Amortized Analysis via Coalgebra

Harrison Grodin\(^1\) Robert Harper\(^2\)

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

Amortized analysis is a cost analysis technique for data structures in which cost is studied in aggregate, rather than considering the maximum cost of a single operation. Traditionally, amortized analysis has been phrased inductively, in terms of finite sequences of operations. Connecting to prior work on coalgebraic semantics for data structures, we develop the perspective that amortized analysis is naturally viewed coalgebraically in the category of algebras for a cost monad, where a morphism of coalgebras serves as a first-class generalization of potential function suitable for integrating cost and behavior. Using this simple definition, we consider amortization of other sample effects, non-commutative printing and randomization. To support imprecise amortized upper bounds, we adapt our discussion to the bicategorical setting, where a potential function is a colax morphism of coalgebras. We support parallel data structure usage patterns by using coalgebras for an endoprofunctor instead of an endofunctor, combining potential using a monoidal structure on the underlying category. Finally, we compose amortization arguments in the indexed category of coalgebras to implement one amortized data structure in terms of others.

Keywords: amortized analysis, cost analysis, call-by-push-value, data structures, abstract data types, writer monad, coalgebra, simulation, monoidal adjunctions, profunctors, indexed categories, bicategories, colax morphisms

1 Introduction

In computer science, it is common to prove the cost of data structure operations, guaranteeing some exact or upper bound on the amount of abstract cost incurred. In simple cases, a tight bound can be proved about each operation in isolation. However, an upper bound can sometimes be too loose to be insightful, because any sequential use of the data structure can only reach the worst case infrequently. For example, an operation that uses 8 of cost every eight invocations and no cost otherwise can be upper bounded by 8, but this gives the grossly misleading perspective that a sequence of eight operations could cost up to 64, even though the 8 will only be charged once in the sequence. Instead, the cost of an operation should be considered in conjunction with the cost of the operations that came before or may come afterwards.

To address this problem, Tarjan [27] developed amortized analysis, a technique for bounding the total cost of a sequence of operations. Rather than claiming that the cost of the aforementioned operation is upper bounded by 8, one can pretend that each invocation costs only 1, averaging out the 8 over the eight invocations. While this cost bound is not precisely true, it looks approximately true from the viewpoint of a client: a sequence of eight operations costs 8, exactly as the 1-per-operation abstraction suggests it should. This technique has been widely applied to data structures since, giving more practical bounds on ephemeral data structures.

\(^1\) Email: hgrodin@cs.cmu.edu
\(^2\) Email: rwh@cs.cmu.edu

MFPS 2024 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science
Since its inception, the amortized study of data structures has been phrased algebraically, reasoning about the total cost of a finite sequence of operations:

In many uses of data structures, a sequence of operations, rather than just a single operation, is performed, and we are interested in the total time of the sequence, rather than in the times of the individual operations. [27]

This algebraic emphasis is in contrast to the common coalgebraic semantics taken when giving a semantics to sequential-use data structures, sometimes referred to as “objects” [15]. In this work, we take the perspective that amortized analysis is fundamentally coalgebraic, showing that the techniques used in amortized analysis are specialized instances of more general coalgebraic machinery, which elegantly connects to the theory synthetic cost and behavior verification.

1.1 Amortized Analysis

In the original development of amortized analysis, Tarjan and Sleator [27, §2] describe the physicist’s method, a general technique for tracking amortized cost in a sequence of operations. Let \(D \) represent the states of a data structure. In this method, one defines a function \(\Phi : D \to \mathbb{Z} \) that assigns to each data structure state a potential representing the amount of unused presumptive cost already incurred up-front by expensive operations; it is assumed that this potential is nonnegative. Then, if \(\delta \circ : D \to D \) implements an operation, the amortized cost of \(\delta \circ \) on a state \(d \) is defined as

\[
\sigma_\delta = \delta_\delta(d) + \Phi(\delta_\circ(d)) - \Phi(d),
\]

where \(\delta_\delta(d) \) is the true cost of the operation on state \(d \). When \(\Phi(\delta_\circ(d)) > \Phi(d) \), the amortized cost is artificially treated as being higher than \(\delta_\delta(d) \), saving up for a future expensive operation; such operations are called cheap. When \(\Phi(\delta_\circ(d)) < \Phi(d) \), the amortized cost is artificially treated as being lower than \(\delta_\delta(d) \), cashing out on the stored-up potential; such operations are called expensive [23, §5.1]. Once this condition is verified, it is common to iterate the amortization equation to reason about the total cost of a finite-length sequence of operations. Letting \(d_i = \delta_\circ^{(i)}(d) \), we have the following by telescoping sums:

\[
\sum_{i=0}^{n-1} \sigma_\delta(d_i) = \sum_{i=0}^{n-1} (\delta_\delta(d_i) + \Phi(d_{i+1}) - \Phi(d_i))
\]

\[
= \sum_{i=0}^{n-1} \delta_\delta(d_i) + \sum_{i=0}^{n-1} (\Phi(d_{i+1}) - \Phi(d_i))
\]

\[
= \sum_{i=0}^{n-1} \delta_\delta(d_i) + (\Phi(d_n) - \Phi(d_0)) + \sum_{i=1}^{n-1} (\Phi(d_i) - \Phi(d_{i-1}))
\]

\[
= \sum_{i=0}^{n-1} \delta_\delta(d_i) + (\Phi(d_n) - \Phi(d_0))
\]

Then, if \(\Phi(d_0) \leq \Phi(d_n) \), the true total cost \(\sum_i \delta_\delta(i) \) is bounded by the presumptive amortized cost.

In more complex amortized analyses, the amortized data structures can fork or join, breaking the data structure into multiple parts or combining multiple instances. As discussed by Okasaki [23, §5.3], in this scenario, the amortization condition should consider the sum of the potentials of the input and output data structure states. Informally, we say

\[
\sigma_\delta = \delta_\delta(Input) + \sum_{d' \in \delta_\circ(Input)} \Phi(d') - \sum_{d \in Input} \Phi(d),
\]

where \(Input \) is a set of input states and \(\delta_\circ(Input) \) is the corresponding set of output states. In the case that there is a single input and a single output, this condition is equivalent to the previous condition.
1.2 Coalgebraic Semantics of Data Structures

Coalgebras have been used to give a semantics for data structures implementing sequential-use abstract data types, in the style of object-oriented programming [15]. A signature (or interface) is represented by an endofunctor $\Sigma : C \to C$, where ΣX represents the operations provided by an implementation when X is the implementation type. For example, when $C = \text{Set}$, the signature

$$\Sigma X = (E \Rightarrow X) \times (1 + (E \times X))$$

describes data structures X that export two methods: one of type $E \Rightarrow X$ and one of type $1 + (E \times X)$. For example, this signature could be used to represent stacks or queues, where the methods are either push and pop (for stacks) or enqueue and dequeue (for queues). A Σ-coalgebra is a pair (D, δ) of a carrier object $D : C$ and a transition morphism $\delta : D \to \Sigma D$. Such a coalgebra should be understood as an implementation of the signature Σ, consisting of a state type D and an implementation of the methods via δ. When Σ is a product, as above, δ can be specified via a collection of maps to each component, using the universal property of products. For example, here a coalgebra consists of two maps:

$$\delta_1 : D \to E \Rightarrow D$$
$$\delta_2 : D \to 1 + (E \times D)$$

Given a state of type D, the maps offer each method for use. For example, interpreting the above signature for stacks, the methods will implement push and pop, respectively.

In this presentation, it is no trouble to split a data structure into multiple future components. For example, to allow a data structure to split into two components, we can let $\Sigma X = X \times X$; then, a Σ-coalgebra with carrier D consists of a map $\delta : D \to D \times D$. One may also wish to merge multiple instances of a data structure into a single instance: for example, one may wish to append two queues via a map $D \times D \to D$. However, such a map is not of the form $D \to \Sigma D$; even if the map is uncurried to $D \to (\Sigma D)$, the covariant and contravariant uses of D violate the required functoriality of Σ. To address this, we generalize from endofunctors to endoprofunctors, analogous to generalizing from functions to relations or from coinductive types to existential types.

1.3 Abstract Cost Analysis via the Writer Monad

This work builds on the early work of Grodin and Harper [9], which proposes to study amortized analysis coalgebraically in calf, an effectful dependent type theory based on call-by-push-value [19] that supports the verification of both correctness conditions and cost bounds [21,10]. In the terminology of call-by-push-value, we include an effect primitive for instrumenting a program with units of abstract cost, here notated charge(c). One key observation of calf is that cost analysis is inseparable from correctness verification: in general, the cost of a program may depend on its behavior. This attitude is further validated in the present work, since the amortized cost of a data structure operation may depend on aspects of its state.

Semantically, we will work in the Eilenberg–Moore category of a monad T on Set, written $\text{Alg}(T)$. This category is complete and cocomplete, and it is powered and copowered over Set. We recall that for any monad $T : C \to C$, there is an adjunction $F \dashv U : \text{Alg}(T) \to C$ whose induced monad is T. Often, we will let T be a writer monad $C \times (-)$, where $(C, +, 0)$ is a monoid representing cost. For clarity, we indicate that a value $c : C$ is a cost using the notation $\text{charge}(c)$. An algebra for the writer monad is a set equipped with a coherent method for storing abstract cost within the set. In the present work, this aspect of the category of algebras will be essential: since every object comes equipped with a method for absorbing cost, any cost incurred will by construction be amortized forward. Inspired by call-by-push-value [19], we will abbreviate morphisms $FA \to X$ as simply $A \to X$, which we often implicitly understand as $A \to UX$ using the adjunction. Also, when using the writer monad, we will notate the cost and behavior components of a map $\delta : X \to FA$ as $\delta_3 : X \to C$ and $\delta_0 : X \to A$, respectively.
Synopsis

In Section 2, we introduce coalgebra morphisms and show that in the category of writer monad algebras, they behave like a generalization of the potential functions of amortized analysis. In Section 3, we generalize from categories to bicategories and from coalgebra morphisms to colax coalgebra morphisms, supporting inexact amortized upper bounds. In Section 4, we consider the scenario where data structures fork into multiple instances or join multiple instances into one using coalgebras of endoprofunctors, exploiting the symmetric monoidal structure on the category of writer monad algebras present given a commutative cost model to sum the potential of all relevant instances. In Section 5, we observe that potential functions can be composed, and we view coalgebras as an indexed category in order to implement one amortized data structure in terms of another with a differing signature.

2 Coalgebra Morphisms as Generalized Potential Functions

For the purpose of cost analysis, we will typically consider data structures implemented as coalgebras over a signature endofunctor on \(\text{Alg}(C \times (-)) \), the category of writer monad algebras for a monoid \((C, +, 0)\).

The carrier of the coalgebra in our examples will be of the form \(FD \), the free cost algebra on a set \(D \). We start by giving two examples of data structure implementations, each with only a single method.

Example 2.1 For this example, we use \((C, +, 0) \triangleq (\mathbb{Z}, +, 0)\), the additive monoid of integers. We use the signature functor \(\text{Id} : \text{Alg}(C \times (-)) \to \text{Alg}(C \times (-)) \) to represent a single method, since a transition morphism \(\delta : D \to \text{Id}(D) \) simply sends each state to a new state when applied. An \(\text{Id} \)-coalgebra consists of an object \(D \) of \(\text{Alg}(C \times (-)) \) and a transition morphism \(\delta : D \to D \). Treating the method as allocation of one unit of space, we may define two \(\text{Id} \)-coalgebras: one simple, unrealistic model that allocates one cell per call, and one realistic model that allocates eight spaces every eight calls.

(i) The simple, unrealistic coalgebra has carrier \(S = F1 \) and transition morphism \(\sigma : 1 \to F1 \) given by:

\[
\sigma : F1
\]

\[
\sigma = \text{charge}(\$1) ; \text{ret}(*)
\]

(For brevity, we omit the trivial input to \(\sigma \).) In this coalgebra, no state is maintained, and one allocation is performed per transition.

(ii) The realistic coalgebra has carrier \(D = F(\text{Fin}_8) \), tracking how many already-allocated cells are free. Its transition morphism is given by:

\[
\delta : \text{Fin}_8 \to F(\text{Fin}_8)
\]

\[
\delta \text{ zero } = \text{charge}(\$8) ; \text{ret}(7)
\]

\[
\delta (\text{suc } d) = \text{ret}(d)
\]

If no space remains, \$8 of cost is charged, allocating eight cells; this means that seven cells remain after the transition. If some space remains, the amount of space remaining is decreased without performing any allocations.

The coalgebra \((D, \delta)\) is an amortizing implementation of the specification coalgebra \((S, \sigma)\). The coalgebras are not always exactly synchronized, as the implementation incurs a large cost and then waits for the specification to catch up. However, from the perspective of a client, the more complex implementation can be approximated via the simple specification.

To prove the relationship between the specification \((S, \sigma)\) and the amortized implementation \((D, \delta)\), we now consider morphisms between coalgebras, which will generalize the classical notion of potential function from amortized analysis.

2.1 Coalgebra Morphisms

To prove that \((D, \delta)\) is an amortizing implementation of \((S, \sigma)\), one classically gives a potential function \(\Phi : D \to \mathbb{C} \) satisfying the amortization condition discussed in Section 1. We now define what it means to be a morphism of coalgebras and show that the amortization condition falls out as a special case when working in the category of writer monad algebras.
Definition 2.2 Let \((D, \delta)\) and \((S, \sigma)\) be \(\Sigma\)-coalgebras. A **morphism of \(\Sigma\)-coalgebras** from \((D, \delta)\) to \((S, \sigma)\) consists of a morphism \(\Phi : D \to S\) that preserves the \(\Sigma\)-coalgebra structure:

\[
\begin{array}{ccc}
D & \xrightarrow{\delta} & \Sigma D \\
\downarrow \Phi & & \downarrow \Sigma \Phi \\
S & \xrightarrow{\sigma} & \Sigma S
\end{array}
\]

In other words, \(\Phi\) preserves observational equivalence: using only the \(\Sigma\)-coalgebra structure, one can make identical observations regardless of when \(\Phi\) is used to transition from \(D\) to \(S\). In this sense, \((D, \delta)\) is simulated by \((S, \sigma)\), with the simulation mediated by \(\Phi\): up to the translation \(\Phi\), the coalgebra \((S, \sigma)\) behaves just like \((D, \delta)\). We will refer to the commutativity of this diagram as the **generalized amortization condition** for reasons that will be developed shortly.

We write \(\text{Coalg}(\Sigma)\) for the category of \(\Sigma\)-coalgebras and coalgebra morphisms. Now, we show that the requirement that \(\Phi\) preserve the coalgebra structure is exactly the required condition on a potential function in amortized analysis.

Example 2.3 Recall the \(\text{Id}\)-coalgebras from Example 2.1. To give a morphism from \((D, \delta)\) to \((S, \sigma)\), we must provide a function \(\Phi : \text{Fin}_8 \to \text{Fin}_1\), equivalently written \(\Phi : \text{Fin}_8 \to \text{Fin}_1\), that preserves the coalgebra structure, as specified above. Equationally, the structure preservation condition says that

\[
\sigma \Phi = \delta \Phi + \Phi \delta
\]

Subtracting \(\Phi(d)\) from both sides and using the commutativity of addition in \(\mathbb{Z}\), this condition is exactly the amortization condition

\[
\sigma + \Phi = \delta + \Phi \delta
\]

discussed in Section 1. In this case, such a function can be defined as \(\Phi(d) = 7 - d\). This morphism of coalgebras precisely witnesses the fact that \((D, \delta)\) is an amortizing implementation of \((S, \sigma)\).

Here, \((S, \sigma)\) serves as a client-facing amortized cost specification for \((D, \delta)\). While no meaningful information about the state of the computation is provided, the specification conveys an amortized cost that is accurate up to the potential function \(\Phi\). By including more information in the carrier of the specification coalgebra, we may support amortized costs that vary over time.

Example 2.4 Often, the cost of operations varies over time, whereas the previous example considers only constant specification costs. In simple traditional amortized analyses, one uses functions \(\delta : \mathbb{N} \to \mathbb{C}\) and \(\sigma : \mathbb{N} \to \mathbb{C}\) to assign distinct costs to each operation in a sequence, asking that

\[
\sigma = \delta + \Phi \delta
\]

where \(\Phi : \mathbb{N} \to \mathbb{C}\). Letting \(S = D = \text{Fin}_N\) and \(\sigma_0 = \delta_0 = i + 1\), we recover the equivalent coalgebra morphism condition,

\[
\Phi(i) + \sigma(i) = \delta(i) + \Phi(i + 1)
\]

Here, both transition morphisms maintain the index of the current operation, making the assumption that some desired sequence of operations has been specified \textit{a priori}. More generally, though, our coalgebraic perspective allows for arbitrary carriers, viewing the cost model of a data structure alongside its implementation rather than attempting to extract a cost-only function as a separable quantity.
Traditional accounts of amortized analysis make implicit use of commutativity and additive inverses in \(\mathbb{C} \). However, the generalized amortization condition is sensible regardless of the cost model. Reasoning principles pertaining to amortization can be expressed at this new level of generality. For example, recall from Section 1.1 that a telescoping sum can be used to bound the cost of an \(n \)-length sequence of operations.

Coalgebraically, this condition is simply the composition of \(n \) coalgebra morphism squares:

\[
\begin{array}{ccc}
D \xrightarrow{\delta} \Sigma D & \xrightarrow{\Sigma \delta} & \Sigma^2 D \\
\downarrow{\Phi} & & \downarrow{\Sigma \Phi} \\
S \xrightarrow{\sigma} \Sigma S & \xrightarrow{\Sigma \sigma} & \Sigma^2 S
\end{array}
\]

Here, \(\Sigma^{(n)} \) is the \(n \)-fold composition of \(\Sigma \). Henceforth, we break away from \(\mathbb{Z} \) in favor of a cost model like \(\mathbb{N} \) that does not admit additive inverses, making precise the assumption that potential must be nonnegative.

2.2 Classic Amortized Analyses

We will now describe more complex analyses using this framework. In general, for a data structure implementation \((D, \delta)\) and an amortized cost specification \((S, \sigma)\), an amortized analysis will be a coalgebra morphism \(\Phi : (D, \delta) \rightarrow (S, \sigma) \) serving as a behavior-relevant generalization of potential functions.

Example 2.5 Let \(\Sigma X = E \xrightarrow{} X \), the \(E \)-fold power, representing the signature with one method for reading one value of type \(E \) at a time. We can use this signature to implement a dynamically-resizing array, a classic first example of an amortized data structure, where the method represents pushing an element of type \(E \) to the end of the array. In this data structure, we represent a list of arbitrary length using an underlying array with a fixed length. When more data is added to the list than the current array can hold, a new array of twice the length is allocated, and the old data is copied over. In the cost model here, we charge one unit of cost for each write, array allocation, and array deallocation.

(i) The specification again uses carrier \(S = F1 \). Its transition morphism \(\sigma : 1 \rightarrow F1 \) is given by:

\[
\sigma : F1 \\
\sigma = \text{charge}($3) ; \text{ret}(\ast)
\]

In this coalgebra, no state is maintained, and we charge $3 at each operation in order to save up for an eventual copy.

(ii) The data structure implementation uses carrier \(D = FDP \), where

\[
D = \sum_{n \in \mathbb{N}} \text{array}_{E} [2^n - 1, 2^{n+1} - 1]
\]

stores a logarithm-size bound \(n \) and an array with length between \(2^n - 1 \) and \(2^{n+1} - 1 \). We give the transition morphism \(\delta \) by cases:

\[
\delta : D \rightarrow E \rightarrow FDP \\
\delta (n, a) = \begin{cases}
\text{charge}($3 + \text{length}(a)) ; \text{ret}(\text{suc } n, a + [e]) & \text{if } \text{length}(a) + 1 = 2^{n+1} - 1 \\
\text{charge}($1) ; \text{ret}(n, a + [e]) & \text{otherwise}
\end{cases}
\]

We charge $3 + \text{length}(l)$ in the expensive case when we have to copy the data to a new array, accounting for the allocation, write, copy, and deallocation, and we charge $1 for each write in the cheap case, since we have enough space and only need to perform a single write operation.

To give a morphism from \((D, \delta)\) to \((S, \sigma)\), we must provide a function \(\Phi : D \rightarrow \mathbb{N} \) such that the necessary square commutes. We define \(\Phi(n, a) = 2(\text{length}(a) + 1) - 2^{n+1} \), which meets the necessary criterion, showing that \((S, \sigma)\) is a reasonable specification for \((D, \delta)\).

Once again, the carrier of the specification coalgebra is trivial, since each push operation has a constant amortized cost. Sometimes, though, an operation can have a cost dependent on some aspects of the state,
modeled by a nontrivial carrier of the specification coalgebra. Then, the generalized potential function reveals these aspects about the data structure state in addition to mediating the potential cost.

Example 2.6 Extending Example 2.5, we can add a method parameterized by an endofunction \(E \Rightarrow E \) to update all values in an array. Let \(\Sigma X = (E \Rightarrow X) \times ((E \Rightarrow E) \Rightarrow X) \). Then, for a carrier \(D \), a transition morphism consists of a pair of maps \(\delta_1 : D \rightarrow E \Rightarrow D \) and \(\delta_2 : D \rightarrow ((E \Rightarrow E) \Rightarrow D) \). We let \(\delta_1 \) be the same map as before, and we let \(\delta_2(n,a)(f) = \text{charge}(\langle \text{length}(a) \rangle) ; \text{ret}(n, \text{map } f) \). There is no way to amortize this large cost, since the update method may be called arbitrarily often. Thus, to match the cost of this update method in the specification coalgebra \((S, \sigma)\), the carrier must reveal some data about the underlying array. Since only the length of the array matters here, we may choose \(S = \mathbb{F}N \), only tracking the length. Then, we define \(\sigma \) as follows, giving the projections separately via copattern matching [1]:

\[
\sigma : \mathbb{N} \rightarrow \Sigma(\mathbb{F}N)
\]

\[
\sigma \cdot \text{push } n \ e = \text{charge}(\$3) ; \text{ret}(\text{suc } n)
\]

\[
\sigma \cdot \text{update } n \ f = \text{charge}(\$n) ; \text{ret}(n)
\]

The push method still costs \$3, but now it must remember the increase of the length of the array. The update method now can cost \$n when the state is some \(n \), preserving the length \(n \). The coalgebra morphism \(\Phi : D \rightarrow \mathbb{F}N \) is identical on cost, but the new nontrivial behavior component sends a bounded array \((n, a) \) to its length, \(\text{length}(a) \), written \(\Phi(n, a) = \text{charge}(2(\text{length}(a) + 1 - 2^{n+1})) ; \text{ret}(\text{length}(a)) \).

In this example, the state-dependent cost only appears for the non-amortized operation. In general, though, this need not be the case; cost is allowed to depend on behavior. For example, the operations on a splay tree have an amortized cost logarithmic in the size of the tree [25]. We now consider queues, a classic example of an amortized data structures that amortize cost using two operations.

Example 2.7 A queue is an abstract data type in which elements are enqueued to one end of the queue and dequeued from the other end. To express this method in the signature, we let

\[
\Sigma X = (E \Rightarrow X) \times (\mathbb{F}1 + E \times X),
\]

where \(E \times X \) is the \(E \)-fold copower. The first method, enqueue, accepts an element of type \(E \) to store and continues. The second method, dequeue, either terminates if the stack is empty or provides an element of type \(E \) before continuing. This signature is similar to that of Section 1.2, adapted to the category of cost algebras by replacing exponentials and products with powers and copowers where necessary.

(i) The specification uses carrier \(S = \mathbb{F}(\text{list}(E)) \), storing a specification-level list of elements. Its transition morphism \(\sigma \) implements queues naively via a list of elements:

\[
\sigma : \text{list}(E) \rightarrow \Sigma(\text{list}(E))
\]

\[
\sigma \cdot \text{enqueue } l \ e = \text{charge}(\$2) ; \text{ret}(l + [e])
\]

\[
\sigma \cdot \text{dequeue } [] = \text{inj}_1(\text{ret}(*))
\]

\[
\sigma \cdot \text{dequeue } e :: l = \text{inj}_2(e, \text{ret}(l))
\]

This is very similar to the specification of stacks, except for elements being enqueued at the end of the list and the costs being altered to \$2 per enqueue and no cost per dequeue.

(ii) The data structure implementation uses carrier \(D = \mathbb{F}(\text{list}(E)^2) \), storing a pair of lists to form a “batched queue” [14,4,8,23]. The first list is treated as an “inbox”, storing enqueued elements, and the second list is treated as an “outbox”, producing elements to dequeue. Occasionally, when the outbox is empty, the inbox is reversed and placed in the outbox.

\[
\delta : \text{list}(E)^2 \rightarrow \Sigma(\text{list}(E)^2)
\]

\[
\delta \cdot \text{enqueue } (l_i, l_o) \ e = \text{ret}(e :: l_i, l_o)
\]

\[
\delta \cdot \text{dequeue } (l_i, []) = \begin{cases}
\text{inj}_1(\text{ret}(*)) & \text{if reverse}(l_i) = [] \\
\text{charge}(\$1(\text{length}(l_i))) ; \text{inj}_2(e, \text{ret}(l_o)) & \text{if reverse}(l_i) = e :: l_o
\end{cases}
\]

\[
\delta \cdot \text{dequeue } (l_i, e :: l_o) = \text{inj}_2(e, \text{ret}(l_i, l_o))
\]

Here, our cost model charges \$1(length(l)) cost for a call to reverse(l).

3 This was the principal example of the predecessor to this work [9].
The program $\Phi(l_0 + \text{reverse}(l_1))$ is a coalgebra morphism representing the amortized analysis, containing the traditional cost-level potential function alongside a behavioral simulation that converts the pair of lists to a single specification-level list.

2.3 Generalizations of Amortized Analysis

Viewing amortized analysis coalgebraically allows the underlying category to be swapped out, leading to related notions of amortization.

Example 2.8 Traditionally, it is assumed that addition in the cost model is commutative and admits an inverse. In this form, though, no requirements are placed on the monoid whatsoever. For example, we may let our “costs” be strings, where the monoid operation is concatenation. Then, amortization represents buffering, a performance technique in which many strings are occasionally printed in aggregate to avoid repeating fixed costs associated with the writing of any data. Let $\Sigma X \rightarrow X$, providing a single method for printing.

(i) The specification coalgebra uses state $S = F1$. Its transition morphism $\sigma : 1 \rightarrow \text{String} \rightarrow F1$ simply prints the provided string:

$$\sigma : \text{String} \rightarrow F1$$

$$\sigma s = \text{charge}(\$s) : \text{ret}(\ast)$$

Here, “charging a string cost” should be understood as printing the string.

(ii) The implementation uses state $D = F\text{D}$, where

$$D = \sum_{s: \text{String}} \text{length}(s) < n$$

for a fixed buffer size n. Its transition morphism prints strings in chunks of length n, saving any remaining characters in the state. Let chop_n split a string into a portion with length a multiple of n and a remainder with length less than n. Then, we define:

$$\delta : D \rightarrow \text{String} \rightarrow F\text{D}$$

$$\delta s_0 s = \text{let } (s', s'_0) = \text{chop}_n(s_0 + s) \text{ in } \text{charge}(\$s') : \text{ret}(s'_0)$$

The generalized potential function $\Phi : D \rightarrow \text{String}$ is simply the inclusion, “flushing” any data remaining in the buffer. This shows that buffering can be understood as an amortized implementation of printing strings in real time. Using the state monad in place of the writer monad, this technique can be adapted to support buffering of arbitrary state.

From this perspective, we may move beyond the writer monad, amortizing other effects. For any strong monad T, it is also the case that $T(C \times (-))$ forms a monad, where C is an arbitrary monoid for cost. We now consider working with coalgebras in the category of $T(C \times (-))$-algebras for various choices of T.

Example 2.9 When $T = D$ is the finitely-supported distribution monad, we can study randomized amortized analysis. For example, letting $\Sigma = \text{Id}$, we can implement an alternating amortization technique that flips many coins occasionally, whereas the specification suggests that one coin is flipped per transition.

(i) The specification coalgebra uses state $S = F1$. Its transition morphism $\sigma : 1 \rightarrow F1$ is a simple Bernoulli distribution, flipping a coin and deciding whether to incur cost accordingly.

(ii) The implementation coalgebra uses state $D = F(\text{Fin}_k)$ for a fixed k indicating how often to sample. Its transition morphism $\delta : \text{Fin}_k \rightarrow F(\text{Fin}_k)$ is like that of Example 2.1, sampling a k-binomial distribution when its counter is 0 and decrementing the counter otherwise.

The potential function $\Phi : \text{Fin}_k \rightarrow F1$ computes a distribution for each state $d : \text{Fin}_k$. Similar to Example 2.3, we let the generalized potential function be the $(k - d - 1)$-binomial distribution, balancing the number of samples done by the specification and the implementation. Notice that here, though, Φ is not merely computing a number as a potential: it computes an entire distribution via an effectful program.
Example 2.10 Sometimes, one wishes to consider a notion of expected amortized analysis, for cases when an amortized data structure is implemented using randomization and one wishes to reason about the expected cost of a sequence of operations. While this notion is subtle to define explicitly, since each state may have many possible successor states of which the potential must be considered, a reasonable definition of expected amortized analysis falls out of the coalgebraic perspective. If the cost model \(C \) is a convex space, then we have a distributive law that computes the expected value:

\[
D(C \times (-)) \rightarrow C \times D(-)
\]

Therefore, \(C \times D(-) \) also forms a monad for reasoning about expected cost, and coalgebras over an endofunctor on \(\text{Alg}(C \times D(-)) \) cleanly and precisely specify expected amortized analysis.

Although the remainder of the paper is compatible with other monads, we work only with the writer monad with numeric costs for simplicity of examples.

3 Lax Amortized Analysis in a Bicategory

In some examples, such as those considered thus far, amortized analysis is precise, where the specification exactly matches the amount of cost used by the implementation. However, it is common for the specified cost to be an upper bound, since some cases may be cheaper than specified due to internal factors that would be difficult to communicate via a concise specification. In the literature, the equation

\[
\sigma_S = \delta_S(d) + \Phi(\delta_c(d)) - \Phi(d)
\]

is used to specify the amortized cost \(\sigma_S \), which is then given an upper bound. Since we treat \((S, \sigma)\) as a specification implementation, though, we find it cleaner to treat \(\sigma \) as the upper bound itself, turning the above equation into the inequality

\[
\sigma_S \geq \delta_S(d) + \Phi(\delta_c(d)) - \Phi(d).
\]

To achieve this categorically, we augment our development slightly: rather than using coalgebras and morphisms for an endofunctor on a category, we consider colax coalgebras and morphisms for an endo-2-functor on a bicategory. The 2-cells of the bicategory will serve as inequalities for the purpose of cost analysis, drawing inspiration from Grodin et al. [10].

Fixing a bicategory \(C \), let \(\Sigma : C \rightarrow C \) be an endo-2-functor. This definition of \(\Sigma \)-coalgebra does not materially change, aside from the fact that \(\Sigma \) is a 2-functor. However, the definition of morphism between \(\Sigma \)-coalgebras will be affected: rather than considering coalgebra morphisms where the given square commutes exactly, we only ask for the square to commute colaxly according to a given 2-cell.

Definition 3.1 Let \((D, \delta)\) and \((S, \sigma)\) be \(\Sigma \)-coalgebras. A **colax morphism of \(\Sigma \)-coalgebras** [3,17,18] from \((D, \delta)\) to \((S, \sigma)\) consists of a morphism \(\Phi : D \rightarrow S \) that colaxly preserves the \(\Sigma \)-coalgebra structure:

\[
\begin{array}{ccc}
D & \xrightarrow{\delta} & \Sigma D \\
\Phi & \preceq \Sigma \Phi & \\
S & \xleftarrow{\sigma} & \Sigma S
\end{array}
\]

Here, \(\Phi \) is a 2-cell \(\Phi : \sigma \preceq \delta ; \Sigma \Phi \), serving as a proof of inequality. We refer to \(\Phi \) as the **lax generalized amortization condition**.

For amortized analysis, we will typically find ourselves using a 2-poset, a bicategory whose 2-cells are mere propositions. In this case, the 2-cell of a morphism is simply a proof that \(\Phi : \sigma \geq \delta ; \Sigma \Phi \). Concretely, we will choose \(C = \text{Poset} \). Following Grodin et al. [10], we will use discrete posets everywhere except for the cost component on the writer monad, which will be the natural numbers equipped with the usual increasing ordering, written \(\omega \).
Example 3.2 Let \((FD, \delta)\) and \((F1, \sigma)\) be Id-coalgebras. Then, a colax morphism from \((FD, \delta)\) to \((F1, \sigma)\) consists of a map \(\Phi : D \rightarrow \omega\) and a 2-cell
\[
\Phi : \sigma \geq \delta : \Sigma \Phi
\]
demonstrating that \(\Phi\) satisfies the lax generalized amortization condition. In this case, the inequality condition exactly requires that
\[
\Phi(d) + \sigma_S \geq \delta_S(d) + \Phi(\delta_o(d)),
\]
which matches the traditional amortization condition
\[
\sigma_S \geq \delta_S(d) + \Phi(\delta_o(d)) - \Phi(d)
\]
when the cost model is commutative and has additive inverses.

Remark 3.3 \(\Sigma\)-coalgebras and their colax morphisms form a bicategory, where a 2-cell from \((\Phi, \Sigma \Phi)\) to \((\Phi', \Sigma \Phi')\) is a 2-cell \(\Phi = \Phi'\) in \(\mathcal{C}\) along with a coherence condition on \(\Phi\) and \(\Sigma \Phi\) [17]. In the restricted case of 2-posets, the coherence condition is trivialized. Then, a 2-cell \(\Phi \leq \Phi'\) justifies that \(\Phi\) expresses the amortization argument with at most as much overhead as \(\Phi'\). For instance, in Example 3.2, if \(\Phi\) is a colax morphism, then so is \(\Phi'(d) = \Phi(d) + $c\) for any \(c : \omega\), using the commutativity of addition in \(\omega\). Then, \(\Phi \leq \Phi'\), since \(\Phi'\) unnecessarily adds c cost.

The advantages and generalizations from the 1-categorical development translate immediately to the 2-categorical setting. For example, the specification carrier can be altered to expose some state, and the monad can be varied to amortize other effects.

Example 3.4 Extending Example 2.5, we can treat a dynamically-resizing array as a stack by adding a method to pop the most-recently-added element. Consider the same signature \(\Sigma\) as in Example 2.7; we provide coalgebra implementations that represent stacks instead of queues:

(i) In order to implement a \(\Sigma\)-coalgebra, we must not only keep track of the length of the stack, but all the elements stored in the stack, since the pop method produces an element of type \(E\). The specification uses state type \(S = F(\text{list}(E))\), storing a specification-level list of elements. Its transition morphism \(\sigma\) is defined as follows:

\[
\sigma : \text{list}(E) \rightarrow \Sigma(\text{list}(E))
\]
\[
\sigma \cdot \text{push} \ l \ e = \text{charge}($3) ; \text{ret}(e :: l)
\]
\[
\sigma \cdot \text{pop} \ [\] = \text{inj}_1(\text{ret}(\ast))
\]
\[
\sigma \cdot \text{pop} \ (e :: l) = \text{charge}($2) ; \text{inj}_2(e, \text{ret}(l))
\]

The push method behaves as in Example 2.5, and the new pop method charges $2 for a pop on a nonempty array, terminating if the array is empty.

(ii) The data structure implementation uses a similar state type,
\[
D = \sum_{n \in \mathbb{N}} \text{array}_E[2^n - 1, 2^{n+2} - 1].
\]
The only difference is a looser bound on the range of the array length. The push method stays the same, and the new pop method is similar, where \text{init} and \text{last} get the initial segment and last element of an array, respectively.

\[
\delta : D \rightarrow E \rightarrow FD
\]
\[
\delta \cdot \text{push} \ (n, a) \ e \ | \ (\text{length}(a) + 1 \equiv 2^{n+2} - 1) = \text{charge}($3 + \text{length}(a)) ; \text{ret}(\text{suc} \ n, a + [e])
\]
\[
\delta \cdot \text{push} \ (n, a) \ e \ | \ \text{otherwise} = \text{charge}($1) ; \text{ret}(n, a + [e])
\]
\[
\delta \cdot \text{pop} \ (0, [\]) = \text{inj}_1(\text{ret}(*))
\]
\[
\delta \cdot \text{pop} \ (\text{suc} \ n, a) \ | \ (\text{length}(a) \equiv 2^n - 1) = \text{charge}($2 + (\text{length}(a) - 1)) ; \text{inj}_2(\text{last}(a), \text{ret}(n, \text{init}(a)))
\]
\[
\delta \cdot \text{pop} \ (\text{suc} \ n, a) \ | \ \text{otherwise} = \text{charge}($1) ; \text{inj}_2(\text{last}(a), \text{ret}((\text{suc} \ n, \text{init}(a)))
\]

Let \(c(x, y) = \max(2 \cdot (x - y), y - x)\). The program \(\Phi(n, a) = \text{charge}($c(\text{length}(a), 2^{n+1} - 1)) ; \text{ret}((\text{toList}(a))\)

is a coalgebra morphism representing the amortized analysis, containing the traditional cost-level potential function alongside a behavioral simulation that converts the size-bounded array to a specification-level list.
Intuitively, an array is in a lower potential state the closer the number of elements it stores is to the middle of the bounds, since a resize is necessarily many operations away; this is mathematically justified by the potential function. When moving away from this midpoint, the potential function meets the amortization condition. However, when moving towards this midpoint, the potential is decreasing; in this case, we do not need all the cost provided by the specification, and the implementation only meets the specification laxly. Thus, the morphism Φ is not a strict coalgebra morphism, but it is a colax coalgebra morphism, guaranteeing that the amortized implementation is at least as efficient as the specification suggests.

In the remainder of the paper, we will work with 1-categories for simplicity; however, we make brief mentions of how to maintain compatibility with lax 2-categorical amortized analysis in each construction.

4 Combining and Splitting Potential

In more complex amortized analyses, the behavior of an amortized data structure can branch, breaking the data structure into multiple parts or combining multiple instances. As discussed by Okasaki [23, §5.3], in this scenario, the amortization condition should consider the sum of the potentials of the input and output states. Informally:

$$\sigma_s = \delta_s(\text{Input}) + \sum_{d' \in \delta_s(\text{Input})} \Phi(d') - \sum_{d \in \text{Input}} \Phi(d)$$

To make sense this in our presentation, we consider two additional structures. First, we represent multiple data structure states in parallel via a monoidal product on C, recovering and formalizing the idea of summing the potentials of states for the typical case of free algebra carriers. Then, we generalize signatures from endofunctors to endoprofunctors, allowing multiple parallel inputs instead of a single sequential usage.

4.1 Parallel States with Additive Potential

To represent multiple simultaneous output states, we require that C come equipped with a symmetric monoidal closed structure $(\top, \otimes, \Rightarrow)$. Then, for example, a method that splits the amortized data structure into two parts will be represented by the signature by $\Sigma X = X \otimes X$. Such a symmetric monoidal structure $(\top, \otimes, \Rightarrow)$ exists in the category of algebras $C = \text{Alg}(T)$ when the monad T is strong and commutative. The writer monad $C \times (-)$ is commutative exactly when the monoid on C is commutative; this is often a reasonable assumption in the setting of cost analysis.

When T is commutative, the adjunction $F \dashv U : \text{Alg}(T) \rightarrow \text{Set}$ is also lax monoidal, which implies that F is a strong monoidal functor:

$$T \cong F1$$

$$FA \otimes FB \cong F(A \times B)$$

The forward direction of the first isomorphism adds together the potential stored in the components. Thus, we can support the branching generalization of amortized analysis via the monoidal product.

Example 4.1 Let $\Sigma X = X \otimes X$, representing a single method that splits a data structure into components. Suppose (FD, δ) and $(F1, \sigma)$ are Σ-coalgebras. To prove that the former is an amortized implementation of a latter, we give a potential function $\Phi : D \rightarrow C$ such that the following square commutes:

$$\begin{array}{ccc}
FD & \xrightarrow{\delta} & FD \otimes FD \\
\downarrow{\Phi} & & \downarrow{\Phi \otimes \Phi} \\
F1 & \xrightarrow{\sigma} & F1 \otimes F1
\end{array}$$

Since $F1 \otimes F1 \cong F1$, the behavioral component of both paths are trivial. The condition on costs can be stated as follows, using the fact that the map $F1 \otimes F1 \rightarrow F1$ adds costs:

$$\Phi(d) + \sigma_s = \delta_s(d) + (\Phi(\delta_1(d)) + \Phi(\delta_2(d)))$$
Equivalently, we may write:
\[\Phi(d) + \sigma_{\delta} = \delta_{\Sigma}(d) + \sum_{i \in \{1, 2\}} \Phi(\delta_{\delta}(d)_i) \]

Returning to the informal amortization condition, this makes precise the notion of having multiple states output states, using the monoidal product to capture the addition of potentials.

To support multiple inputs, we must fundamentally alter our notion of coalgebra. As defined, a coalgebra for an endofunctor \(\Sigma \) consists of a carrier \(D \) and a transition morphism \(\delta : D \to \Sigma D \) that takes a single state and provides possibilities for transition. We now generalize to coalgebras for an endoprofunctor \(\Sigma \), which will provide the possibility for multiple input states.

4.2 Algebraic Operations via Endoprofunctor Coalgebras

To support a method with two inputs and two outputs, one may naively attempt to use
\[\Sigma X = X \longrightarrow (X \otimes X), \]
so that a \(\Sigma \)-coalgebra \(D \to \Sigma D \) is equivalent to a map \(D \otimes D \to D \otimes D \). However, this definition of \(\Sigma \) is not functorial: \(X \) is used in a contravariant position. To remedy this, we will let \(\Sigma \) be an endoprofunctor rather than an endofunctor, taking in both a covariant and a contravariant copies of what will ultimately be \(X \). Recall from Section 1.2 that a profunctor \(C \to D \) is a functor \(D^{op} \times C \to \text{Set} \). To represent an arbitrary signature for an abstract data type, we will use an endoprofunctor \(\Sigma : C \to C \) in place of an endofunctor. For example, if we let
\[\Sigma(X^-, X^+) = (X^- \otimes X^-) \longrightarrow (X^+ \otimes X^+), \]
we describe a signature that takes in a pair of states and produces a new pair of states. We now recall the definition of a coalgebra for an endoprofunctor, using the bicategorical generalization coalgebra.

Definition 4.2 Let \(\Sigma \) be an endoprofunctor. A \(\Sigma \)-coalgebra is a pair \((D, \delta)\) of a carrier object \(D : 1 \to C \) and a transition morphism \(\delta : D \to \Sigma \circ D \) [22].

Note that profunctors \(1 \to C \) are equivalent to presheaves \(\hat{C} \). For cost analysis, we will continue to use \(C \doteq \text{Alg}(C \times \langle - \rangle) \). Coalgebras for endoprofunctors encompass coalgebras for endofunctors.

Theorem 4.3 Let \(\Sigma : C \to C \) be an arbitrary endofunctor, and define \(\tilde{\Sigma} : C \to C \) by:
\[\tilde{\Sigma}(X^-, X^+) = X^- \longrightarrow \Sigma X^+ \]

Then, a \(\Sigma \)-coalgebra with carrier \(X \) is equivalent to a \(\tilde{\Sigma} \)-coalgebra with carrier \(\hat{X} \).

Proof. By the Yoneda lemma, maps \(\delta : \hat{x} D \to \tilde{\Sigma} \circ \hat{x} D \) are equivalent to elements of \(\tilde{\Sigma}(D, D) \). By definition, we have \(\tilde{\Sigma}(D, D) = D \to \Sigma D \), precisely the definition of a \(\Sigma \)-coalgebra transition morphism.

While coalgebras over endofunctors are definable as coalgebras over endoprofunctors, this new environment allows more flexibility in the contravariant position. Morphisms of coalgebras over an endoprofunctor generalize morphisms of coalgebras over an endofunctor, as well.

Definition 4.4 Let \((D, \delta)\) and \((S, \sigma)\) be \(\Sigma \)-coalgebras, where \(\Sigma \) is an endoprofunctor. A morphism of \(\Sigma \)-coalgebras from \((D, \delta)\) to \((S, \sigma)\) consists of a morphism \(\Phi : D \to S \) that preserves the \(\Sigma \)-coalgebra structure, as before:

\[
\begin{array}{c}
D \xrightarrow{\delta} \Sigma \circ D \\
\downarrow \Phi \quad \downarrow \Sigma \circ \Phi \\
S \xrightarrow{\sigma} \Sigma \circ S
\end{array}
\]

Note that \(D \) and \(S \) are presheaves in \(\hat{C} \) and \(\Phi \) is a morphism of presheaves.

12
When \(D = \mathcal{D}_0 \) and \(S = \mathcal{S}_0 \), the situation becomes simpler. Since the Yoneda embedding is fully faithful, it is equivalent to give a map \(\Phi : \mathcal{D}_0 \to \mathcal{S}_0 \). By the Yoneda lemma, the structure preservation requirement can be simplified to the following:

\[
\begin{array}{c}
1 \xrightarrow{\delta} \Sigma(D_0, D_0) \\
\downarrow \sigma \\
\Sigma(S_0, S_0) \xrightarrow{\Sigma(\Phi, S_0)} \Sigma(D_0, S_0)
\end{array}
\]

Viewing the covariant and contravariant positions as outputs and inputs, respectively, this formalizes of the amortization condition with multiple inputs and outputs. We demonstrate this via a concrete example.

Example 4.5 Define endoprofunctor \(\Sigma(X^-, X^+) = (X^- \otimes X^-) \to (X^+ \otimes X^+) \), representing a method that takes two states of a data structure and provides two new states. Suppose \((\mathcal{D}, \delta : \Sigma(FD, FD)) \) and \((\mathcal{F}(1), \sigma : \Sigma(F1, F1)) \) are \(\Sigma \)-coalgebras. Then, the above condition simplifies to:

\[
(\Phi(d_1) + \Phi(d_2)) + \sigma = \delta(d) + (\Phi(\delta_0(d)_1) + \Phi(\delta_0(d)_2))
\]

where \(d = (d_1, d_2) : \text{D} \times \text{D} \). Equivalently, we may write:

\[
\sum_{i \in \{1, 2\}} \Phi(d_i) + \sigma = \delta(d) + \sum_{i \in \{1, 2\}} \Phi(\delta_0(d)_i)
\]

Up to our usual movement of the starting potential across the equation, this is precisely the form of the generalized amortization equation given above, using the structure of signature \(\Sigma \) to make precise the informal **Input** notion.

Using a monoidal product, we allowed multiple states to exist simultaneously, adding any potential they contain. Then, using profunctors, we generalized the notion of signature to support arbitrary contravariant data, allowing arbitrarily many inputs and outputs to a method.

Bicategories

For bicategories \(\mathcal{C} \) and \(\mathcal{D} \), a 2-profunctor \(\Sigma : \mathcal{C} \to \mathcal{D} \) is a 2-functor \(\mathcal{D}^{op} \times \mathcal{C} \to \text{Cat} \). This definition of \(\Sigma \)-coalgebra does not materially change, aside from the fact that \(\Sigma \) is a 2-functor. As with endo-2-functors, the definition of morphism between \(\Sigma \)-coalgebras is modified to only require colax commutation.

Definition 4.6 Let \((D, \delta) \) and \((S, \sigma) \) be \(\Sigma \)-coalgebras, where \(\Sigma \) is an endo-2-profunctor. A morphism of \(\Sigma \)-coalgebras from \((D, \delta) \) to \((S, \sigma) \) consists of a morphism \(\Phi : D \to S \) that preserves the \(\Sigma \)-coalgebra structure, as before:

\[
\begin{array}{c}
D \xrightarrow{\delta} \Sigma \circ D \\
\Phi \downarrow \Leftrightarrow \Phi \\
S \xrightarrow{\sigma} \Sigma \circ S
\end{array}
\]

Here, \(\Phi \) is a 2-cell \(\Phi : \sigma \Leftrightarrow \delta ; \Sigma \circ \Phi \), serving as a proof of inequality. Note that \(D \) and \(S \) are \(\text{Cat} \)-valued presheaves.

As in the endofunctor case, the situation becomes simpler when \(D = \mathcal{D}_0 \) and \(S = \mathcal{S}_0 \). The structure preservation requirement can be simplified to the following:

\[
\begin{array}{c}
1 \xrightarrow{\delta} \Sigma(D_0, D_0) \\
\downarrow \sigma \\
\Sigma(S_0, S_0) \xrightarrow{\Sigma(\Phi, S_0)} \Sigma(D_0, S_0)
\end{array}
\]

This condition is the lax generalized amortization condition in the setting of multiple inputs and outputs.
5 Composition of Amortized Data Structures

Thus far, we have considered coalgebra morphisms in isolation, each showing that one data structure implementation matches a specification up to amortization. Using the fact that \(\Sigma \)-coalgebras and coalgebra morphisms form a category, we may compose potential functions to support different levels of amortized abstraction.

Example 5.1 Recall Examples 2.1 and 2.3, where the specification \((S, \sigma)\) purports to incur \$1 of cost every operation while really the implementation \((D, \delta)\) incurs \$8 of cost every eight operations. Alternatively, we may view \((D, \delta)\) as the specification, which can be implemented by an even more amortized scheme. For example, we may define a coalgebra \((D', \delta')\) that incurs \$16 of cost every sixteen operations, which is an amortized implementation of \((D, \delta)\) via a new potential function \(\Phi : (D', \delta') \rightarrow (D, \delta)\). Of course, we may then compose these potential functions,

\[
(D', \delta') \xrightarrow{\Phi'} (D, \delta) \xrightarrow{\Phi} (S, \sigma),
\]

showing that \((D', \delta')\) is an implementation of the original specification \((S, \sigma)\) after all.

More commonly, though, we may wish to compose coalgebras with different signatures, using one amortized data structure to implement another. For example, we may wish to use a pair of stacks, with an amortized implemented in terms of arrays in Example 3.4, to implement a queue, as given in Example 2.7. The coalgebras and morphisms for pairs of stacks and queues exist in different categories, \(\text{Coalg}^\Sigma\) and \(\text{Coalg}(\Sigma_q)\), where both \(\Sigma_s\) and \(\Sigma_q\) are (coincidentally) both the signature from Example 3.4 extended with a method \(\mathbb{N} \times X\) for computing the number of elements stored in the data structure.

Rather than viewing each category of coalgebras \(\text{Coalg}(\Sigma)\) in isolation for a given signature \(\Sigma\), we may think of \(\text{Coalg}(\Sigma)\) as the category with objects \((\Sigma, (D, \delta))\), where \((D, \delta)\) is a \(\Sigma\)-coalgebra. In other words, an object consists of a signature \(\Sigma\) along with an implementation of that signature. A morphism from \((\Sigma', (D, \delta))\) to \((\Sigma, (S, \sigma))\) consists of a natural transformation \(\varphi : \Sigma' \rightarrow \Sigma\) translating the operations of \(\Sigma\) to the language of \(\Sigma'\), along with a \(\Sigma\)-coalgebra morphism from \((D, D \overset{\delta}{\rightarrow} \Sigma D \overset{\varphi D}{\rightarrow} \Sigma D)\) to \((S, \sigma)\) performing an amortized analysis on the \(\varphi\)-translated implementation.

Example 5.2 Let \(\Sigma_s\) be the signature functor from Example 3.4 for stacks, and let \(\Sigma_c X = X \times (\mathbb{F}1 + X)\) be the signature of for a counter with successor and predecessor methods. Let \(D\) be the carrier used to implement stacks. The amortized analysis of stacks induces a morphism

\[
(\Sigma_s, (D, \delta)) \rightarrow (\Sigma_s, (\text{F}(\text{list}(E)), \sigma))
\]

whose translation component \(\Sigma_s \rightarrow \Sigma_s\) is the identity. Separately, let \((\text{FN}, \sigma_{\text{counter}})\) be a \(\Sigma_c\)-coalgebra specification similar to the \(\Sigma_s\) coalgebra \((\text{F}(\text{list}(E)), \sigma)\), keeping the same costs but only storing the number of elements stored rather than the elements themselves. We can give a morphism to \((\text{FN}, \sigma_{\text{counter}})\)

\[
(\Sigma_s, (\text{F}(\text{list}(E)), \sigma)) \rightarrow (\Sigma_c, (\text{FN}, \sigma_{\text{counter}}))
\]

that implements counters in terms of stacks of a sentinel value \(e_0 : E\). Composing these morphisms, we get a map

\[
(\Sigma_s, (D, \delta)) \rightarrow (\Sigma_c, (\text{FN}, \sigma_{\text{counter}}))
\]

that implements natural number counters in terms of a dynamically resizing array, mixing signatures.

To implement an amortized queue as a pair of amortized stacks, we must first be able to pair two coalgebras. Fortunately, when restricted to signature functors equipped with a tensorial strength (which includes all signatures considered in this work), the indexed category \(\text{Coalg}(\Sigma)\) is lax monoidal.

Theorem 5.3 Let \(C\) be a symmetric monoidal category. Then, \(\text{Coalg}(\Sigma) : \text{Strong}(C, C) \rightarrow \text{Cat}\) is a lax monoidal pseudofunctor.
If \((S_s, \sigma_s) : \text{Coalg}(\Sigma_s)\) is the specification coalgebra for a stack, then \((S_q, \sigma_q) \otimes (S_s, \sigma_s) : \text{Coalg}(\Sigma_s \times \Sigma_s)\) is the compound specification for a pair of stacks. We may then hope to give a morphism

\[(\Sigma_s \times \Sigma_s, (S_s, \sigma_s) \otimes (S_s, \sigma_s)) \rightarrow (\Sigma_q, (S_q, \sigma_q))\]

implementing amortized queues in terms of a pair of stacks. The translation morphism \(\Sigma_s \times \Sigma_s \rightarrow \Sigma_q\) would have to describe each queue operation in terms of a stack operation. However, implementing a queue operation may require more than one stack operation, popping all the elements of the “inbox” stack in the case the “outbox” stack is empty. To allow each queue operation to perform arbitrarily many stack operations, we instead treat \(\text{Coalg}(\Sigma)\) as category indexed in the coKleisli category of the cofree comonad comonad, \((-)^\omega : \text{Fun}(\text{Alg}(T), \text{ Alg}(T)) \rightarrow \text{ Fun}(\text{Alg}(T), \text{ Alg}(T))\). This approach is the formal dual of recent work by Grodin and Spivak [11] about algebraic effect handlers; in this sense, a translation morphism can be viewed as a “coalgebraic coeffect cohandler”.

Definition 5.4 The pseudofunctorial action of the indexed category \(\text{Coalg}(\Sigma) : \text{coKl}((-)^\omega) \rightarrow \text{ Cat}\) is given by post-composition of coalgebra maps \(\alpha : A \rightarrow \Sigma^\omega A\) with the coKleisli extension of a translation morphism \(\varphi : \Sigma^\omega \rightarrow \Sigma\), written \(\varphi^\dagger : \Sigma^\omega \rightarrow \Sigma^\omega\).

\[
\text{Coalg}_0(\Sigma) = \text{Coalg}^\omega(\Sigma)
\]

\[
\text{Coalg}_1(\varphi) = \big(A, A \xrightarrow{\varphi} \Sigma^\omega A \big) = \big((A, \alpha) \xrightarrow{\varphi^\dagger} \Sigma^\omega A \big)
\]

We write \(\text{Coalg}^\omega(\Sigma)\) for the category of comonad coalgebras over the \(\Sigma^\omega\) to simplify composition. However, this category is equivalent to \(\text{Coalg}(\Sigma)\), so the object part is the same as when indexed over the category of endofunctors.

In the fibered category \(\int_{\Sigma \in \text{ coKl}(\text{Cofree}_\omega)} \text{Coalg}(\Sigma)\), the objects are the same as before, but the signature translation of a morphism from \((\Sigma', (D, \delta))\) to \((\Sigma, (S, \sigma))\) now uses the cofree comonad on \(\Sigma'\) in its domain, \(\varphi : \Sigma' \rightarrow \Sigma\), translating the operations of \(\Sigma\) to arbitrarily many \(\Sigma'\) operations.

Example 5.5 In this category, we may implement a morphism

\[(\Sigma_s \times \Sigma_s, (S_s, \sigma_s) \otimes (S_s, \sigma_s)) \rightarrow (\Sigma_q, (S_q, \sigma_q)),\]

using amortized stacks to implement amortized queues. The translation morphism \(\Sigma_s \times \Sigma_s \rightarrow \Sigma_q\) is analogous to the behavior of the implementation coalgebra in Example 2.7 but generic in stack implementation, and the coalgebra morphism is precisely as in Example 2.7. Pre-composing this with the morphism from Example 3.4, we implement the queue specification via a pair of stacks up to amortization, which in turn are implemented as arrays up to amortization.

The techniques considered here generalize to bicategories (Section 3) and mixed-variance signatures given by profunctors (Section 4).

6 Conclusion

In this work, we observed that the condition imposed on a potential function in amortized analysis is generalized by the commutativity condition for a coalgebra in the category of writer monad algebras. Using this perspective, we gave simple, clear accounts of examples, and we generalized amortized analysis to other effectful settings. We expanded this definition to include branching amortization given a commutative cost model using profunctors, and we investigated the composition of amortized data structures via the indexed category of coalgebras. Finally, we observed that this development makes sense in a bicategory, where colax coalgebra morphisms give a more relaxed and practically useful definition of amortization.

The key ideas and some examples presented have been mechanized inside calf [21,10] in the Agda proof assistant. Basic definitions, such as functor, coalgebra, and (colax) coalgebra morphism, are formulated
explicitly, with the colax commutativity condition expressed using the program inequality of Grodin et al. [10]. The analyses themselves are structured analogous to the on-paper reasoning presented here, with the added formality required for mechanized proof.

6.1 Related Work

This development principally expands upon the early work of Grodin and Harper [9], which first proposed to use coalgebraic techniques to reason about amortized analysis. Amortized analysis was first characterized by Tarjan [27], providing a technique for describing the cost of data structure operations that takes into account the evolving state of the data structure and considers cost in aggregate, in contrast with algorithmic worst-case upper bounds on a per-operation basis. Representing abstract data types as coalgebras and simulations as coalgebra morphisms has been well studied; see, e.g., Jacobs [15,16] for an overview. Formalization of cost analysis using a writer monad has been studied extensively; see Niu et al. [21] for a comprehensive review of the literature. Mechanizations of amortized cost analysis has also been pursued, but in the traditional algebraic form [24,20,21]. Type theories for automatic cost inference, such as AARA [13,12], are based on the potential functions of the physicist’s method of amortized analysis.

6.2 Future Work

The carriers of all endofunctor coalgebras considered are free algebras of the form F_A, and the carriers of all endoprofunctor coalgebras considered are representable where the representing object is a free algebra, i.e. of the form $\text{k}(F_A)$. We hope to investigate whether this restricted format is sufficient for practical use cases; if so, we may choose to consider only full subcategories of the category of coalgebras over a signature whose carriers are of the forms given above.

In the present work, we consider coalgebras in a category of algebras. This construction appears in a more balanced manner in the development of mathematical operational semantics, there called a bialgebra, representing a transition system in the style of operational semantics. We leave it to future investigation to understand the connections between amortized analysis and operational semantics.

While we view amortized analysis as a simulation, i.e. a morphism of coalgebras, we suspect that a double categorical approach may be valuable for understanding a symmetric generalization more akin to bisimulation. Cospans of coalgebras have been used to generalize bisimulations [26], which can serve as vertical morphisms to add to the bicategory of colax coalgebras. Additionally, Goncharov et al. [7] propose a double category of (co)lax coalgebras of a lax-double functor, generalizing from a fundamentally double categorical perspective.

In our formalization within calf, the notion of coalgebra morphism is defined explicitly, in contrast with the notion of cost algebra that is built in as a primitive. We hope to incorporate coalgebras and coalgebra morphisms more fundamentally, allowing amortized analysis to be more seamless within the language rather than embedded.

Acknowledgements

The authors wish to thank Max New, Yue Niu, and David Spivak for insightful conversations that directly impacted the direction of this work and Zachary Battleman, Running Li, Parth Shastri, and Jonathan Sterling for fruitful adjacent collaboration that contributed broader inspiration. This material is based upon work supported by the United States Air Force Office of Scientific Research under grant number FA9550-21-0009 (Tristan Nguyen, program manager) and the National Science Foundation under grant number CCF-1901381. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the AFOSR or NSF.

References

https://doi.org/10.1007/3-540-49404-1

https://doi.org/10.1016/0022-4049(89)90160-6

https://doi.org/10.1016/0020-0190(82)90015-1

https://doi.org/10.1007/978-3-642-04027-6_19

https://doi.org/10.1093/logcom/exs025

http://arxiv.org/abs/2202.07069

https://doi.org/10.4230/LIPIcs.CALCO.2023.21

https://doi.org/10.1145/3632852

https://topos.site/blog/2024/01/poly-morphic-effect-handlers/

https://doi.org/10.1017/S0960129521000497

https://doi.org/10.1145/640128.604148

https://doi.org/10.1016/0020-0190(81)90030-2

https://doi.org/10.1007/978-1-4613-1437-0_5

https://doi.org/10.1007/s10485-005-2958-5

https://doi.org/10.1016/j.aim.2011.08.014

https://doi.org/10.1007/978-94-007-0954-6

17
https://doi.org/10.1007/s10817-018-9459-3

https://doi.org/10.1145/3498670

https://doi.org/10.1016/j.entcs.2008.10.018

https://doi.org/10.1145/3828.3835

https://doi.org/10.2168/LMCS-7(1:13)2011

https://doi.org/10.1137/0606031