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In this talk, we outline the construction of a probability monad on the category of compactly gener-
ated weakly Hausdorff (CGWH) spaces, thus providing a convenient topological setting for higher-order
probability theory.

Background: probability monads. Probability monads are one of the centrepieces of category-
theoretically informed approaches to probability theory. The fundamental idea of a probability monad
is that forming the space of probability measures should yield a monad on a suitable base category of
“sample spaces”. This was first proposed by Giry in [Gir81], who constructed two probability monads:
the Giry monad on the category of measurable spaces and a probability monad on the category of Polish
spaces (i.e. completely metrisable, separable topological spaces), also referred to as the Giry monad. Since
then, many variations of this idea have been studied [Kei08, FP19, FPR21, VB22]; see also [nLa24] for a
quick overview.

Higher-order probability theory. The title of this talk is inspired by the paper A Convenient Setting
for Higher-Order Probability Theory [HKSY17], which intoduces quasi-Borel spaces as a cartesian closed
substitute for measurable spaces. We instead work with the category CGWH of CGWH spaces, a (if
not the) standard cartesian closed substitue for topological spaces. The role of cartesian closedness is to
provide a setting for probability theory that accommodates higher-order functions, hence higher-order
probability theory. Such higher-order settings arise naturally in the context of probabilistic programming
languages; see [HKSY17] for further details.

The Riesz probability monad. Our main result is the construction of a probability monad on CGWH,
along with establishing some additional properties and structure, such as enrichment and commutativity.
Being based on a novel version of the Riesz representation theorem, we call this monad the Riesz probability
monad. We outline this construction below.

The Baire probability monad. An important cartesian closed subcategory of CGWH is the category
QCB of weakly Hausdorff quotients of countably based (QCB) spaces [BSS07, Section 4]. The Riesz
probability monad P restricts to a commutative enriched monad on QCB, and whenever X is a QCB
space, P(X) consists exactly of the Baire measures on X. For this reason, we call the resulting monad
on QCB the Baire probability monad.

The Baire probability monad is strongly affine. Weakly Hausdorff QCB spaces do not only form a
well-behaved category, they are also well-behaved objects in that they share many countability properties
with Polish spaces [BSS07, Propositions 4.6, 4.7, 4.8]. One consequence of this is that product measures
on QCB spaces are particularly simple to understand in this situation, from which we deduce that the
Baire probability monad on QCB is strongly affine [Jac16, Definition 1]. The strongly affine property
ensures that independence and determinism interact as we would expect. Interestingly, it fails for the
probability monad quasi-Borel spaces. This results in an example of a probability measure on a product
space (in the sense of quasi-Borel spaces) which has a deterministic marginal, but is nevertheless not the
product of its marginals [FGHL+23, Proposition 2.14; Section 3]. One may interpret this as saying that,
in the setting of quasi-Borel spaces, random variables need not be independent from deterministic ones.
Working with the Baire probability monad on QCB allows us to avoid such counterintuitive phenomenona.

Relation to classical probability monads. The Baire probability monad on QCB further restricts
to the classical Giry monad on the category Pol on Polish spaces. Likewise, the Riesz probability monad
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Figure 1: Relations between different probability monads. The hooked arrows are fully faithful functors.
Each of these can be (trivially) extended to a morphism of monads.

restricts to the well-known Radon monad on the category CompHaus of compact Hausdorff spaces. The
situation is summarised in Figure 1.

Outline of the construction. We now summarise the construction of the Riesz and Baire probability
monads in several steps. We write K for the field of real or complex numbers.

k-regular Baire measures. First, we define the set M(X) of K-valued k-regular Baire measures on a
CGWH space X. Here, k-regularity is a very mild regularity condition. When X is a QCB space, every
K-valued Baire measure is k-regular, so M(X) is simply the set of Baire measures on X.

A Riesz representation theorem. We then prove a Riesz representation theorem,

M(X) = Cb(X)′,

identifying M(X) with the continuous dual space Cb(X)′ of the space Cb(X) of continuous bounded
functions on X, equipped with its natural CGWH topology. This natural CGWH topology on Cb(X) is
defined as that of the sequential colimit (in CGWH),

Cb(X) := colimn∈N (n ·D)X ,

where D ⊆ K is the unit disc. Note that this is not the Banach space topology on Cb(X), unless X is
compact.

The endofunctor M. The space Cb(X) is an example of a linear CGWH space, a notion analogous to,
but generally distinct from, that of a topological vector space. Due to the cartesian closedness of CGWH,
the continuous dual space V ′ of a linear CGWH space V inherits a natural CGWH topology from the
exponential KV ⊇ V ′, under which it becomes the natural dual V ∧ of V . Thus, under the identification
M(X) = Cb(X)∧, the space of k-regular measures becomes a CGWH space. In this way, M becomes an
endofunctor on CGWH, with the pushforward of measures as the action on morphisms.

The monad structure. The endofunctor M = Cb(−)∧ is now given by a double-dualisation-type
operation, which allows us to endow it with a commutative CGWH-enriched monad structure in a seamless
way. The resulting Riesz monad M restricts to a (commutative enriched) monad on the category QCB
of weakly Hausdorff QCB spaces. Since M(X) consists exactly of the Baire measures on X when X is a
QCB space, we call the resulting monad the Baire monad.

Passing to probability measures. Finally, passing to the subspace

P(X) ⊆ M(X)

of probability measures yields the Riesz and Baire probability monads on CGWH and QCB.

Acknowledgements. The talk is based on joint work with Peter Kristel under the title A Topologicallly
Enriched Probability Monad, from which this extended abstact is adapted.
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