [25, 39, 36, 54, 24], quantum circuit optimization [31, 6, 40, 58], measurement-based
quantum computing [32, 4, 43], fusion-based quantum computing [7, 45, 28], compilation [53],
classical simulation [15, 11], and education [20, 19, 33].

While the ZX-calculus has primarily been studied for reasoning about qubit quantum compu-
tation, various extensions or modifications to the language enable it to address different aspects
of quantum computation and theory. From the perspective of the ZX-calculus, there are two ap-
proaches to modify the language: changing the set of generators and/or giving them an alternat-
ive interpretation. Languages with a different set of generators include the ZW-calculus [21, 35],
ZH-calculus [3, 42], and ZXW-calculus [52, 63]. Alternatively, a different interpretation may
involve extending the language to higher-dimensional systems such as qutrits [60, 55, 57], quo-
pits [9, 47, 22, 10], qudits [49, 48, 23], or the finite-dimensional setting [61, 62, 30].

While languages like the ZXW- and ZW-calculus enable complete reasoning for both qudits
and finite-dimensional Hilbert spaces, defining the ZX-calculus with the same generality can open
up avenues for interesting applications. This is because languages with different sets of generators
exhibit distinct weaknesses and strengths. For instance, the ZW-calculus [18] provides valuable
insights for studying multi-partite entanglement [18], and linear optical quantum computing [27,
29]. However, it is less effective in understanding circuit-based quantum protocols. Similarly,
while the ZXW-calculus is a powerful analytical tool capable of expressing Hamiltonians [52, 29],
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performing differentiation and integration of ZX-diagrams [63], classical simulation [41], and
interactions in quantum field theory [51], extracting circuits expressed by these methods remains
a hard problem [26]. On the other hand, when working purely with the ZX-calculus, we can
restrict ourselves to apply rewrites that keep the diagrams easily extractable [31]. Therefore,
this approach has the potential to yield results directly applicable to quantum circuits.

When designing graphical languages, there are three crucial properties that we aim to prove
to ensure the language can be effectively used. These properties are (1) soundness, which
ensures that the rules of the calculus are correct, (2) universality, ensuring that the language can
express any element of the underlying formalism, and (3) completeness, enabling the derivation
of any equality within the underlying formalism. Of these, establishing a proof of completeness
poses the most difficulty; nevertheless, it ensures that the language can be effectively used to
graphically derive equalities and proofs.

Indeed, there is a rich history of results investigating the completeness and incompleteness
of various calculi. While the qubit ZX-calculus was first formulated in 2007 [16], the crucial
establishment of completeness for qubit quantum computing was not proved until 2017 [44, 38].
This unfolded in several stages, progressively increasing the fragment for which completeness
had been proved. The first completeness proof was for the Clifford fragment [1], followed by a
proof of incompleteness for the universal fragment [50]. Moving forward, completeness for single
qubit Clifford+T quantum mechanics was established in [2], and universal completeness of the
ZW-calculus was presented in [34]. Further study of the ZX-calculus revealed the necessity of
the ‘supplementarity’ rule [46]. Transferring the completeness proof of the ZW-calculus [34, 35]
led to a surge of completeness results. First, for the Clifford+T fragment in [37], and then for
the universal fragment in [44, 38]. Further improvements to the qubit ZX-calculus focused on
minimizing its set of axioms, first in [5] and then in [59]. This process was highly non-trivial,
but now each rule is concise and intuitive.

Further to qubit calculi, the completeness of qudit calculi has also been extensively stud-
ied over the years. The first such completeness result was that of the stabilizer fragment for
qutrit ZX-calculus [60]. The stabilizer fragment of the ZX-calculus for all odd prime dimen-
sions was shown to be complete in [9], and its rule-set has since been further reduced in [47].
The first universal completeness of a graphical language beyond qubits was established in [48]
for the arbitrary finite-dimensions of ZXW-calculus. Recently, the completeness of the qudit
ZW-calculus has also been demonstrated in [30], with a significantly reduced set of axioms.
Alongside the qudit ZW-calculus, the paper also introduces and proves the completeness of the
finite-dimensional ZW-calculus [30]. This result came shortly after the establishment of the
qufinite ZXW-calculus and its completeness for finite dimensional Hilbert spaces [62]. However,
the universal completeness of a higher-dimensional ZX-calculus has remained unproven.

In this paper, we tackle the challenge of establishing the finite-dimensional ZX-calculus
and proving its completeness. We begin by establishing the calculus generated by the mixed-
dimensional Z-spider [62] and the flexsymmetric qudit X-spider. Next, we recapitulate the
definition of the finite-dimensional ZW-calculus in accordance with [30]. We then move on to
prove the main result of the paper — the completeness of the finite-dimensional ZX-calculus. It is
achieved by translating the generators of our language to the finite-dimensional ZW-calculus [30]
and proving the invertibility of this translation. This technique of translating between calculi to
prove completeness has been employed before, first in [37], and later in [44, 38]. By establishing
its completeness, we lay a solid foundation for the ZX-calculus as a versatile tool not only for
quantum computation but also for various fields within finite-dimensional quantum theory.
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2 Finite dimensional ZX calculus

In this section, we define our calculus starting with the generators, their interpretation, and
lastly the axiomatization that we later show to be complete. Our calculus is constructed in
order to satisfy the property of flexsymmetry, proposed in [12, 13], and allowing the recovery of
the Only Connectivity Matters (OCM) meta-rule. OCM is a desirable feature when designing
of a graphical language as it can both simplify the manipulation of diagrams and on paper and
ease implementation in software.

2.1 Generators

We define the symmetric monoidal category ZXf with objects as lists of dimensions ⟨di⟩ni=1

where di ∈ N for all 0 < i ≤ n, and morphisms generated by the following diagrams, for any
a, b, n,m ∈ N , 0 ≤ k < a, and −→r ∈ Ca:

. . .n

. . .
m

a a

aa

: ⟨a⟩ni=1 → ⟨a⟩
m
i=1

a

b

: ⟨a⟩ → ⟨b⟩
−→r

a
: ⟨⟩ → ⟨a⟩

a

a a

: ⟨a, a⟩ → ⟨a⟩
a

a

: ⟨a⟩ → ⟨a⟩ k

a
: ⟨⟩ → ⟨a⟩

b a

ba

: ⟨a, b⟩ → ⟨b, a⟩
a

: ⟨a⟩ → ⟨a⟩

Diagrams in our framework can be composed in two ways, sequentially, by connecting input and
output wires, and in parallel, by placing diagrams side-by-side.

We extend our language with the standard qudit Z-spider and the mixed-dimensional Z-
spider [62], given by the following compositions, respectively:

. . .

. . .

−→r

a a

aa n

m

:=

−→r
a. . .

. . .
a a

aa n

m an+man+1

ana1 . . .

. . .

−→r :=

an+man+1

ana1

. . .

. . .

−→r

a a

aa

where a = minn+m
i=0 ai. Furthermore, the phase-free Z-spider with arbitrary legs can express both

the cap and cup as follows:

a a
:=

a a

a a

:=
a a

Caps and cups then allow us to construct the transposition of any diagram:

D

. . .

. . .

. . .

. . .

= D

. . .

. . .a a

a aa a

a a
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In particular, we obtain the transposition of all the generators listed.
With these elements defined, we can define the X-spider inductively, for any m,n ∈ N, as

follows:

. . .n+1a a

:=

. . .na a a

. . .n

. . .
m

a a

aa

:=

. . .na a

. . .
m aa

. . .

. . .

k

a a

aa n

m

:=

. . .

. . .
a a

aa n

m

k

a

The requirement of the 1 → 1 red vertices (called antipodes) is the consequence of using the
flexsymmetric X-spider in our calculus to recover the OCM meta-rule mentioned above.

2.2 Interpretation

The standard interpretation of a diagram in ZXf is a symmetric monoidal functor J·K : ZXf →
FHilb where FHilb is the category of finite-dimensional Hilbert spaces. On objects, it is defined
as J⟨ai⟩ni=1K = CA where A =

∏n
i=1 ai, and on morphisms, it is given as follows:

. . .n

. . .
m

a a

aa

J·K7−→
a−1∑
k=0

|k⟩⊗m ⟨k|⊗n
a

b

J·K7−→
min{a,b}−1∑

k=0

|k⟩ ⟨k|
−→r

a

J·K7−→
a−1∑
k=0

rk |k⟩

a

a a
J·K7−→

a−1∑
k,ℓ=0

|-(k+ℓ) mod a⟩ ⟨k, ℓ|
a

a

J·K7−→
a−1∑
k=0

|a− k⟩ ⟨k| k

a

J·K7−→ |k⟩

b a

ba J·K7−→
a−1∑
k=0

b−1∑
l=0

|ℓ, k⟩ ⟨k, ℓ|
a

J·K7−→
a−1∑
k=0

|k⟩ ⟨k|

By the functoriality of the standard interpretation, the general spiders have the following cor-
respondence in FHilb:

an+man+1

ana1 . . .

. . .

−→r
J·K7−→

min {ai}i−1∑
j=0

rj |j, · · · , j⟩ ⟨j, · · · , j| ,

where −→r = (r0, · · · , rmin {di}i−1), and

. . .

. . .

k

a a

aa n

m

J·K7−→
∑

i1+···+im
+j1+···+jn
≡ k (mod a)

|i1, · · · , im⟩ ⟨j1, · · · , jn| ,

where 0 ≤ ip, jq < a.
There are a couple of features in this interpretation that should be noted. First and foremost,

the mixed-dimensional Z-spider can have legs of varying dimensions. In the qudit setting, a Z-
spider behaves as the generalized Kronecker delta: it ensures that the same basis state is present
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on each of its legs. In our mixed-dimensional calculus, this behaviour is preserved by selecting
the k-th standard basis on each leg for any k less than the minimal dimension. As such behaviour
cannot be defined for the remaining basis states, we set their coefficients to zero. In other words,
these basis states are not included in the sum.

Second, all coefficients of our Z-spiders can be set to an arbitrary complex number. This
is similar to the Z-box generator of [62, 48, 61], where the box notation is used for arbitrary
complex coefficients, and the oval Z spider is used as a special case where all the coefficients
are of the form eiαj . As these exponential phases do not have a special role in this work, we
do not distinguish between the two and simply label the oval Z-spider with any complex vector.
A small difference between the coefficients of the Z-box from [48] and our Z-spider is that the
former defines the first coefficient to be 1 (a0 = 1). We relax this requirement as it provides
more flexibility and cleaner rules.

Lastly, the interpretation of the X-spider matches that of [9, 47] but differs from [48, 62].
This is in order to make the X-spider flexsymmetric and thus recover the OCM meta-rule. This
allows us to treat diagrams based solely on their connectivity and disregard relative positions.
However, with this interpretation, X-spiders do not only sum basis states, but also map the
resulting summation to its additive inverse based on the dimension. In particular, this means
that the red 1 → 1 spider is not the identity, rather, it maps any input X basis state to its additive
inverse. Further to these points, an additional advantage of the flexsymmetric interpretation is
that k labelled X-spiders with input or output now exactly correspond to a computational basis
costates/states:

k

a J·K7−→ ⟨k| k

a

J·K7−→ |k⟩

This is different to the conventions in [48, 62], where the Kk state corresponds to |d− k⟩.

2.3 Notations

• A multiplier [8, 14, 9] labelled by m corresponds to a Z- and X-spider connected with m
wires. Unlike in the qubit case, a green and a red spider can be connected with more than
one wire. In fact, the Hopf law generalizes to d connections in dimension d, implying that
the multiplier may be labelled modulo d.

m

a

a

:= . . .m

a

a

m

a

a

:= m

a

a

=
. . .m

a

a

(Mu)

Then, the interpretation of the multiplier is given as follows:

m

a

a

J·K7−→
a−1∑
i=0

|m · i⟩ ⟨i|
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• We can define the dimension splitter of the qufinite ZX calculus [61] as follows:

ab

a b

:= b

ab

a b

ab ab J·K7−→
a−1∑
i=0

b−1∑
j=0

|i, j⟩ ⟨ib + j| (DD)

Note that this definition matches that of [62, Axiom (DD)], up to the extra antipode which
is due to flexsymmetric X-spider.

• Throughout this paper, we extensively use the vector N = (0, 1, · · · , a − 1), where the
dimension is a, and elementwise functions on this vector. For example,

√
N ! corresponds

to the vector (
√

0!,
√

1!, · · · ,
√

(a− 1)!) and rN refers to (r0, r1, · · · , ra−1).

• When two vectors are multiplied or added in the parameter of a Z-spider, we refer to
elementwise multiplication or addition of the vectors.

• When the first two elements of a Z-spider are 1 and x, we use the following shorthand:

:=

· · ·
x

· · ·

· · ·
(1, x, 0, . . . , 0)

· · ·
,

where x ∈ C.

2.4 Axiomatization

In this section, we give a set of graphical rewrite rules to perform purely diagrammatic reasoning.

=
−→r

−→s
−→
rs′

. . .
. . .

. . .

. . .

. . .

. . .. . .

...

a1 ai

b1 bk

aj

bk+1 bℓ

. . .

c1

cp

a1 ai

b1 bk

ai+1 aj

bk+1 bℓ

ai+1

(S1)

where A = {at}jt=0, B = {bt}ℓt=0, C = {ct}pt=0,
M = min(A∪B∪C), m = min(A∪C),
n = min(B∪C), −→r = (r0, . . . , rm−1),
−→s = (s0, . . . , sn−1), and

−→
rs′ =

(r0s0, . . . , rM−1sM−1).

=
j

k
j + k

. . .
. . .

. . .

. . .

. . .

. . .. . .
. . .

a

a a
a a

a

a
a a

a

a

a a
a a

a
a a

(S4)

··
k

·· ·

·

· ··
=
·

·
·

·
·
· ·

a (Ept)

. . .
a-1

a

a

=
a

(Special)

=

a a aa

a a a a

(B2)

=−→r

k

k

k̂(−→r )

a a

aa

aa (K2)

where k̂(−→r ) = (rd−k, . . . , r1−k).

=
k

k k

k

−→
1N

a
a

b bc c

(K0)
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where N = min{a, b, c}.

−→p −→q

=
−→r

a
a

(PA)

where the kth element of −→r is

rk =
a−1∑
i=0

piqk-i (mod a).

−→p −→p

=
−→q

a a

a

b bc c

(PC)

where −→q is a vector such that for all 0 ≤ i < b
and 0 ≤ j < c we have pipj = qi+j (mod a).

=
a+b-1

a+b-1

a+b+k

a

a

b

b

(DA)

where k ∈ N0.

b

a

ab

b

=
δ0

a

b

(HP)

where δ0 = (1, 0, . . . , 0)

−→r
a

=

a

. . .

1

ra-1r0 r1

a+1

1

a
-
1

0 (ZNF)

2a

a a

a

a a

=

a

2a

2
a

2a
(XM)

1√
N!

1√
N!

ℓ1,1

√
N !

a1

A1 . . .

1√
N!

1√
N!

√
N !

. . .

=

an

ℓn,m

An

ℓ1,m
ℓn,1

1√
N!

1√
N!

√
N !

b1

B1

. . .

1√
N!

1√
N!

√
N !

. . .

bm

Bn

1√
N!

1√
N!

b1 bm

√
N !

c

B

. . .

1√
N!

1√
N!

a1 an

√
N !

A

. . .

(WW)

where c ≥ min(
∑

ai,
∑

bi), ℓij = min(ai, bj),
Ai =

∑
k ℓi,k, and Bi =

∑
k ℓk,i.

3 Finite dimensional ZW calculus [30]

This section recapitulates the finite-dimensional ZW-calculus, in accordance with [27], discuss-
ing its generators with their interpretations and presenting the complete axiomatization of the
calculus.

3.1 Generators

We define the symmetric monoidal category ZWf with objects as lists of dimensions ⟨di⟩ni=1

where di ∈ N for all 0 < i ≤ n, and morphisms generated by the following diagrams, for any
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a, b, bj , n,m ∈ N , 0 < j ≤ n, 0 < k ≤ a, and r ∈ C:

a .r

n. . .

m
. . .

: ⟨a⟩ni=1 → ⟨a⟩
m
i=1 ... bn

a

b1

: ⟨a⟩ → ⟨bi⟩ni=1

k

a : ⟨⟩ → ⟨a⟩

ba

: ⟨a, b⟩ → ⟨b, a⟩
a

: ⟨⟩ → ⟨a, a⟩
a

: ⟨a, a⟩ → ⟨⟩

r : ⟨⟩ → ⟨⟩ a : ⟨a⟩ → ⟨a⟩

Compositions are given in the usual way.

3.2 Interpretation

The interpretation of a diagram in ZWf is a symmetric monoidal functor J·K : ZWf → FHilb.
On objects, it is defined as J⟨ai⟩ni=1K = CA where A =

∏n
i=1 ai. The interpretation of the Z-spider

is as follows, for any r ∈ C:

a .r

n. . .

m
. . .

J·K7−→
a∑

k=0

rk
√
k!

n+m−2
|km⟩⟨kn|

The W-node and its interpretation are given as follows:

... bn

a

b1

J·K7−→
∑

0≤ki≤bi
k1+...+kn≤a

√(
k1+...+kn
k1, ..., kn

)
|k1, ..., kn⟩⟨k1+...+kn|

where a ≥ maxn
i=1 bi. The interpretation of the remaining generators are given as follows:

k

a
J·K7−→

{√
k! |k⟩ if 0 < k ≤ a

0⃗ otherwise
r

J·K7−→ r a
J·K7−→

a∑
k=0

|k⟩ ⟨k|

ba J·K7−→
a∑

k=0

b∑
l=0

|ℓ, k⟩ ⟨k, ℓ|
a J·K7−→

a∑
k=0

|k, k⟩
a

J·K7−→
a∑

k=0

⟨k, k|

It is worth pointing out that wire dimensions in ZXf and ZWf do not match. In the ZX-
calculus we use d to indicate that the wire carries a d-dimensional qudit while in case of the
ZW-calculus it means a (d + 1)-dimensional qudit.
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3.3 Axioms

The equational theory ZWf for the finite-dimensional ZW-calculus is given as follows:

a .
. a

r
s

...

... ...

...

=
(s)

a .

...

...

rs

...

...

a

a
=
(id)

a

...... an

b

c

a1

b≥min(c,
∑

ai)
=
(a) c

...... ana1

bmb1

a .

...
m

r

n...
n̸=0
=
(b1)

a a

b1 . . bmr r...
m

n... . aa .

a

r s

=
(+)

a .r+s 1 =
(e)

a

1

r

...
=

(cp)a
r · aa

1 1

...

c

a1 an

b1 bm

...

...

c≥min(
∑

ai,
∑

bi)
ℓij=min(ai,bj)

=
(b2)

ℓ1,1

a1 an

b1

ℓn,m

bm

...

...

a

b

b+1
. . .

=
(h)

a

b .0
b c

a

...
k

k

0<k≤a
=
(p)

a

c .

b

1

1

...
k

k!

1 =
(e1)

1

1 1

1
a1

b

c

a0

=
(a′)

a1

b

a0

c
b

a+b

a
=
(zcp)

ba a
=
(nf)

1a−1

a

1
a!
a...

aA missing r is added to the left hand side.

Proposition 1 (Completeness of ZW-calculus). For any two ZWf -diagrams D1 and D2,

JD1K = JD2K ⇐⇒ ZWf ⊢ D1 = D2

4 Completeness from translation

In this section, we prove the completeness of the finite-dimensional ZX-calculus. Our proof
strategy bases on that outlined in [37, 44]. The idea of the proof is to define a translation from
and to a complete language — the finite-dimensional ZW-calculus in our case. Then, if one can
prove certain properties of these translation functors, such as soundness and invertability, then
we obtain completeness.

4.1 ZX-to-ZW translation

Here, we define the ZX-to-ZW translation functor, J.KXW : ZXf → ZWf , and show how it maps
the generators of the finite-dimensional ZX-calculus. We first show how the generators defining
a general mixed-dimensional Z-spider are translated. We can translate the Z spider with a single
output and the embedding as follows:

−→r
a+1

J.KXW7−→ 1 11

1

r0√
0!

r1√
1!

ra√
d!

. . .
...d

1

a

a

b

J.KXW7−→


a-1

b-1
if a ≥ b

a-1

b-1
if a < b
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The former interpretation is based on the normal form of the qudit ZW calculus [30, Definition
3], and the embedding follows from comparing the interpretations. Since the Z-spiders of the

two calculi match up to a C =
(

1√
N !

)m+n−1
vector parameter, the translation is not difficult:

. . .n

. . .
m

a a

aa

J.KXW7−→
. . .

a

C

a-1

r z

XW. . .n

m

Now, we focus on expressing generators that include X-spiders. The translation of computa-
tional basis states and the antipode follow easily from the interpretations and Axiom (??). To
express the X-spider in the finite dimensional ZW calculus, we first point out that the interpret-
ation of the W- and (non-flexsymmetric) X-spider are—up to scalars—closely related. The only
difference is that the W-spider results in sums of the inputs that are smaller than the output
dimension (|a + b⟩ ⟨a, b| for a, b ≤ d and a+ b ≤ d) while the (non-flexsymmetric) X-spider sums
elements modulo d (|a + b mod d⟩ ⟨a, b| for a, b ≤ d). Setting the output dimension of the W-
spider to 2d and applying a modulo d gate afterwards (|k mod d⟩ ⟨k|a + b⟩ ⟨a, b| for a, b ≤ d and
a+b ≤ 2d, which is equivalent to |a + b mod d⟩ ⟨a, b| for a, b ≤ d), we can obtain the translation
of the (non-flexsymmetric) X spider.

k

a

J.KXW7−→

k

a-1

1√
N!

r z

XW

a

a

J.KXW7−→

1√
N!

r z

XW

a-1

√
N !

r z

XW
a-1

a-1
. . .

a a

a

J.KXW7−→

mod d

1√
N!

√
N !

√
N !

r z

XW

r z

XW

d-1

a-1

2a-1

a-1

2a-1

where the modulo d gadget is implemented with a ZW-diagram, but it is also expressible in the
ZX-calculus:

2a

2 a

J.KXW7−→ mod a

2a-1

a-1

:= . . .d

1

1√
N!

√
N !

r z

XW

r z

XW

2a-1

a-1

Given the above translations, mapping the remaining generators—the flexsymmetric X-spider,
the identity, and the swap—can be tackled easily:

J.KXW7−→

J KXW

s {

XW a

J.KXW7−→ a-1

b a

ba J.KXW7−→
b-1a-1

a-1b-1
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Lemma 1. Suppose D is an arbitrary ZX-diagram.
Then the above-defined ZX-to-ZW translation functor is sound, that is, JJDKXWK = JDK.

4.2 ZW-to-ZX translation

Here, we define the ZW-to-ZX translation functor, J.KWX : ZWf → ZXf , and show how it maps
the generators of the finite-dimensional ZW-calculus. For B =

∑n
i=1 bi,

a .r

n. . .

m
. . .

J.KWX7−→
. . .

. . .

rN
√
N!

n+m-2

a+1 a+1

a+1a+1 n

m

... bn

a

b1

J.KWX7−→
1√
N!

1√
N!

b1+1 bn+1

√
N !

a+1

B+1

. . .

k

a

J.KWX7−→
k

a+1

√
N !

a J.KWX7−→
a+1 a+1

ba J.KWX7−→
b+1 a+1

b+1a+1

a

J.KWX7−→
a+1 a+1

a
J.KWX7−→

a+1
r

J.KWX7−→
r

1

2

Lemma 2. Suppose D is an arbitrary ZW-diagram.
Then the above-defined ZW-to-ZX translation functor is sound, that is, JJDKWXK = JDK.

4.3 Proof

Lemma 3. For an arbitrary ZX-diagram, D, we can prove JJDKWXKXW = D.

Appendix A.2 is devoted to proving this by showing that the above lemma holds for all
generators of ZXf .

Proposition 2. If ZWf ⊢ D1 = D2 then ZXf ⊢ JD1KWX = JD2KWX .

To prove this proposition, we need to show that all rewrite rules of ZWf are derivable in
ZXf . These proofs are the content of Appendix A.3.

Theorem 1 (Completeness). The finite-dimensional ZX-calculus is universally complete for
finite-dimensional Hilbert spaces: For any ZX-diagrams D1 and D2, if JD1K = JD2K, then ZXf ⊢
D1 = D2.

Proof. Suppose D1, D2 ∈ ZXf such that JD1K = JD2K. By Lemma 1, JJD1KXWK = JD1K =
JD2K = JJD2KXWK. By the completeness of ZW-calculus, ZWf ⊢ JD1KXW = JD2KXW. Now by
Proposition 2, ZXf ⊢ JJD1KWXKXW = JJD2KWXKXW. Finally, by Lemma 3, D1 = D2.
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A Lemmas

A.1 General lemmas

Lemma 4 (Z identity).

a

a

=
. . .
a-1

a

a

= . . .
a-1

a

a

=
a

Lemma 5 (X identity).

a

a

=
. . .
a-1

a

a

= . . .
a-1

a

a

=
a

Lemma 6 (Antipode multiplier).

a

a

= . . .
a-1

a

a

=

a

a

a
-
1 =

a

a

-
1

Lemma 7.
k

=
a

-
1

a

=
a

k

-k

Lemma 8.

m

a

k

= . . .
m

a

a

k

=
. . .
ma

a

k k

a

=
. . .
ma

a

k k

a

=
m·k

Lemma 9.

=

m

mm

a

a a

a

a a

=

m

mm

a

a a

a

a a

Lemma 10.

m

= ==

mm

= =

. . .
m

a

a

a a
a a

a

a a

a a

a

. . .
m

. . .
m

. . .
m

. . .
m

a a

a

. . .
m

a

. . .
m

a

a
a

a a



B. Poór, R. Shaikh, and Q. Wang 17

=

m

a

a a

. . .
m

a

a

a a

. . .
m

. . .
m

=

a

a a

a a

. . .
m

. . .
m

=

a a

a

a a

=

a a

a

. . .
m

. . .
m

=

mm

a

a a

Lemma 11.

proofs/Lemmas/multiplier/add-

Lemma 12.

x
y

=

· · ·x

· · ·y
=

· · ·x· · ·x
· · ·y · · ·y · · ·x· · ·x

=

· · ·y
· · ·xy

=

x
y=

A.2 Recovering generators

Lemma 13.
ss

−→r
a+1

{

XW

{

WX

=
−→r

a+1

Proof.

−→r
a+1

J.KXW7−→ 1 11

1

r0√
0!

r1√
1!

ra√
d!

. . .
...d

1

a

J.KWX7−→
1√
N!

1√
N!

√
N !

. . .

1

2

√
N !

1√
N!

. . .

(
ad√
d!

)N√
N!

d-1

d

(
a0√
0!

)N 1√
N!

(
a1√
1!

)N

1√
N!

√
N !

d(d-1)
2

1√
N!

1√
N!

2

d+1

2 2 2

2 22

d+1
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= =

. . .

1

ad√
d!

a0√
0!

a1√
1!

√
N !

d(d-1)
2

d+1

d+1

0 1 d

=

−→a√
N!

d+1
√
N !

d+1

=
−→a

d+1

N !

. . .

1

(
ad√
d!

)N 1
N!

(
a0√
0!

)N 1
N!

(
a1√
1!

)N 1
N!

√
N !

d(d-1)
2

2

d+1

d+1

0 1 d

2 2 2
(ZNF)

Lemma 14. tt
a

b

|

XW

|

WX

=
a

b

Proof. Suppose a ≥ b. Then

a

b

J.KXW7−→
a-1

b-1

J.KWX7−→
1√
N!

b

√
N !

a

b

=
1√
N!

b

√
N !

a

b =
a

b

The other case can be proved similarly.

Lemma 15. u

v

u

v
. . .n

. . .
m

a a

aa

}

~

XW

}

~

WX

=
. . .n

. . .
m

a a

aa

Proof. For C =
(

1√
N !

)m+n−1
,

. . .n

. . .
m

a a

aa

J.KXW7−→
. . .

a

C

a-1

r z

XW. . .n

m

J.KWX7−→

s {

WX
a

C
r z

XW

1
C =

. . .n

. . .
m

a a

aa

a

C

1
C

. . .n

. . .
m

a a

aa

=
. . .n

. . .
m

a a

aa
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Lemma 16. tt
a

a

|

XW

|

WX

=

Proof.

J.KXW7−→

1√
N!

r z

XW

a-1

√
N !

r z

XW
a-1

a-1
. . .

J.KWX7−→

1√
N!

√
N !

1√
N!

1√
N!

√
N !

a+1

a+1

a+1. . .

√
N!

a-1

a

a+1

r z

XW

s {

WX

r z

XW

s {

WX

=

1√
N!

√
N !

1√
N!

1√
N!

√
N !

a+1

a+1

a+1. . .

√
N!

a-1

a

a+1

=
a+1

a+1

. . .
a

=
a+1

(??)

Lemma 17.

u

w
v mod a

2a-1

a-1

}

�
~

WX

= d
2d

2d2d

2 d

Proof. Expanding the definition of the modulo d box,

. . .d

1

1√
N!

√
N !

r z

XW

r z

XW

2a-1

a-1

J.KWX7−→

1√
N!

√
N !

d

√
N !

2d

2d

1√
N!

2

1√
N!

2

. . .d

1√
N!

r z

XW

s {

WX

r z

XW

s {

WX

=

1√
N!

√
N !

d

√
N !

2d

2d

1√
N!

2

1√
N!

2

. . .d

1√
N!

=

d

2d

22

. . .d = d
2d

2d2d

2 d

Lemma 18. u

w
v

u

w
v

a a

a

}

�
~

XW

}

�
~

WX

=

a a

a
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Proof.

a a

a

J.KXW7−→

mod d

1√
N!

√
N !

√
N !

r z

XW

r z

XW

d-1

a-1

2a-1

a-1

2a-1

J.KWX7−→

1√
N!

1√
N!

√
N !

2d

2d

mod d

d

√
N !

√
N !

d d

d d

1√
N!

q y
XW

t |

WX

r z

XW

s {

WX

=

1√
N!

1√
N!

√
N !

2d

2d

√
N !

√
N !

d d

d d

1√
N!

2d

d

2d2d

2 d

=
2d

d d

d

d d

=

a

2d

2
d

2d

(XM)

Lemma 19. tt

b a

ba
|

XW

|

WX

=
b a

ba

Proof.

b a

ba J.KXW7−→
b-1a-1

a-1b-1

J.KWX7−→
b a

ba

Lemma 20. tt

a

|

XW

|

WX

=
a

Proof.

a

J.KXW7−→ a-1
J.KWX7−→

a
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A.3 Proving axioms of ZW

Lemma 21. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a .
. a

r
s

...

... ...

...

a .

...

...

rs

...

...

Proof.

a .
. a

r
s

...

... ...

...
J.KWX7−→

. . .

. . .

rN
√
N!

n+m-1

a+1 a+1

a+1a+1 n

m

. . .

. . .

sN
√
N!

p+q-1

a+1 a+1

a+1a+1 p

q

= (r + s)N
√
N!

n+p+m+q-2

a+1 a+1
a+1 a+1

a+1 a+1
a+1 a+1

. . .n

. . .p

. . .
m . . .

q

J.KWX←− [ a .

...

...

rs

...

...

Lemma 22. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a

a
a

Proof.

a

a

J.KWX7−→
a+1

a+1

=
a+1 J.KWX←− [ a

Lemma 23. For b ≥ min(c,
∑

ai), the translation of the following ZW diagrams under J.KWX

equal in ZXf :
......an

b

c

a1

c

......ana1

Proof. For A :=
∑

ai, D :=
∑

di, M = min{A, b} :

...... an

b

c

a1

J.KWX7−→

1√
N!

1√
N!

a1+1 an+1

√
N !

b+1

A+1

. . .

1√
N!

1√
N!

√
N !

c+1

b+D+1

. . .
1√
N!

=d1+1 dn+1 =

1√
N!

1√
N!

a1+1 an+1

b+1

A+1

. . .

1√
N!

√
N !

c+1

b+D+1

. . .
1√
N!

d1+1 dn+1

1√
N!

1√
N!

a1+1 an+1

−→
1M

A+1

. . .

1√
N!

√
N !

c+1

b+D+1

. . .
1√
N!

d1+1 dn+1
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Here, we split the proof based on the value of M . If A ≤ b, then M = min{A, b} = A and we
have:

=

1√
N!

1√
N!

a1+1 an+1. . .
1√
N!

√
N !

c+1

A+D+1

. . .
1√
N!

d1+1 dn+1

1√
N!

1√
N!

a1+1 an+1

A+1

. . .

1√
N!

√
N !

c+1

b+D+1

. . .
1√
N!

d1+1 dn+1

=

1√
N!

1√
N!

a1+1 an+1

A+D+1

. . .

1√
N!

√
N !

c+1

A+D+1

. . .
1√
N!

d1+1 dn+1

=
(DA)

Otherwise, we have A > b, and thus M = min{A, b} = b. Combining this with the assumption
b ≥ min(c,

∑
ai) = min(c, A), we conclude that b ≥ c.

=

1√
N!

1√
N!

a1+1 an+1

b+1

A+1

. . .

1√
N!

√
N !

c+1

b+D+1

. . .
1√
N!

d1+1 dn+1

c+1

=

1√
N!

1√
N!

a1+1 an+1

b+1

A+1

. . .

√
N !

c+1

b+D+1

. . .d1+1 dn+1

c+1

c+1

1√
N!

1√
N!

c+1 c+1 =

1√
N!

1√
N!

a1+1 an+1

A+1

. . .

√
N !

c+1

b+D+1

. . .d1+1 dn+1

c+1

c+1

1√
N!

1√
N!

c+1 c+1 =

1√
N!

1√
N!

a1+1 an+1

A+1

. . .

√
N !

c+1

b+D+1

. . .d1+1 dn+1

c+1

c+1
1√
N!

1√
N!

(PC) (PC)

Then the proof follows from the A ≤ b case.

Lemma 24. For n ̸= 0, the translation of the following ZW diagrams under J.KWX equal in
ZXf :

bmb1

a .

...
m

r

n... a a

b1 . . bmr r...
m

n...

Proof. Let b :=
∑

bi. We first show the following:

bmb1

a

...
m

n...
J.KWX7−→ 1√

N!

1√
N!

b1+1 bm+1

√
N !

a+1

b+1

1√
N!

1√
N!

√
N !

a+1

b+1

. . .
m

√
N!

n-1 √
N!

m-1

. . .n

=

b1+1 bm+1

√
N !

a+1

b+1

√
N !

a+1

b+1

. . .
m

1√
N!

1√
N!

. . .n

b+1 b+1

=

b1+1 bm+1

a+1 a+1

. . .
m

. . .n

b+1 b+1

1√
N!

1√
N!

b+1 b+1

√
N !

√
N !

=

b1+1 bm+1

a+1 a+1

. . .
m

. . .n

b+1 b+1

1√
N!

1√
N!

√
N !

a+1

√
N!

n-1

b+1 b+1 b+1 b+1
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J.KWX←− [
a a

b1 bm...
m

n...

Now, we only have to show that the W-spider copies phases:

bmb1

a .

...
m

r J.KWX7−→

b1+1 bm+1

a+1

. . .
m

b+1 b+1

1√
N!

1√
N!

√
N !

a+1

rN

b1+1 bm+1

. . .
m

b+1 b+1

1√
N!

1√
N!

√
N !

a+1

= =

rN rN

b1+1 bm+1
b1+1 bm+1

a+1

. . .
m

b+1 b+1

√
N !

b+1

rN

1√
N!

1√
N!

b+1 b+1

. . .
m

b+1 b+1

rN rN

√
N !

a+1

=

1√
N!

1√
N!

b1+1 bm+1

(PC)

J.KWX←− [
a

b1 bmr r...
m

Lemma 25. The translation of the following ZW diagrams under J.KWX equal in ZXf :

. aa .

a

r s

a .r+s

Proof.

. aa .

a

r s J.KWX7−→

a+1a+1

2a+1

1√
N!

1√
N!

√
N !

a+1

rN 1√
N!

sN 1√
N!

=

a+1a+1

2a+1

√
N !

a+1

rN 1
N!

sN 1
N!

= =
(r + s)N 1√

N!

a+1
√
N !

a+1

−→
C

2a+1

(PA) J.KWX←− [ a .r+s

where the k-th element of
−→
C for k ≤ a is given by ck =

a∑
i=0

ri
1

i!
sk-i

1

(k − i)!
=

(r + s)k

k!
and for

k > a it is ck =

a∑
i=k−a

ri
1

i!
sk-i

1

(k − i)!
; therefore, (r+s)N

N ! defines the first a element of
−→
C .

Lemma 26. The translation of the global scalar 1 and the empty diagram under J.KWX equal
in ZXf .

Proof.

1
J.KWX7−→

1

1

=

··

·· ·

·

· ···

·
·

·
·
· ·

=
1

2 2

J.KWX←− [
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Lemma 27. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a

1

r

...
r · aa

1 1

...

Proof.

a

1

r

...

J.KWX7−→

. . .

rN
√
N!

m-1

a+1 a+1

a+1

m

1

a+1

√
N !

=

. . .
a+1 a+1

a+1

m

1

√
N !

√
N ! rN

=
. . .

a+1 a+1m

1

√
N !

√
N ! rN

11

a+1 a+1 a+1 J.KWX←− [ r · aa

1 1

...

Lemma 28. For c ≥ min(
∑

ai,
∑

bi), ℓij = min(ai, bj), the translation of the following ZW
diagrams under J.KWX equal in ZXf :

c

a1 an

b1 bm

...

...

ℓ1,1

a1 an

b1

ℓn,m

bm

...

...

Proof. This rule follows from Axiom (WW).

Lemma 29. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a

b

b+1
. . .

a

b .0

Proof.

a

b

b+1
. . . J.KWX7−→

√
N !

1√
N!

1√
N!

a+1

ab+a+1

a+1
. . .

√
N!

b

b+1

a+1

b+1

=

1√
N!

a+1

ab+a+1

δ0

a+1

b+1

=

a+1

√
N !

a+1

ab+a+1

a+1
. . .

1√
N!

b+1

a+1

b+1

b+1

=

b
+
1

√
N !

b+1

b+1

ab+a+1

1√
N!

√
N !

δ0

a+1

b+1

=
(HP) J.KWX←− [

a

b .0

Lemma 30. For 0 < k ≤ a, the translation of the following ZW diagrams under J.KWX equal in
ZXf :

b c

a

...
k

k a

c .

b

1

1

...
k

k!
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Proof.

b c

a

...
k

k

J.KWX7−→

1√
N!

√
N !

k

b+1

a+1

√
N !

a+1

1√
N!

1√
N!

c+1

b+ck+1

c+1. . .
√
N!

k-1

k

c+1

=
1√
N!

k

b+1

N !

a+1

b+ck+1

b+ck+1

c+1

1√
N!

. . .
k

=
1√
N!

k

b+1

b+ck+1

b+ck+1

c+1

1√
N!

k

N !

a+1

k

=
1√
N!

b+1

k
b+ck+1

b+ck+1

c+1

1√
N!

k!

k

=
1√
N!

b+1

1
b+ck+1

b+ck+1

c+1

1√
N!

k!

k

=

1√
N!

1

b+1

b+ck+1

b+ck+1

c+1

1√
N!

k

2k!

b+ck+1

=

1√
N!

1

b+1

b+ck+1

b+ck+1

c+1

1√
N!

k

2

k!N

b+ck+1

2 2 =

1√
N!

1

b+1

b+ck+1

b+ck+1

1√
N!

a+1

k!N

2

. . .
k

2 2

1

2 =

1√
N!

1

b+1

c+2

k+1

c+1

1√
N!

a+1

k!N
2

. . .
k

2 2

2

k!N

=
1√
N!

1

b+1

c+2

c+1

1√
N!

a+1

←−
N !
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k!N

c+1

c+1k+1

c+1k+1 = 1√
N!

1

b+1

c+2

c+1

1√
N!

a+1

N !

2

k!N

c+1

k+1

c+1

k+1 =

1

b+1

c+2

c+1

√
N !

a+1

1√
N!

2

k!N

c+1

k+1

. . .
k

=

1

b+1

c+2

c+1

√
N !

1√
N!

2

k!N

c+1

k+1

. . .
k

√
N!

k-1

1√
N!

1√
N!

1√
N!

2

2

√
N !

a+1

√
N !

a+1

=

1√
N!

1

b+1

c+2

k+1

c+1

1√
N!

a+1

k!

2

. . .
k

2

k!N

k+1

2

(PC) (DA)

(??) (??)(K2)
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J.KWX←− [

a

c .

b

1

1

...
k

k!

Lemma 31. The translation of the following ZW diagrams under J.KWX equal in ZXf :

1
1

1 1

1

Proof.

1
J.KWX7−→

1√
N!

2
=

2
1√
N!

1√
N!

√
N !

3

1√
N!

1

2

√
N !

2 2

3

1

2

2 2

=3
1

2

=

(1, 0)3

1

2

(1, 0)

==
3

1

2

(0, 1)=
1

(1, 0)

J.KWX←− [
1

1 1

1

Lemma 32. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a1

b

c

a0 a1

b

a0

c

Proof. Let a = a0 + a1, then

a1

b

c

a0

J.KWX7−→
1√
N!

1√
N!

√
N !

a

a0 a1

1√
N!

b

1√
N!

1√
N!

√
N !

a

a0 a1

c

=

√
N !

√
N !

a0 a1

a

b

√
N !

a

c

1√
N!

1√
N!

a0 a1

a a

=
a a

c

a0 a1

a

1√
N!

1√
N!

√
N !

=

b

c

a0 a1

a

1√
N!

1√
N!

√
N !

b

=

c

a0a1

a

1√
N!

1√
N!

√
N !

b
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J.KWX←− [
a1

b

a0

c

Lemma 33. The translation of the following ZW diagrams under J.KWX equal in ZXf :

b

a+b

a

ba

Proof. Let a = a0 + a1, then

b

a+b

a

J.KWX7−→
1√
N!

1√
N!

a+1 b+1

√
N !

a+b+1

a+b+1

1√
N!

1√
N!

1√
N!

a+1 b+1

a+b+1

= 1√
N!

a+1 b+1

a+b+1

= 1√
N!

a+b+1 1√
N!

a+1 b+1
=

1√
N!

J.KWX←− [ ba

Lemma 34. The translation of the following ZW diagrams under J.KWX equal in ZXf :

a

1a−1

a

1
a!
a...

Proof. For
−→
C = (0, · · · , 0︸ ︷︷ ︸

a+1

, 1
1!a! ,

1
2!a! , · · · ,

1
(a−1)!a!),

a
J.KWX7−→

1√
N!

1√
N!

√
N !

1√
N!

a

a+1

a+1

2a

1√
N!

1√
N!

√
N !

2

a+1

2. . .

(
1
a!

)N√
N!

a-2

a

=

√
N !

1
N!

a

a+1

2a

2

a+1

. . .

1
a!

a

=

√
N !

a

a+1

2a

2

a+1

1
a!

a+1

=

√
N !

a

a+1

2a

a+1

T1· 1
a!

==
1√
N!

a+1

1
N!

1
N!

√
N !

a+1

2a

1
N!

+
−→
C (??)
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J.KWX←− [ a−1

a

1
1
a!

a...

a =

1a−1

a

1
a!
a...


