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Recent works have shown that defining a bisimilarity that matches the observational properties of a
quantum-capable, concurrent, non-deterministic system is a surprisingly difficult task. We explore
coalgebras over distributions taking weights from a generic effect algebra, subsuming probabilistic
transition systems. To abide by the properties of quantum theory, we introduce monads graded on
a partial commutative monoid, intuitively allowing composition of two processes only if they use
different quantum resources, as prescribed by the no-cloning theorem. By taking quantum effects we
therefore characterize the evolution of quantum processes and, implicitly, their probabilistic behaviour.
We investigate the relation between an open quantum system and its probabilistic counterparts obtained
when instantiating the input with a specific quantum state. We consider Aczel-Mendler and kernel
bisimilarities, advocating for the latter as it characterizes quantum systems that exhibit the same
behaviour for any input state. Finally, we propose operators on quantum effect labelled transition
systems, paving the way for a process calculi semantics that is parametric over the quantum input.

1 Introduction

The recent development of quantum technologies calls for grounded methods for modelling and verifying
computing systems that exploit quantum phenomena like superposition and entanglement. In particular,
concurrent processes are of main interest, like communication protocols [31, 3, 28, 14] and distributed
implementations of algorithms via the Quantum Internet [6, 35]. However, there is still no clear notion of
behavioural equivalence for such systems, and most of the proposals lack a decision procedure [8].

In [7], some of the authors have proposed a new semantic model for quantum protocols, namely
quantum effect labelled transition systems (qLTSs). These use quantum effects as weights, in the same
way probabilities are used in a probabilistic labelled transition system (pLTS). Coming from quantum
measurement theory, quantum effects represent the observable probabilistic properties that may be
expressed by a parametric input quantum state. Therefore, qLTSs model quantum processes that are
parametric over their quantum input.

In this paper we build upon this concept, characterizing quantum effects and probabilities as effect
algebras, of which we investigate their (sub)distributions, and we give effect labelled transition systems
(ELTS), a uniform coalgebraic framework encompassing non-deterministic, probabilistic and quantum
concurrent systems. The coalgebraic language is well suited to treat dynamical systems in their essential
features, and allows us to extend properties and constructs of probabilistic systems to quantum ones. We
introduce monads graded on a partial commutative monoid (PCM), allowing us to grade effect distributions
over their quantum resources, the copy of which is forbidden by the no cloning theorem [30]. Transition
systems built over this PCM intuitively represent quantum computations that consume some quantum
resources: only computations using disjoint resources can be composed. Besides, thanks to our peculiar
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grading, we define a commutative Kronecker product of effects, and thus a commutative multiplication of
effect distributions, generalizing the joint distribution operator of the probabilistic case [2].

We investigate kernel and Aczel-Mendler (AM) bisimilarities for ELTSs, and relate them by generaliz-
ing previous results. By applying our findings to the quantum setting, we prove that each quantum state ρ

defines a functor from qLTSs to pLTSs that “instantiate” a quantum process to the probabilistic behaviour
it exhibits when the measured quantum state is ρ . We study which equivalences are preserved and/or
reflected by these functors, giving us a categorical way to pinpoint the correct notion of equivalence for
quantum systems, i.e. the one that equates all and only the processes that exhibit the same observable
probabilistic behaviour. Both AM and kernel bisimilarities correctly relates indistinguishable quantum
processes only. However, only the latter is complete and relates all the indistinguishable processes, given
that the weights of the qLTS are taken from a finite effect algebra of quantum effects.

Finally, we investigate operators over ELTSs, paving the way for an ELTS semantics of quantum
process calculi. We provide a generalized, compositional parallel operator which can model different
notions of synchronization (CCS, CSP, ACT) and different kinds of “weights” (nondeterministic, proba-
bilistic or quantum systems). In addition, we introduce a purely quantum operator of “partial evaluation”
of qLTSs that instantiates the value of some of the qubits. These operators are defined as functors between
ELTSs, thus they preserve bisimilarity. While operators typically act on the final coalgebra, treating them
as functors allows for “multi sorted” operators: partial evaluation reduces the resources needed for the
computation, while parallel composition joins them by increasing the number of qubits (only if they are
compatible, i.e. of different quantum systems). A qLTS semantics for quantum processes would allow to
algorithmically decide bisimilarity for any possible input quantum state via standard techniques [24].

Related Works This work builds over [7], generalizing the results in a categorical, coalgebraic setting.
Our approach extends the quantum monad of [1], which is based on projectors, a subset of quantum
effects. The author in [22] proposes effects monoids, i.e. effect algebras with multiplication, and use
them as weights of distributions. Our effects do have tensoring as a multiplication operator, but it does
not form a proper effect monoid since it changes the effects dimensions. Our qLTS can be seen as a
labelled, non-deterministic version of the effect-valued Quantum Markov Chain of [15], where tensor
product is used instead of sequential effect composition. The most general model of “quantum transition
system” is the one of [18, 32, 27], where the weights are superoperators instead of effects, so to capture
also non-destructive measurements. The author of [32] introduces two different notions of bisimilarity,
that we recover in our minimal, effect-based setting as AM and kernel bisimilarity. However, none of
these works feature nondeterminism, nor do they investigate operators over labelled transition systems,
suitable for modelling quantum protocols, e.g. via process calculi. Usually, works from the process
algebra literature [26, 12, 10, 11, 8] define the semantics of quantum processes via pLTSs, and strive
to adapt probabilistic bisimilarity to capture the peculiar observable properties of quantum values. The
defined pLTSs are made of configurations, i.e. pairs of quantum values and syntactic processes, impeding
algorithmic verification of processes when the quantum input is not given (the only symbolic approach [13]
has been proved too strict [8]). We instead introduce a purely quantum transition system: we do not
represent directly quantum values but only their observable probabilistic features in the form of effects.

2 Background

We recall the definitions of partial commutative monoid and effect algebra. Then, we give some back-
ground on quantum computing, and on quantum effects.
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2.1 Partial Commutative Monoid and Effect Algebra

Partial commutative monoids obey the properties of commutative monoids, but + is not always defined.

Definition 1. A partial commutative monoid (PCM) is a tuple ⟨M,0,+⟩ (often referred as M) with 0 ∈M
and + : M×M→M a partial binary operation on M such that for all a,b,c ∈M the following hold:

• (Commutativity) a⊥ b implies b⊥ a and a+b = b+a;

• (Associativity) b⊥ c and a⊥ (b+c) implies a⊥ b and (a+b)⊥ c and also (a+b)+c= a+(b+c);

• (Zero) 0⊥ a and 0+a = a.

Where a ⊥ b means that a and b are orthogonal, i.e. a+ b is defined. A PCM homomorphism is a
function f : M→ N on the underlying carrier sets such that f (0) = 0, and a⊥ b implies f (a)⊥ f (b) and
f (a+b) = f (a)+ f (b). PCMs and their homomorphisms form the category PCM.

Every PCM induces a preorder on the carrier set M where a⪯ b if and only if ∃c ∈M.a+ c = b.
Effect algebras are a special kind of PCMs for which an inverse operation is defined.

Definition 2. An effect algebra [21] is a tuple ⟨E,0,+, · ′⟩ (often referred as E) with ⟨E,0,+⟩ a PCM and
· ′ : E→ E a unary operation such that, for all e ∈ E:

• e′ ∈ E is the unique element in E such that e+ e′ = 1 with 1 = 0′;

• e⊥ 1 implies e = 0.

An effect homomorphism is a PCM homomorphism that also preserves · ′. The category EA of effect
algebras and effect homomorphisms is the full subcategory of PCM whose objects are effect algebras.

Effect algebras have a partial order ⊑ (defined as ⪯) and a partial operation e1− e2 returning e3 such
that e2 +e3 = e1. EA is a symmetric monoidal category with 2 = {0,1} its unit object. Moreover, there is
a bijective correspondence between morphisms EA⊗EB→ EC and bihomomorphisms EA×EB→ EC (a
bihomomorphism is such that the morphisms obtained by fixing either objects are homomorphisms).

The most common example of effect algebras are probabilities, i.e. real numbers in the unit interval
[0,1] with + the arithmetic sum in [0,1] and e′ defined as 1−e. Probabilities allow for defining probability
(sub)distributions over a given set S, i.e. functions ∆ : S→ [0,1] such that ∑s∈S ∆(s)≤ 1. For each s∈ S, we
let s be the point distribution that assigns 1 to s. Given a finite set of non-negatives reals {pi}i∈I such that
∑i∈I pi ≤ 1, the weighted sum ∑i∈I pi ·∆i defines a distribution such that (∑i∈I pi ·∆i)(s) = ∑i∈I pi∆i(s).

Probability distributions form a convex set [5], meaning that for any two distributions ∆,Θ and any
real p∈ [0,1] there exists a distribution ∆ ⊕p Θ defined as p ·∆1+(1− p) ·∆2. Given a function f between
convex sets X and Y , we call f convex if it preserves the ⊕p operator, i.e. if f (x1 ⊕p x2) = f (x1) ⊕p f (x2).
We denote as Conv(X ,Y ) the set of convex functions between X and Y .

2.2 Quantum Computing

A (finite-dimensional) Hilbert space, denoted as H , is a complex vector space equipped with a binary
operator ⟨ · | · ⟩ : H ×H →C called inner product, defined as ⟨ψ|φ⟩=∑i α∗i βi, where |ψ⟩=(α1, . . . ,αi)

T

and |φ⟩ = (β1, . . . ,βi)
T , with T the transpose. We indicate column vectors as |ψ⟩ and their conjugate

transpose as ⟨ψ|= |ψ⟩†. The state of an isolated physical system is represented as a unit vector |ψ⟩ (called
state vector), i.e. a vector such that ⟨ψ|ψ⟩= 1. The two-dimensional Hilbert space C2 is called a qubit.
The vectors {|0⟩ = (1,0)T , |1⟩ = (0,1)T} form an orthonormal basis of C2, called the computational
basis. Other important vectors in C2 are |+⟩ = 1√

2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩), which form

the Hadamard basis. Intuitively, different bases represent different observable properties of a quantum
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system. Note that |+⟩ and |−⟩ are non-trivial linear combinations of |0⟩ and |1⟩, roughly meaning that the
property associated with the computational basis is undetermined in |+⟩ and |−⟩. In the quantum jargon,
|+⟩ and |−⟩ are superpositions with respect to the computational basis. Symmetrically, |0⟩ and |1⟩ are
superpositions with respect to the Hadamard one.

We represent the state space of a composite physical system as the tensor product of the state spaces
of its components. Let H and H ′ be n and m-dimensional Hilbert spaces: their tensor product H ⊗H ′

is an n ·m Hilbert space. Moreover, if {|ψ1⟩ , . . . , |ψn⟩} and {|φ1⟩ , . . . , |φm⟩} are bases of respectively
H and H ′, then {|ψi⟩⊗

∣∣φ j
〉
| i = 1, . . . ,n, j = 1, . . . ,m} is a basis of H ⊗H ′, where |ψ⟩⊗ |φ⟩ is the

Kronecker product. We often omit the tensor product and write |ψ⟩ |φ⟩ or |ψφ⟩. Note that such product is
not commutative. Categorically, finite-dimensional Hilbert spaces with the Kronecker product and the
conjugate transpose form the dagger compact category FDHilb. Further references are available in [9].

The density operator formalism puts together quantum systems and probability by considering mixed
states, i.e. probability distributions of quantum states. A point distribution |ψ⟩ (called a pure state) is
represented by the matrix |ψ⟩⟨ψ|. In general, a probability distribution ∆ of n-dimensional states is
represented as the matrix ρ ∈Cn×n, known as its density operator, with ρ = ∑i ∆(ψi) |ψi⟩⟨ψi|. Recall that
a complex matrix N is called positive semi-definite, shortly positive, when ⟨ψ|N|ψ⟩ ≥ 0 for any |ψ⟩. The
Löwner order is the partial order defined by L⊑ L′ whenever L′−L is positive. Given a d-dimensional
Hilbert space H , density operators coincide with the positive matrices in Cd×d of trace one, we denote
them as DMH =

{
ρ ∈Cd×d | ρ ⊒ 0d , tr(ρ) = 1

}
. Density operators form a convex set, where the convex

combination operator is defined by ρ ⊕p σ = pρ +(1− p)σ .
Density operators can describe the state of a subsystem of a composite quantum system. Let HS

denote the Hilbert space of a physical system S, then HS1 ⊗HS2 is the Hilbert space of a composite
system with subsystems S1 and S2. Given a (not necessarily separable) ρ ∈HS1 ⊗HS2 , the reduced
density operator of system S1, ρ1 = trS2(ρ), describes the state of S1, with trS2 the partial trace over
S2, defined as the linear transformation such that trS2(|ψ⟩⟨ψ ′| ⊗ |φ⟩⟨φ ′|) = |ψ⟩⟨ψ ′| tr(|φ⟩⟨φ ′|) for each
|ψ⟩⟨ψ ′| ∈ DMHS1

and |φ⟩⟨φ ′| ∈ DMHS2
. We refer to [30] for further reading on quantum computing.

2.3 Quantum Effects

Quantum measurements are needed for describing systems that exchange information with the environment.
Performing a measurement on a quantum state returns a probabilistic classical result and either destroys
or otherwise changes the quantum system. We focus in this paper on destructive measurements.

The simplest kind of measurements are quantum effects (simply called effects in quantum text-
books [19]), i.e. yes-no tests over quantum systems. Each effect can be represented as a positive matrix
smaller than the identity in the Löwner order. We denote the set of effects on a d-dimensional Hilbert
space H as QH =

{
L ∈ Cd×d | 0d ⊑ L ⊑ Id

}
, where Id is the d× d identity matrix. The probability

of getting a “yes” outcome when measuring an effect L on a state |ψ⟩ is given by the Born rule tr(Lρ).
Effects of dimension d form an effect algebra with the matrix sum, Id as 1 and L′ = Id−L. Furthermore,
the induced partial order ⊑ is exactly the Löwner order.

In general, a measurement with n different outcomes is a set {L1, . . .Ln} of effects, such that the
completeness equation ∑

n
i=1 Li = I holds. If the state of the system is |ψ⟩ before the measurement, then

the probability of the i outcome occurring is pi = tr(Liρ).
As examples of measurements, consider M01 and M± that project a state into the elements of the

computational and Hadamard basis of C2 respectively, with M01 defined as {|0⟩⟨0| , |1⟩⟨1|} and M± as
{|+⟩⟨+| , |−⟩⟨−|}. Applying the measurement M01 on |0⟩ returns the outcome associated with |0⟩⟨0| with
probability 1. When measuring |+⟩, instead, the same result occurs with probability 1

2 . Notice that a
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measurement for a composite system may measure only some of the qubits, e.g. {|0⟩⟨0|⊗ I, |1⟩⟨1|⊗ I}
measures (in the computational basis) the first qubit of a pair.

Density operators and effects are dual, as effects are isomorphic to the convex functions from the set
of density operators to the probability interval. The isomorphism is given by the Born rule.

Theorem 1. It holds that QH
∼= Conv(DMH , [0,1]) through the isomorphism L 7→ λρ. tr(Lρ) [19].

Roughly, effects can be considered as probabilities parametrized on an unknown quantum state.

3 Effect Distributions

Following the work of [21], for each effect algebra E we build a functor of effect distributions.

Definition 3 (Effect Distributions). Given an effect algebra ⟨E,0,+, · ′⟩ we define the functor of effect
(sub)distributions DE : Set→ Set by

DEX =

{
∆ ∈ EX

∣∣∣∣∣ supp(∆) is finite, ∑
x∈supp(∆)

∆(x)⊑ 1E

}
(DE f )(∆) = λy ∈ Y. ∑

x∈ f−1(y)

∆(x)

where supp(∆) is the set {x ∈ X | ∆(x) ̸= 0}, and ∑ is the n-ary sum in E.

We will often write an effect distribution ∆ = {xi 7→ ei}xi∈X in a compact form, as ∆ = ∑xi∈X ei • xi.
Our running examples will be probability and quantum distributions over some Hilbert space H ,

i.e. effect distributions associated with the [0,1] and QH effect algebras respectively. If H is 1 dimen-
sional, the effect algebra QH is isomorphic to [0,1]. Moreover, for each ρ ∈ DMH , L 7→ tr(Lρ) is an
effect algebra homomorphism from QH to [0,1]. Intuitively, this homomorphism applies a unique initial
input density operator ρ that transforms each effect L to the probability of observing the "yes" outcome
when performing the L measurement a quantum system in state ρ .

The following theorem, rephrasing Proposition 21 of [21], guarantees that L 7→ tr(Lρ) yields a natural
transformation from DQH

to D[0,1].

Theorem 2. Each effect morphism m : E→ F yields a natural transformation m◦ · : DE⇒DF. Moreover,
if m is injective then the components of m◦ · are injective.

We generalize the notion of effect monoid in [22] to the one of graded effect monoid. Instead of
grading on a monoid or a monoidal category, we use a partial commutative monoid (PCM) as a grade.
This is useful when working with quantum effects, because the no-cloning theorem imposes that quantum
data cannot be copied. Since measurements alter the quantum system, it is impossible to perform multiple
measurements on the same quantum state. Our grading keeps track of the qubits measured by the effects,
and the partial sum reflects that the composition of effects is defined over disjoint systems only.

Definition 4 (Graded Effect Monoid). Given a partial commutative monoid ⟨M,0,+⟩, an M-graded effect
monoid is a graded monoid object in EA, that is

• for each m ∈M, an effect algebra Em

• for each m⊥n ∈M, an effect morphism ∇m,n : Em⊗En→ Em+n

• an effect morphism η : 2→ E0
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such that the two following diagrams on the left commute

(Em⊗En)⊗Eo Em⊗ (En⊗Eo) 2⊗Em E0⊗Em Em⊗En En⊗Em

Em+n⊗Eo Em⊗En+o Em Em+n

Em+n+o Em⊗2 Em⊗E0

α

∇m,n⊗1 1⊗∇n,o λ

η⊗id

∇0,m

BEm,En

∇m,n
∇n,m

∇m+n,o
∇m,n+o

ρ

id⊗η

∇m,0

If also the diagram on the right commutes, where B is the braiding natural transformation, then we
say that the graded effect monoid is commutative.

Each monoid object can be considered as being graded on the degenerate 1-element monoid {0}, thus
all effect monoids described in [22] are an example of trivially graded effect monoids. Among them, the
most typical example is the probability interval [0,1], which constitutes a monoid in EA with the usual
multiplication and unit.

We grade our effect monoid over the PCM of disjoint sets of quantum systems.

Definition 5 (PCM of Quantum Systems). Assume a finite set of quantum systems Sys = {Si}, each
associated with the Hilbert space HSi of finite dimension di. Let S = ⟨P(Sys), /0,⊎⟩ be the PCM
where P(Sys) is the powerset of Sys and ⊎ is the partial disjoint union, i.e. Ci⊎C j is defined only if
Ci∩C j = /0, and in that case Ci⊎C j =Ci∪C j. We associate each collection of systems C ∈P(Sys) with
a Hilbert space defined as H /0 = C and HC =

⊗
S∈C HS, where we impose that the arguments of the

(non-commutative) Kronecker product are ordered according to their indices.

The PCM above grades an effect monoid of quantum effects.

Theorem 3 (Effect Monoid of Quantum Effect). Quantum effects carry a commutative S -graded effect
monoid structure, given by:

• The effect algebra EC is QHC for any collection of systems C ∈P(Sys)

• The operator ∇C,D : EC⊗ED→ EC⊎D is denoted as ⊠ and defined by L1 ⊠L2 = SortC,D(L1⊗k L2),
where ⊗k is the Kronecker product between L1 ∈QHC and L2 ∈QHD , and SortC,D is the unitary
transformation which “sorts” the Hilbert Space HC⊗HD into HC⊎D.

• The effect morphism η : 2→ E /0 defined by {0 7→ 0,1 7→ 1}.
We now introduce PCM-graded monads, generalizing the notion of monoid-graded monad of [25].

Definition 6 (Graded monad). Given a partial commutative monoid ⟨M,0,+⟩, an M-graded monad on
Set is a graded monoid in the category of Set-endofunctors, that is

• for each m ∈M, an endofunctor Tm : Set→ Set

• a natural transformation η : Id→ T0 called unit

• for each m⊥n ∈M, a natural transformation µm,n : TmTn→ Tm+n called multiplication

such that the following diagrams commute

TmTnTo TmTn+o Tm TmT0

Tm+nTo Tm+n+o T0Tm Tm

µm,nTo

Tmµn,o

µm,n+o ηTm

Tmη

µm,0

µm+n,o µ0,m
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We now show that, whenever {Em} is a graded effect monoid, {DEm} has a graded monad structure.

Theorem 4 (Graded monads of graded effect monoids). If {Em} is an M-graded effect monoid, there is a
graded monad {DEm} with unit η : Id→ DE0 and multiplication µm,n : DEmDEn → DEm+n given by

η(x) = 1E0 • x µm,n(∑i ei •∆i)x = ∑i ∇m,n(ei,∆i(x))

Note that in the probabilistic case µ corresponds to the weighted sum of probability distributions [20].
For quantum effects instead we are taking the (sorted) Kronecker product of the effects: given a set of
quantum effect distributions ∆i in DHC X and a quantum distribution Θ in DHC′ (DHC X) associating each
distribution ∆i with a quantum effect, the multiplication returns a distribution in DHC′⊎C

X associating each
x ∈ X with ∑i Θ(∆i)⊠∆i(x) (if C and C′ are disjoint). This coincides with the intuition of measuring first
the qubits in C, and then, based on the outcome, performing a second measurement over C′, i.e. ∆i.

For later use, we finally define commutative graded monads. Commutativity allows us to reduce the
pairing of effect distributions to a distribution of pairs, permitting a well-behaved definition of the parallel
composition of effect distributions of which the probabilistic case à la [34] is a (trivially graded) example.

Definition 7 (Commutative Graded Monad). An M-graded monad {Tm} on Set is strong if it has left
strength σm,X ,Y : X×TmY → Tm(X×Y ) and a right strength τm,X ,Y : TmX×Y → Tm(X×Y ) which respect
the monoidal structure × on Set and the graded multiplication and unit of T (the diagrams it must satisfy
are just the graded version of the usual ones for strong monads). A strong graded monad is commutative
if for any m⊥n ∈M there is a canonical natural transformation α : TmX×TnY → Tm+n(X×Y ) defined
by any of the two compositions µm,n ◦Tmσn ◦ τm = µn,m ◦Tnτm ◦σn.

Theorem 5. If {Em} is a commutative graded effect monoid, then {DEm} is a commutative graded monad
with its canonical strength.

4 eLTS and Bisimilarity

We first investigate coalgebras defined on effect distributions and their bisimilarities. Then, we focus on
the specific case of quantum systems, discussing the correct notion of behavioural equivalence.

4.1 Coalgebra over Effect Distributions

We recall the definition of Aczel-Mendler and kernel bisimilarities for coalgebras. By generalizing
previous results to our graded monads, we compare them and investigate their preservation and reflection.

Definition 8 (Coalgebra). Let F : Set→ Set be an endofunctor on the Set category. An F-coalgebra is a
pair (X ,c), with X an object of Set, and a morphism c : X → FX (also written X c−→ FX).

Given two F-coalgebras (X ,c) and (Y,d), A morphism f : X → Y is an F-coalgebra homomorphism,
written f : (X ,c)→ (Y,d), if F f ◦ c = d ◦ f . F-coalgebra homomorphisms include the identity and are
closed for composition, and thus F-coalgebras constitute a category, denoted as SetF .

We are interested in two kinds of bisimilarity on F-coalgebras: AM-bisimilarity and kernel bisimilarity.

Definition 9 (Aczel-Mendler bisimilarity). A relation R ⊆ X ×Y is an AM-bisimulation between the
F-coalgebras X c−→ FX and Y d−→ FY if there exists an F-coalgebra R e−→ FR such that the projections
π1 : R→ X and π2 : R→ Y are coalgebra homomorphisms, i.e. the diagram in Figure 1a commutes. Two
states x ∈ X and y ∈ Y are AM bisimilar, written x∼AM y, if xRy for some AM-bisimulation R.
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X R Y

FX FR FY

c e
π1 π2

d

Fπ1 Fπ2

(a) Aczel-Mendler bisimulation

X Z Y

FX FZ FY

c

m1

e d

m2

Fm1 Fm2

(b) Cocongruence

Figure 1: The two commutative diagrams defining AM and Kernel bisimulations, respectively

Definition 10 (Kernel bisimilarity). A cocongruence between two F-coalgebras X c−→ FX and Y d−→ FY
is a cospan X m1−→ Z m2←− Y such that there exists an F-coalgebra Z e−→ FZ making m1 and m2 coalgebra
homomorphisms, i.e. the diagram in Figure 1b commutes. We call kernel bisimulation the pullback in
Set of a cocongruence X m1−→ Z m2←− Y , that is the relation R such that xRy if and only if m1(x) = m2(y).
Kernel bisimilarity ∼k is the largest kernel bisimulation.

In line with the results in [16, 32], we present the conditions under which the two relations coincide.

Definition 11 (Decomposable Effect Algebra). We say that an effect algebra E is decomposable if for
all a,b,c,d ∈ E such that a ⊥ b, c ⊥ d and a+ b = c+ d, there exists e11,e12,e21,e22 ∈ E such that
a = e11 + e12, b = e21 + e22, c = e11 + e21 and d = e12 + e22.

Theorem 6. Let E be an effect algebra. Let X c−→ DEX and Y d−→ DEY be two DE-coalgebras. For any
x ∈ X and y ∈ Y : (i) x∼AM y =⇒ x∼k y, and (ii) x∼k y =⇒ x∼AM y if and only if E is decomposable.

Natural transformations between the functors that define a coalgebra have the important property of
preserving bisimilarities, as demonstrated in [2].

Theorem 7. Let α : F ⇒ G be a natural transformation between two functors F and G : Set→ Set.
The natural transformation α induces a functor, denoted α ◦ · : SetF → SetG, which maps objects (X ,c)
to (X ,αX ◦ c) and homomorphisms f : (X ,c)→ (Y,d) to homomorphisms f : (X ,αX ◦ c)→ (Y,αY ◦d).
Furthermore, bisimilarities are preserved by this functor.

Note that, functors induced by natural transformations do not reflect bisimilarities, in general. Nonethe-
less, in [2] further conditions are identified in order for functors to reflect bisimulations.

Theorem 8. Let α : F ⇒ G be a natural transformation between two functors F and G : Set→ Set. If all
components αX of α are injective then the induced functor α ◦ · reflects the kernel bisimilarity.

4.2 The Quantum Case

Hereafter, we apply the results above to the specific case of probability and quantum effect distributions
and their monads. For brevity, we will write QC for DQHC

. Note that coalgebras (X ,c : X → DEX)
are essentially a generalization of Markov Chains, coinciding with the usual definition but with partial
distributions if E= [0,1]. QC-coalgebras can be seen instead as a quantum version of Markov Chains.

We start by showing that kernel and AM-bisimilarities do not coincide in the quantum case, in contrast
with the probabilistic case on which the equality is known to hold, since [0,1] is decomposable (as
demonstrated implicitly in [29]). Thanks to Theorem 6 of the previous section, the following suffices.

Proposition 1. If the dimension of H is grater or equal than 2, then QH is not decomposable.
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Recall the effect homomorphism L 7→ tr(Lρ) that for each ρ ∈ DMHC maps a quantum effect to a
probability, and the induced natural transformation from QC to D[0,1] by Theorem 2. Thanks to Theorem 7,
a functor ↓ρ is defined for each ρ ∈DMHC that maps a QC-coalgebra in the D[0,1]-coalgebra characterizing
the behaviour of the Quantum Markov Chain when the input state is ρ . The functor ↓ρ can be seen as a
function that given a Quantum Markov Chain simply updates its weights by computing the Born rule.

Example 1. Take X c−→ QC, with X = {x1,x2,x3,x4} and c such that c(x1) = |0⟩⟨0| • x3 + |1⟩⟨1| • x4,
c(x2) = |+⟩⟨+| • x3 + |−⟩⟨−| • x4 and c(x3) = c(x4) = I• x3, then the D[0,1]-coalgebra, ↓ρ |0⟩⟨0|(X ,c) is
(X ,c′) with c′(x1) = 1• x3, c′(x2) =

1
2 • x3 +

1
2 • x4 and c′(x3) = c′(x4) = 1• x3.

Since their probabilistic behaviour is the only observable property of quantum systems, our (first)
correctness principle for a bisimilarity over quantum systems is that two elements of the QC-coalgebras
(X ,c) and (Y,d) shall be bisimilar if and only if they are indistinguishable in the probabilistic systems
obtained by instantiating their quantum input, i.e. in the D[0,1]-coalgebras ↓ρ (X ,c) and ↓ρ (Y,d) for
any ρ ∈ DMHC . By Theorem 7, all the functors ↓ρ preserve both bisimilarities, hence one side of the
implication holds for both of them. However,Theorem 6 and Proposition 1 implies that AM-bisimilarity
does not satisfy the other direction.

Example 2. Take the QC-coalgebra (X ,c) of the previous example. We cannot build an AM-bisimulation
such that x1 ∼AM x2. However, if we take Z = {z1,z2} and m such that m(x1) = m(x2) = z1, m(x3) =
m(x4) = z2, then (X ,c) m−→ (Z,d) m←− (X ,c) is a cocongruence for d defined as d(z1) = d(z2) = I2 • z2.

We obtain that kernel bisimilarity fully satisfies our correctness principle when the quantum effects
used in (X ,c) and (Y,d) are contained in a finite effect algebra L ⊊ QH . Since L is finite, a density
operator exists that distinguish every pair of distinct effects in L, as we proved in Lemma 4 of [7].

Lemma 1. Let L be a finite set of quantum effects in QH , then a density operator ρ̂ ∈ DMH exists such
that for each L,L′ ∈ L, tr(Lρ̂) = tr(L′ρ̂) if and only if L = L′.

This means that among the natural transformations induced by L 7→ tr(Lρ) there is at least one of
them with injective components, and by Theorem 7 the resulting functor ↓ρ̂ reflects kernel bisimilarity.

Theorem 9. Let (X ,c) and (Y,d) be two DL-coalgebras, and let x ∈ X and y ∈ Y . If x and y are kernel
bisimilar in ↓ρ(X ,c) and ↓ρ(Y,d) for any ρ , then x and y are kernel bisimilar in (X ,c) and (Y,d).

We investigate now a different correctness principle, called locally parameterized probabilistic bisimi-
larity (lpp) in [7]. In the previous approach, two quantum systems are equated if they behave the same
when given any possible quantum state. Nevertheless, the input is given globally for the whole Markov
Chain. This means we assume that an adversary trying to disprove equivalence can only choose the
state once at the beginning. In lpp instead, the adversary can give a different quantum state at each
step of the two Markov Chains. In the following, we model this feature coalgebraically. Recall that
L 7→ λρ.tr(Lρ) : QH → Conv(DMH , [0,1]) is an isomorphism from quantum effects to convex pa-
rameterized probabilities. Indeed, Conv(DMHC , [0,1]) is itself an effect algebra, that we name fC for
convenience, and L 7→ λρ.tr(Lρ) is an effect algebra isomorphism. We can therefore define D fC and a
natural transformation αlpp : QC→D fC transforming a quantum distribution over X into a distribution that
associates each element x ∈ X with a function that given a quantum input returns a probability. Intuitively,
while ↓ρ applies a unique initial input density operator that transforms a Quantum Markov Chain into a
probabilistic system, αl pp ◦ · allow us to change ρ at every step of our bisimilarity. Kernel bisimilarity
over QC-coalgebras exactly coincides with this notion of locally parameterized probabilistic bisimilarity.

Theorem 10. Let (X ,c) and (Y,d) be QC-coalgebras, and let x ∈ X and y ∈Y : x∼k y in (X ,c) and (Y,d)
holds if and only if x∼k y holds in (αlpp ◦ ·)(X ,c) and (αlpp ◦ ·)(Y,d).
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An interesting corollary is that, when coalgebras are build over a finite quantum effect algebra L, the
stronger adversary that can choose a different quantum input at each step is not capable of discriminating
more than the weaker one that only chose once at the beginning.

5 Effect Labelled Transition System

We can now define a generalization of probabilistic transition systems to effect distributions, for which
we extend the properties of the previous section and introduce both a generic parallel composition and a
specifically quantum operator of partial evaluation.
Definition 12 (E-Labelled Transition System). Given an effect algebra E, a E-labelled transition system
(ELTS) is a coalgebra X c−→P(DEX)L, where X is a set of states, L is a fixed set of labels, P is the
finitary powerset endofunctor and DE is the E-distribution endofunctor on Set.

As is typical for process calculi, we will assume that there exist a special symbol τ ∈ L and an
involutive unary operation · for all labels different from τ . Intuitively, τ represents a silent, invisible
action, and whenever µ represents a visible action (e.g. outputting a value), µ represents its "dual" action
(e.g. receiving that value). Moreover, we will write x

µ−→ ∆ for ∆ ∈ c(x)(µ).
In the following we will deal with D[0,1]LTS and QCLTS (called pLTS on qLTS hereafter), i.e. LTS

over distributions of probabilities and of quantum effect in some HC respectively. For simplicity, all results
given in the previous section are defined on DE-coalgebras, but we can easily extend them to more complex
coalgebras through whiskering. For example, we can whisker the natural transformation ↓ρ : QC→ D[0,1]
and the finite powerset functor P , obtaining a natural transformation P ↓ρ : PQC →PD[0,1] and
recovering the previous results also for systems that transition non-deterministically to effect distributions.
Corollary 1. Let (X ,c) and (Y,d) be qLTSs, with x ∈ X and y ∈ Y .

• x∼AM y =⇒ x∼k y in general for qLTSs;

• x∼k y ≠⇒ x∼AM y if the dimension of the Hilbert space is at least two;

• for each ρ over the adequate Hilbert space, there is a functor transforming c and d into the pLTSs
cρ and dρ representing the probabilistic behaviour of the system when the quantum state is ρ;

• if x and y are kernel bisimilar in c and d, then they are bisimilar also in cρ and dρ for every ρ;

• if c and d use a finite effect algebra of weights, and ∀ρ.x∼k y in cρ and dρ , then x∼k y in c and d;

• x and y are kernel bisimilar in c and d if and only if they are bisimilar in the D fC LTSs where effects
are considered as convex functions from density operators to probabilities, i.e. when the adversary
can choose a different density operator at each step of the bisimilarity.

In the rest of the section we describe some operators on ELTSs. When dealing with coalgebraic LTSs,
it is typical to define operators like nondeterministic sum, restriction or parallel composition as acting
on processes, i.e. states of the final coalgebra of the functor under consideration [23]. We instead define
operators directly between coalgebras as in [33], allowing us to compose coalgebras of different functors.
We postpone to future work how these "macroscopic" operators relates to the "microscopic" ones in the
final coalgebra, following the approach of [17]. We present two operators: the first generalizes parallel
composition to all ELTSs, the other is specific to qLTSs and specifies how to perform partial evaluation of
the input quantum state. We first introduce the notion of extensible graded monad.

In [25], the author proposes a monad graded on a preordered monoid, intended to model the composi-
tion of computational side effects and their scope. We replicate this notion in our PCM setting, employing
the fact that each PCM automatically carries a preorder structure.
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Definition 13 (Extensible Graded Monad). An M-graded monad is extensible if for each m⪯ n ∈M, a
natural transformation ξm⪯n : Tm→ Tn called extension exists, with ξm⪯m = Id and ξn⪯o ◦ξm⪯n = ξm⪯o.

Extensible monads give us a way to canonically extend a computation to a greater grade, which we
will need to define parallel composition. All non graded monad are trivially extensible with the identity
transformation. We provide an extension for monads built on effect monoids graded on an effect algebra.
Theorem 11. Suppose {Em} is an M-graded effect monoid and M an effect algebra, with − its induced
difference operator. There is an extensible graded monad {DEm} with unit η : Id→DE0 and multiplication
µm,n : DEmDEn → DEm+n defined as in Theorem 4 and extension ξm⪯n

ξm⪯n(∑i ei • xi) = ∑i ∇m,n−m(ei,1En−m)• xi.

Indeed, QC is extensible, since the partial monoid of quantum systems is indeed an effect algebra.
Lemma 2. S = ⟨P(Sys), /0,⊎,Sys\ ·⟩ is an effect algebra, with \ the usual set difference.

We now focus on the parallel composition of ELTSs, in which two subsystems can move on their own
or exchange messages. In the quantum case, we will be able to compose qLTSs only when their grades
are summable, ensuring that they do not perform measurements on the same quantum systems.

In the process-calculi literature, there are different notions of parallel composition, corresponding
to different “synchronization styles”: à la CCS, CSP or ACP. Moreover, different extensions have been
considered from the original non deterministic setting to the probabilistic [20, 2] and quantum [7] one. We
introduce a generic parallel operator, which is parametric both with respect to the “synchronization style”
and the commutative graded monad chosen for the weights (Id for LTSs, D[0,1] for pLTSs, QC for qLTSs).
Our parallel operator is defined in two steps: the first specifies how to compose the "non-deterministic
structure" of the systems (the PL functor), the second how to combine a couple of distributions into a
distribution of couples. For the first step, we focus on a CCS-style interleaving composition, formalized
as a binary synchronization operator · | · on transition functions.
Definition 14 (CCS-Style Synchronization). Consider the extensible graded monad {Tm}. Given two

coalgebras X c−→P(TmX)L and Y d−→P(TnY )L we define c|d : X×Y →P(TmX×TnY )L, the "CCS-style"
synchronization of c and d, as

s
µ−→ ∆

s ∥ t
µ−→ ⟨∆, ξ0⪯n(η(t))⟩

t
µ−→ Θ

s ∥ t
µ−→ ⟨ξ0⪯m(η(s)), Θ⟩

s ∥ t
µ−→ ∆ s ∥ t

µ−→ ∆

s ∥ t τ−→ ⟨∆, Θ⟩

where × is the cartesian product on Set, s ∥ t is an element of X ×Y , ∆ (resp. Θ) is an element of TmX
(resp. TnY ), and s

µ−→ ∆ is the usual SOS-style notation for ∆ ∈ c(s)(µ).
To model CCS-style synchronization we represent the “idle behaviour” of a state s, obtained by taking

the monad unit and extending it to the desired grade, i.e. ξ0⪯m(η(s)). In the pLTSs this coincides with the
unit 1• s, while in qLTSs we get the point distribution "scaled" for the given dimension Id • s. For pure
non deterministic systems, where T is the identity monad, we get the usual parallel composition of CCS.

For the second step, we define a parallel operator · ∥ · on ELTSs, in the form of a functor SetP(Tm)L×
SetP(Tn)L → SetP(Tm+n)L . The definition is parametric with respect to a natural transformation α : TmX×
TnY → Tm+n(X ×Y ) which specifies how to combine two distributions. For classical, probabilistic and
quantum systems, we have commutative monads, which have a canonical transformation α .
Theorem 12. Given a transformation α : TmX × TnY → Tm+n(X ×Y ), we can construct a functor ∥:
SetP(Tm)L×SetP(Tn)L → SetP(Tm+n)L defined by

(X ,c) ∥ (Y,d) = (X×Y,P(α)L ◦ (c|d)) f ∥ g = f ×g
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We now consider a special operator acting over qLTS, i.e. the partial evaluation.

Definition 15 (Partial Evaluation of Quantum Effects). Consider a quantum effect L ∈ QHC . For any
quantum state ρ ∈DMHC′ with C′ ⊆C, we define the partial evaluation of L with state ρ as trC′(L(ρ ⊠ I)),
where I is the identity operator on HC\C′ and ⊠ is the "commutative" Kronecker product as in Theorem 3.

Our previously defined total evaluation ↓ρ is of course a specific case of partial evaluation, when
C′ =C. For any ρ , partial evaluation trC′( ·(ρ ⊠ I)) is an effect morphism, and thus yields a functor from
SetQC to SetQC\C′ , and can be extended also to qLTSs via whiskering.

Definition 16 (Partial Evaluation of qLTS). Let C, C′ be collections of quantum systems such that
C′ ⊆C. For each ρ ∈ DMHC′ we define the partial evaluation of SetP(QC)L with input ρ as the functor
⇃ρ : SetP(QC)L → SetP(QC\C′ )

L induced by the effect morphism L 7→ trC′(L(ρ ⊠ I)).
Thanks to functoriality, we prove that parallel composition and partial evaluation preserve bisimilarity.

Theorem 13. If s∼k t then, for any ρ , s ⇃ρ∼ t ⇃ρ . Moreover, if s′ ∼ t ′ then s ∥ s′ ∼ t ∥ t ′.

6 Conclusions

We have characterized distributions with weights from a generic effect algebra, subsuming probability
and quantum effect distributions. We have introduced monads graded on a partial commutative monoid
(PCM) that allow us to grade quantum distributions over their resources, which must be treated linearly,
as prescribed by the no-cloning theorem. We have studied effect weighted Markov Chains and labelled
transition systems (ELTS) in a coalgebraic framework, extending previous results about kernel and Aczel-
Mendler bisimilarities. We have applied our findings to the quantum setting, proving that each quantum
state ρ defines a functor from qLTSs to pLTSs that “instantiate” a quantum process to the probabilistic
behaviour it exhibits when the quantum state is ρ . We have compared the two notions of bisimilarity in
hand with the desired properties of a behavioural equivalence for quantum systems, proving that the kernel
bisimilarity is the only one of the two that captures theirs observable features, i.e. the induced probabilistic
behaviour. Finally, we have defined parallel composition of ELTSs in a functorial, compositional way,
and a partial evaluation operator that given a qLTS instantiates some of its input qubits, paving the way
for an ELTS semantics of quantum process calculi.

Future work We will study the final coalgebra of our functors, investigating the definition of graded
GSOS operators for our graded ELTSs, and their relation with the functorial ones defined in this work. Our
framework allows us to compose effects in parallel via the tensor product. We will consider also sequental
composition, extending our graded approach to the case of superoperators, which model more general
quantum operations. We expect such an extension to come naturally and to preserve our constructions and
results. Finally, we will explore the reflection of the kernel bisimilarity in broader cases, i.e. when the
quantum effect algebra is finitely generated, but possibly infinite, and when it is numerable in general.
Recent work [4] defines bisimulation for Mealy machines with generic effects. We intend to look at the
relationship between their effectful bisimilarity and our notion of kernel bisimilarity.
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A Proof Sketches

Theorem 2. Each effect morphism m : E→ F yields a natural transformation m◦ · : DE⇒DF. Moreover,
if m is injective then the components of m◦ · are injective.

Proof sketch. Naturality of m◦ · follows from the fact that m preserves the (partial) sum and that distri-
butions have finite support. If m is injective, the components of m◦ · are also injective because if two
different ∆,Θ ∈ DE(X) differ on x ∈ X , then m◦∆ and m◦Θ will differ on the same x.

The evolution of density operators is given as a trace preserving superoperator E : DMHA →DMHB , a
function defined by its Kraus operator sum decomposition {Ei}i for a finite set of indexes i = 1, . . . ,n×m,
satisfying that Ei ∈Cm×n,E (ρ) = ∑i EiρE†

i and ∑i E†
i Ei = In, where n and m are the dimension of Hilbert

space HA and HB respectively. The tensor product of density operators ρ⊗σ is defined as their Kronecker
product, and of superoperators E ⊗F as the superoperator having Kraus decomposition {Ei⊗Fj}i, j with
{Ei}i and {Fj} j Kraus decompositions of E and F .

A morphism between effects is the dual of a superoperator. Let E (ρ) = ∑i EiρE†
i be a superoperator.

Its dual is the superoperator E †(L) = ∑i E†
i LEi.

Theorem 3 (Effect Monoid of Quantum Effect). Quantum effects carry a commutative S -graded effect
monoid structure, given by:

• The effect algebra EC is QHC for any collection of systems C ∈P(Sys)

• The operator ∇C,D : EC⊗ED→ EC⊎D is denoted as ⊠ and defined by L1 ⊠L2 = SortC,D(L1⊗k L2),
where ⊗k is the Kronecker product between L1 ∈QHC and L2 ∈QHD , and SortC,D is the unitary
transformation which “sorts” the Hilbert Space HC⊗HD into HC⊎D.

• The effect morphism η : 2→ E /0 defined by {0 7→ 0,1 7→ 1}.

Proof sketch. Recall that SortC,D is the transformation on quantum effects (i.e. a dual superoperator)
which applies a unitary permutation matrix from HC⊗HD to HC⊎D. Unitality follows from the definition
of Kronecker product and from SortC, /0 being the identity transformation. For commutativity, we check
that SwapC,D, the superoperator that permutes HC⊗HD in HD⊗HC, respects sorting:

SortD,C(L2⊗L1) = SortD,C(SwapC,D(L1⊗L2)) = (SortD,C ◦SwapC,D)(L1⊗L2) = SortC,D(L1⊗L2).

For associativity, we have that

SortC,D⊎E(L1⊗SortD,E(L2⊗L3)) = (SortC,D⊎E ◦(Id⊗SortD,E))(L1⊗L2⊗L3) = SortC,D,E(L1⊗L2⊗L3)

and similarly for SortC⊎D,E(SortC,D(L1⊗L2)⊗L3), where Id is the identity superoperator, and SortC,D,E

is the superoperator going from HC⊗HD⊗HE to HC⊎D⊎E .

Theorem 4 (Graded monads of graded effect monoids). If {Em} is an M-graded effect monoid, there is a
graded monad {DEm} with unit η : Id→ DE0 and multiplication µm,n : DEmDEn → DEm+n given by

η(x) = 1E0 • x µm,n(∑i ei •∆i)x = ∑i ∇m,n(ei,∆i(x))

Proof sketch. The proof proceeds as in the total case: the unit and multiplication of the monad are defined
with the graded monoid structure of the weights, and the associativity and unitality conditions follow from
the graded monoid ones.
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Theorem 5. If {Em} is a commutative graded effect monoid, then {DEm} is a commutative graded monad
with its canonical strength.

Proof sketch. As any Set-endofunctor, DEm has a canonical left-strength σm,X ,Y : X×DEmY →DEm(X×Y )
given by

(x,(∑
i

ei • yi)) 7→∑
i

ei • x,yi

and a corresponding right strength given by the monoidal structure of Set. Both transformations yield
indeed a strong graded monad. It’s easy to see that the morphism µm,n ◦DEmσn ◦ τm brings (∑i ei •
xi,∑ j e′j •y j) into ∑i, j ∇n,m(e′j,ei)• (x,y), while µn,m ◦DEnτm ◦σn brings it to ∑i, j ∇m,n(ei,e′j)• (x,y). The
two coincides whenever ∇ is commutative.

Theorem 6. Let E be an effect algebra. Let X c−→ DEX and Y d−→ DEY be two DE-coalgebras. For any
x ∈ X and y ∈ Y : (i) x∼AM y =⇒ x∼k y, and (ii) x∼k y =⇒ x∼AM y if and only if E is decomposable.

Proof sketch. The first point has been demonstrated in [2, Corollary 8].
The if case of the second point follows from the composition of two previously demonstrated results.

In [33, Theorem 5.13], the authors prove that if a commutative monoid is positive and decomposable
then the functor DE weakly preserves weak pullbacks. Such demonstration is also applicable to partial
commutative monoid, of which effect algebras are a special case. Again, [2, Corollary 8] prove that if DE
preserves weak pullback then ∼k implies ∼AM.

Finally, the only if case is demonstrated through contrapositivity. Assume we have effects a,b,c,d ∈E
that are not decomposable, i.e. a+b = c+d and there are no e11,e12,e21,e22 ∈ E such that a = e11 + e12,
b = e21 + e22, c = e11 + e21 and d = e12 + e22. Let s = a+b = c+d.

Consider three coalgebras:

1. (X ,c) with X = {x1,x2,x3} and c(x1) = {x2 7→ a,x3 7→ b}.
2. (Y,d) with Y = {y1,y2,y3} and d(y1) = {y2 7→ c,y3 7→ d}.
3. (Z,z) with Z = {z1,z2} and z(z1) = {z2 7→ s}.

It is straightforward to show that X m1−→ Z m2←− X with m1(x1) = m2(y1) = z1 and m1(x2) = m1(x3) =
m2(y1) = m2(y2) = z2, m1(x4) = m2(x4) = z3 is a cocongruence, therefore x1 ∼k y1. By [33, Lemma 5.5],
a relation R⊆ X×Y is an AM-bisimulation if and only if for every (a,b) ∈ R there is a |X |× |Y | matrix,
(mx,y), with entries from E such that

• there are all but finitely many mx,y = 0;

• if mx,y ̸= 0 then (x,y) ∈ R;

• ∀x ∈ X .c(a)(x) = ∑y∈Y mx,y;

• ∀y ∈ Y.d(b)(y) = ∑x∈X mx,y;

Let us consider the case for the pair (x1,y1). The requirements can be represented by the following table.

0 0 0 0
0 mx2,y2 mx2,y3 a
0 mx3,y2 mx3,y3 b

0 c d

However, by assumption of non-decomposability there are no mx2,y2 , mx2,y3 , mx3,y2 , mx3,y3 that can satisfy
such requirements, hence x1 ≁AM y1.
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Theorem 8. Let α : F ⇒ G be a natural transformation between two functors F and G : Set→ Set. If all
components αX of α are injective then the induced functor α ◦ · reflects the kernel bisimilarity.

Proof sketch. Let X m1−→ Z m2←−Y be a cocongruence between any two coalgebras X αX◦c−−−→GX and Y αY ◦d−−−→
GY . Let R be the pullback in Set of such cospan, witnessing the bisimilarity between the two G-coalgebras.
[2, Theorem 5] prove that the same cocongruence is also witness for the kernel bisimulation between
the coalgebras X c−→ FX and Y d−→ FY . Therefore, R is also witness of the bisimilarity between the two
F-coalgebras.

Proposition 1. If the dimension of H is grater or equal than 2, then QH is not decomposable.

Proof sketch. Take the following equality |0⟩⟨0|+ |1⟩⟨1|= |+⟩⟨+|+ |−⟩⟨−|. By [19, Proposition 1.63],
if R is a positive rank-1 operator, T a positive operator and T ⊑ R, then T = pR for some p ∈ [0,1].
Recall that the partial order of quantum effects is the Löwner order, and that the considered effects are
positive rank-1 operator. Let |0⟩⟨0| = e11 + e12 for some e11,e12 ∈HC. It must be that e11 = p11 |0⟩⟨0|
for some p11 ∈ [0,1], and similarly e12 = p12 |0⟩⟨0|, with p11 + p12 = 1. But in order to satisfy the
decomposability requirement, |+⟩⟨+|= e11 + e21 for some e21 ∈HC. Then, e11 = p′11 |+⟩⟨+| for some
p′11 ∈ [0,1]. Thus, p11 |0⟩⟨0| = p′11 |+⟩⟨+|, which holds if and only if p11 = p′11 = 0. Assume without
loss of generality that e11 = 0. The same line of reasoning can show that p12 |0⟩⟨0|= p′12 |−⟩⟨−| holds
if and only if p12 = p′12 = 0. Hence, both e11 and e12 must be 0, thus it is impossible to decompose
|0⟩⟨0|+ |1⟩⟨1|= |+⟩⟨+|+ |−⟩⟨−|. This construction generalizes easily to dimensions grater than two.

Theorem 9. Let (X ,c) and (Y,d) be two DL-coalgebras, and let x ∈ X and y ∈ Y . If x and y are kernel
bisimilar in ↓ρ(X ,c) and ↓ρ(Y,d) for any ρ , then x and y are kernel bisimilar in (X ,c) and (Y,d).

Proof sketch. Assume x and y are kernel bisimilar in ↓ρ (X ,c) and ↓ρ (Y,d) for any ρ . By Lemma 1 a
ρ̂ such that the effect algebra homomorphism L 7→ tr(Lρ̂) is injective. Then, the components of the
natural transformation induced by this homomorphism are injective Theorem 2. By assumption, x and y
are bisimilar also in ↓ρ̂(X ,c) and ↓ρ̂(Y,d). The result then follows by Theorem 7, as ↓ρ̂ reflects kernel
bisimilarity.

Theorem 10. Let (X ,c) and (Y,d) be QC-coalgebras, and let x ∈ X and y ∈Y : x∼k y in (X ,c) and (Y,d)
holds if and only if x∼k y holds in (αlpp ◦ ·)(X ,c) and (αlpp ◦ ·)(Y,d).

Proof sketch. Assume x and y are kernel bisimilar in (X ,c) and (Y,d), then the injective effect alge-
bra homomorphism L 7→ λρ.tr(Lρ) defines a natural transformation αl pp : Qc → D fC with injective
components Lemma 1. By Theorem 7, αl pp ◦ · is a functor from SetQC to Set fC : it preserves both
bisimilarities as every functor, moreover, it also reflects kernel bisimilarity since αl pp : Qc→ D fC has
injective components.

Theorem 11. Suppose {Em} is an M-graded effect monoid and M an effect algebra, with − its induced
difference operator. There is an extensible graded monad {DEm} with unit η : Id→DE0 and multiplication
µm,n : DEmDEn → DEm+n defined as in Theorem 4 and extension ξm⪯n

ξm⪯n(∑i ei • xi) = ∑i ∇m,n−m(ei,1En−m)• xi.

Proof sketch. The desired conditions follow from the unitality and associativity of ∇, and from the fact
that ∇m,n(1,1) = 1, since it is an effect bihomomorphism.
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Lemma 2. S = ⟨P(Sys), /0,⊎,Sys\ ·⟩ is an effect algebra, with \ the usual set difference.

Proof sketch. Sys\C1 =C2 is the unique element in P(Sys) such that C1⊎C2 = Sys= Sys\ /0 by definition.
Finally, by construction, C⊎Sys is defined only if C∩Sys = /0, i.e. C must be /0.

Lemma 3. Given two coalgebra homorphisms f : c→ c′,g : d→ d′, the synchronization operator · | ·
makes the following diagram commute

X×Y X ′×Y ′

P(TmX×TnY )L P(TmX ′×TnY ′)L

c|d

f×g

c′|d′

P(Tm f×Tng)L

Proof sketch. The commutativity of the above diagram correspond to verifying that

• For all s ∥ t
µ−→ ⟨∆,Θ⟩, there exists ∆′,Θ′ such that f (s) ∥ g(t)

µ−→ ⟨∆′,Θ′⟩ and ∆′ = f (∆),Θ′ = g(Θ)

• For all f (s) ∥ g(t)
µ−→ ⟨∆′,Θ′⟩, there exists ∆,Θ such that s ∥ t

µ−→ ⟨∆,Θ⟩ and ∆′ = f (∆),Θ′ = g(Θ)

which we can prove by cases on the definition on · | · , thanks to the hypothesis on f , which correspond to

• For all s
µ−→ ∆, there exists ∆′ such that f (s)

µ−→ ∆′ and ∆′ = f (∆)

• For all f (s)
µ−→ ∆′, there exists ∆ such that s

µ−→ ∆ and ∆′ = f (∆)

and similarly for g.

Theorem 12. Given a transformation α : TmX × TnY → Tm+n(X ×Y ), we can construct a functor ∥:
SetP(Tm)L×SetP(Tn)L → SetP(Tm+n)L defined by

(X ,c) ∥ (Y,d) = (X×Y,P(α)L ◦ (c|d)) f ∥ g = f ×g

Proof sketch. Checking that ∥ is a functor amounts to checking the commutativity of the following
diagram

X×Y X ′×Y ′

P(TmX×TnY )L P(TmX ′×TnY ′)L

P(Tm+n(X×Y ))L P(Tm+n(X ′×Y ′))L

c|d

f×g

c′|d′

P(Tm f×Tng)L

P(α)L P(α)L

P(Tm+n( f×g))L

which holds since the bottom square commutes by naturality of α , and the top squares commute by
Lemma 3.

Theorem 13. If s∼k t then, for any ρ , s ⇃ρ∼ t ⇃ρ . Moreover, if s′ ∼ t ′ then s ∥ s′ ∼ t ∥ t ′.
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Proof sketch. For the first, notice that L 7→ L ⇃ρ is an effect morphism thanks to the linearity of the partial
trace. Thus, it yields a natural transformation and a functor by Theorem 2 and Theorem 7, and functors
preserve bisimilarity. For the second, thanks to functoriality, we know that ∥ maps cospans in cospans:

(X ,c) (Y,d)

(Z,z)

f g

n (X ′,c′) (Y ′,d′)

(Z′,z′)

f ′
g′

=

(X ,c) ∥ (X ′,c′) (Y,d) ∥ (Y ′,d′)

(Z,z) ∥ (Z′,z′)

f×g
f ′×g′

Then, it is easy to see that the Set-pullback of X ×X ′ → Z× Z′ ← Y ×Y ′ contains all and only the
couples s ∥ s′, t ∥ t ′ such that f (s) = g(t) and f (s′) = g(t ′). In other words, the cartesian product of two
bisimulations is a bisimulation.
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