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Abstract

The Functional Machine Calculus (Heijltjes 2022) is an extension of the lambda-calculus that preserves confluent reduction and
typed termination, while enabling both call-by-name and call-by-value reduction behaviour and encoding the computational
effects of mutable higher-order store, input/output, and probabilistic computation. This talk will present an extension of the
FMC to capture exception handling, conditionals, constants, data types, and iteration.

Keywords: lambda-calculus, computational effects, exception handling

The study of computational effects in the λ-calculus is broad and varied. The overarching problem is
that effects are sequential when modelled through global updates, while the λ-calculus is fundamentally
denotational, governed by an equational theory. The contradiction manifests concretely as the loss of
confluence, so that the choice of reduction strategy becomes salient, and syntactic control over evaluation
behaviour becomes necessary. Semantic reasoning about programs, a main strength of the λ-calculus, is
severely impaired—and much research has the objective of restoring it, including seminal contributions
such as Moggi’s monadic account of effects [8], Levy’s call–by–push–value [7], Plotkin and Power’s algebraic
effects [9], and Plotkin and Pretnar’s effect handlers [10]. Nevertheless, the problem is not settled; to quote
Filinski in 2011:

Yet few would confidently claim that programs with computational effects are by now as well understood,
and as thoroughly supported by formal reasoning techniques, as types and terms in purely functional
settings. — Filinski [3]

The Functional Machine Calculus (FMC) [4,1] is a new approach the problem of combining λ-calculus
with effects. It takes a view of the λ-calculus as an instruction language for an abstract machine with a
single stack in the style of Krivine [5], where application is push, abstraction is pop, and variable is execute.
To accommodate effects, the calculus introduces the following two extensions [4].

Locations Multiple stacks on the machine, each named by a location, allow the encoding of various effects
via push and pop actions: mutable higher-order store, as stacks of depth at most one; input/output, as
pop-only respectively push-only streams; and probabilities and non-determinism as probabilistically
respectively non-deterministically generated streams.
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Sequencing The introduction of sequential composition and its unit, imperative skip, gives control over
evaluation behaviour away from strict call–by–name, and allows the encoding of Plotkin’s call–by–value
λ-calculus [11], Moggi’s computational metalanguage [8], and call–by–push–value [7].

Encoding effects into the generalized operators of the calculus, rather than introducing primitives,
means that two key properties of the λ-calculus are preserved.

Confluence Reduction in the FMC is confluent in the presence of effects. This is a consequence of the
separation of operational behaviour, which governs the machine, from local reduction behaviour, which
is the interaction of consecutive push and pop actions. Reduction equivalence for state then implements
the algebraic laws of Plotkin and Power [9].

Types The FMC can be simply typed, which conveys strong normalization and termination of the ma-
chine. This gives a solution to the problem of typing higher-order store: Landin’s Knot [6], which
encodes recursion via higher-order store, cannot be typed (in its full generality).

In this talk I will introduce a third extension to the FMC, choice, which allows to include a wider
range of computational behaviours: constants, conditionals, data constructors, exception handling, and
loops. These have in common that, semantically, they are modelled by sums or coproducts: for example,
the Booleans are given by the type 1 + 1, the error monad is given by the functor TX = E +X for a set
of exceptions E, and loops are modelled by taking a map in A → A+B to one in A → B (looping on A,
exiting on B) [2]. Together, these will be referred to as choice constructs.

The aim is sixfold. First and second, to preserve confluence and types: the resulting calculus should
support a natural, confluent reduction relation, and a notion of simple types that guarantees termination
of the machine and strong normalization of reduction (in the absence of loops). Third, minimality :
choice constructs should be captured with as few syntactic operators as possible, avoiding any overlap
in functionality and minimizing the interactions or reductions governing the semantics of the calculus.
Fourth, operational semantics: the calculus should continue to be an instruction language for a simple
and natural abstract machine. Fifth, seamless integration: different effects should combine seamlessly,
without requiring lifting operations. Finally, the FMC has a natural first-order restriction, where function
arguments are restricted to be (first-order) values, not arbitrary terms. The sixth aim is to preserve
this restriction, which ensures that choice constructs are independent of the calculus being first-order or
higher-order.

The approach has been to reconsider the notion of choice from first principles, with the aim of capturing
coproducts and the constructs that they model in a simple and natural way, satisfying the six criteria
above. This led to three (mostly) standard syntactic constructions, which however interact with the stack
in subtle ways to give new and unexpected reduction behaviours. The resulting calculus is in some ways
highly familiar, yet simultaneously in other ways novel and surprising.

In contrast with stateful effects, confluence and type safety are expected for exception handling. The
main results are to integrate exceptions seamlessly with stateful effects, to support natural operational
and denotational semantics, and to capture a wide range of behaviours with an elegant, minimal syntax.
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