
Submitted to MFPS 2024

Implicit automata in �-calculi III:
affine planar string-to-string functions ?

Cécilia Pradica,1 Ian Pricea,2

a Department of Computer Science
Swansea University

Wales

Abstract

We prove a characterization of first-order string-to-string transduction via �-terms typed in non-commutative affine logic that
compute with Church encoding, extending the analogous known characterization of star-free languages. We show that every
first-order transduction can be computed by a �-term using a known Krohn-Rhodes-style decomposition lemma. The converse
direction is given by compiling �-terms into two-way reversible planar transducers. The soundness of this translation involves
showing that the transition functions of those transducers live in a monoidal closed category of diagrams in which we can
interpret purely affine �-terms. One challenge is that the unit of the tensor of the category in question is not a terminal
object. As a result, our interpretation does not identify �-equivalent terms, but it does turn �-reductions into inequalities in
a poset-enrichment of the category of diagrams.

Keywords: non-commutative linear logic, transducers, �-calculus, automata theory, Church encodings

1 Introduction

The first author and Nguyễn initiated a series of work that compares the expressiveness of simply-typed
affine �-calculi (in the sense of linear logic) and finite-state machine from automata theory in [29]. This
endeavour is very much in the spirit of implicit computational complexity, a field where one attempts
to capture complexity-theoretic classes of functions (rather than automata-theoretic) via various typed
programming languages, hence our borrowing of the term “implicit”.

The starting point was to refine Hillebrand and Kanellakis’ theorem [19, Theorem 3.4] that states that
the simply-typed �-calculus captures regular languages when computing over Church encodings. Then, it
was shown that one can also characterize star-free languages via the non-commutative affine �-calculus
(�}) [29]. �} features a function type that constrains arguments to be used at most once and “in order”,
which restrains the available power. It was conjectured that, when it comes to affine string-to-string
functions, �} computes exactly first-order transductions and its commutative variant the larger class of
regular transductions [29]. The latter was proven in follow-up work [27,25] and the main contribution of
this paper is to tackle the former, extending and generalizing [29, Theorem 1.7].

? We thank Aurore Alcolei, Lê Thành Dũng Nguyễn and Arno Pauly for discussions about this work.
The authors acknowledge support by Swansea University and grant to Swansea University a non-exclusive, irrevo-
cable, sub-licensable, worldwide license to make the accepted manuscript available on its institutional repository.
1 Email: c.pradic@swansea.ac.uk
2 Email: 2274761@swansea.ac.uk

MFPS 2024 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

mailto:c.pradic@swansea.ac.uk
mailto:2274761@swansea.ac.uk

Implicit automata in �-calculi III

Theorem 1.1 Affine string-to-string �}-definable functions and first-order string transductions coincide.
That every first-order transduction is �}-definable follows from a decomposition lemma that states that

all such transductions are compositions of elementary building blocks that can be coded in �}. Most of
this coding was already done in [29, Theorem 4.1]. The more interesting direction is the converse, which
is proven using a semantic evaluation argument to compile �}-definitions into two-way planar reversible
finite transducers (2PRFTs), a variant of two-way transducers that were recently shown to capture exactly
first-order transductions [28]. The semantics in question targets a non-symmetric monoidal-closed category
TransDiag� in which transitions of 2PRFTs find a natural home as morphisms.

Much like other semantic evaluation arguments like Hillebrand and Kanellakis’ or in higher-order model
checking [17,18], a nice aspect is that automata will be computed in a very straightforward way from terms
once things are set up, and this computation will even be polynomial-time here provided we are given a
normal term as input. However, one difficulty we are going to run into will have to do with the fact that
our calculus is not linear but affine and that TransDiag� does not have a terminal object. We will still
manage to use it as an interpretation target for �} by noticing that it carries a Poset-enriched structure
and showing that this is enough to have an interpretation 3 of terms J�K such that JtNFK JtK when t

evaluates to tNF via �-reduction.

Plan of the paper

In Section 2, we review the standard notions concerning Poset-enriched categories and the non-
commutative �-calculus we will require. We then explain in Section 3 what it means for a string-to-string
function to be �}-definable and what 2PRFTs are. The latter we take as an opportunity to introduce
TransDiag� and define transitions of 2PRFTs as morphisms in those categories. In Section 4, we prove
Theorem 1.1. Finally, we conclude with some observations concerning the commutative case and tree
transductions that follow from our work in Section 4 before evoking some further research directions that
could most probably build on the material presented here.

Related work

For a more comprehensive overview of “implicit automata in �-calculi”, one may consult the introduc-
tions of [27,25]. Regarding this paper more specifically, the other most relevant works are the one leading
up to the introduction of 2PRFTs in [28], which mostly comes from Hines’ suggestion in [20], which itself
drew on Girard’s geometry of interaction programme [14] and Temperley-Lieb algebras [1,11]. We use cat-
egorical automata in the sense of Colcombet and Petrişan [8] for practical purposes similar to [27]. While
categorical frameworks are used to give generic results for various classes of automata by, e.g., viewing
them as algebras [2,4,16], as coalgebras [31] or as dependent lenses [33], here we simply use a categorical
definition of 2PRFTs so that it may be easily related to the semantics of the �}-calculus. In particular,
we will focus on the categories TransDiag� (for � ranging over alphabets) and no other categories for most
of the paper. While we are not aware of a source that defines exactly TransDiag�, it is likely that close
matches exist in the literature as it admits a straightforward inductive presentation. A similar construction
is the operad of spliced words in [23, Example 1.2], where the more general operad of spliced contours [23,
Definition 1.1] is used to analyze and generalize the Chomsky-Schützenberger representation theorem.

2 Background

2.1 Categorical preliminaries

In the rest of this subsection, we list the key definitions related to Poset-enriched strict monoidal categories.
In particular, we specialize the definitions from general enriched category [22] to the Poset-enriched case
for the convenience of the reader.

For notation, we use � for composition, but also ; for composition written in the reverse order (f ; g =
g � f) when it is more convenient. We write idA for the identity at object A and [A,B]C for the set of

3 We suspect this can be characterized as an initiality theorem stating that there is a minimal oplax strong monoidal-
closed functor from initial affine monoidal-closed categories to Poset-with-?-enriched monoidal-closed categories, but
we leave this characterization, which would require dealing with tensors in the �}-calculus, for future work.

2

Pradic, Price

morphisms of C with domain A and codomain B. When the ambient category is clear from context or Set,
we sometimes write f : A ! B to mean that f is a morphism from A to B.

Definition 2.1 A category C is said to be Poset-enriched if it is enriched in the category of posets and
monotone functions, i.e., if for every objects A and B, [A,B]C is a partially ordered set and composition
[B,C]C ⇥ [A,B]C ! [A,C]C is monotone with respect to the product ordering on [B,C]C ⇥ [A,B]C .

A functor T : C ! D between Poset-enriched categories is Poset-enriched if it is enriched in the category
of posets and monotone functions, i.e., for any objects A and B of C, TA,B : [A,B]C ! [T (A), T (B)]D is
monotone. A Poset-enriched natural transformation between Poset-enriched functors is just a natural
transformation.

Definition 2.2 A (Poset-enriched) category C is strict monoidal when we have an (enriched) functor
⌦ : C2 ! C and an object I such that (⌦, I) and (⌦, idI) induce monoid structures on the objects and
morphisms of C.

Note that we did not include a symmetry A⌦B ⇠= B ⌦A in our definition of monoidal. Although the
coming definitions also make sense for non-strict monoidal categories, throughout the rest of the paper, we
will consider strict monoidal categories only.

Definition 2.3 A (Poset-enriched) monoidal category (C, I,⌦) is closed if for each object X of C, the
(enriched) functor (� ⌦X) : C ! C has an (enriched) right adjoint (X (�) : C ! C, i.e., for any triple
of objects X,Y, Z we have a natural isomorphism ⇤X,Y,Z : [X ⌦ Y, Z]C

⇠= [X,Y (Z]C which is monotone.
We will write evY,Z for the counit of the adjunction 4 .

As we are also interested in categories with a dualising structure, it would be natural to ask for an
(enriched) compact-closed category. However, to the author’s knowledge, there is no clear consensus on
the “correct” definition of compact-closed category when the tensor is not symmetric. One such candidate,
a restricted version of pivotal category, was put forward by Freyd & Yetter [12] and is appropriate to our
needs. The following definitions come from Selinger’s survey of graphical languages [32].

Definition 2.4 In a monoidal category, an exact pairing between two objects A and B, is given by a pair
of maps ⌘ : I ! B ⌦ A, " : A ⌦ B ! I, called respectively cups and caps, such that the following two
triangles commute 5 :

A A⌦B ⌦A

A

idA⌦⌘

idA
"⌦idA

B B ⌦A⌦B

B

⌘⌦idB

idB
idB⌦"

In an exact pairing, B is called the right dual of A and A is called the left dual of B.

Definition 2.5 A monoidal category is left (resp. right) autonomous if every object A has a left (resp.
right) dual, which we denote ⇤A (resp A

⇤). It is autonomous if it is both left and right autonomous.

Any choice of duals A
⇤ and cups and caps "A, ⌘A for every object A in a left autonomous category

C extends (�)⇤ to a functor C ! Cop by setting f
⇤ = (⌘A ⌦ idB⇤); (idA⇤ ⌦ f ⌦ idB⇤); (idA⇤ ⌦ "B) when

f : A ! B. We then also have that the chosen cups and caps are natural transformations. Similar
definitions can be made for right autonomous categories.

Definition 2.6 A pivotal category is a right autonomous category equipped with a monoidal natural
transformation iA : A ! A

⇤⇤. We are primarily interested in the case where iA is the identity, in which
case, we refer to it as a strict pivotal category.

The following lemma shows that pivotal categories allow us treat left and right duals as the same and
define closure in terms of duals.

4 It is equal to ⇤�1
Y,Y,Z(idY(Z) : (Y (Z) ⌦ Y ! Z by definition and corresponds to an evaluation morphism

(Y (Z)⌦ Y ! Z used to interpret function application.
5 These equations are typically called the “yanking” or “zigzag” equations.

3

Implicit automata in �-calculi III

 , x : ⌧, 0;� ` x : ⌧ ;�, x : ⌧,�0 ` x : ⌧

 ;�, x : ⌧ ` t : �

 ;� ` �x.t : ⌧ (�

 ;� ` t : ⌧ (� ;�0 ` u : ⌧

 ;�,�0 ` t u : �

 , x : ⌧ ;� ` t : �

 ;� ` �x.t : ⌧ ! �

 ;� ` t : ⌧ ! � ; · ` u : ⌧

 ;� ` t u : �

Figure 1. Syntax and typing rules for �}. The contexts and � are lists of pairs x : ⌧ containing a variable name x and
some type ⌧ . We assume that all variables appearing in a context and under binders are pairwise distinct and that terms and
derivations are defined up to ↵-renaming.

Lemma 2.7 Pivotal categories are autonomous and closed.

Proof Since A
⇤⇤ ⇠= A and A

⇤⇤ is the right dual of A⇤, it follows that A
⇤ is also left dual of A.

To show monoidal closure, define the functor (B (�) := (�⌦B
⇤). We can construct the adjunction

by setting ⇤A,B,C(f) = (idA ⌦ ⌘B); (f ⌦ idB⇤), which has inverse ⇤�1A,B,C(g) = (g ⌦ idB); (idC ⌦ "B). That
⇤ and ⇤�1 are inverse is provable thanks to the yanking equations.

2

2.2 The planar �-calculus �}

For most of the paper, we will be working in the non-commutative fragment of the affine �-calculus that
we call �}. Types of �}, that we typically write with the greek letter ⌧,� and , are inductively generated
by a designated base type o and two type constructors (and ! corresponding respectively to affine and
unrestricted function types. We will have the following restrictions for the function spaces built with (:

• arguments must be used at most once
(�f.�x. f x x does not have type (o (o) (o (o)

• arguments must occur in order in application.
(�x.�f. f x does not have type o ((o (o) (o)

We introduce both the syntax and the typing rules of �} (which, in particular, enforce those restrictions) in
Figure 1. Throughout, we formally need to manipulate terms that come with their type derivations rather
than raw terms, but we will often simply write out terms rather than typing judgement for legibility. We
call the fragment where types do not contain the non-affine arrow ! purely affine.

To make those term compute, we define the capture-avoiding substitution of x by a term u in t by t[u/x]
as usual, as well as the relation !� of �-reduction as being the least relation satisfying (�x. t) u !� t[u/x]
for all well-typed expressions (of the same type) and being closed by congruence. Call !⇤� its reflexive
transitive closure. An expression of shape (�x. t) u is called a �-redex and a term containing no such redex
is called normal. The least congruence containing all clauses t =⌘ �x. t x for every t with no occurrence
of x which has a function type is called ⌘-equivalence. Two terms are called �⌘-equivalent if they can be
related by the least equivalence relation containing !� and =⌘. We write =�⌘ for �⌘-equivalence.

Every rewriting sequence involving !� and well-typed terms terminates.

Proposition 2.8 (standard argument, see also [29, Proposition 2.3]) For every ; � ` t : ⌧ ,
there is a normal term tNF with the same typing such that t !⇤� tNF.

4

Pradic, Price

3 First-order string-to-string transductions in the planar affine �-calculus

3.1 Definable string-to-string functions in the planar affine �-calculus

In order to discuss string functions in �}, we need to discuss how they are encoded. For that, we use the
same framework as in [24,25]. In the pure (i.e. untyped) �-calculus and its polymorphic typed variants
such as System F, the canonical way to encode inductive types is via Church encodings. Such encodings
are typable in the simply-typed �-calculus by dropping the prenex universal quantification that comes with
them in polymorphic calculi. For instance, for natural numbers and strings over {a, b}, writing Church(w)
for the Church encoding of w, we have Church(aab) = �a.�b.�✏. aab = �a.�b.�✏. a (a (b ✏)).

Conversely, a consequence of normalization is that any closed simply typed �-term “of type string” is
�⌘-equivalent to the Church encoding of some string. In the rest of this paper, we use a type for Church
encodings of strings that is finer than usual and not expressible without (, first introduced in [13, §5.3.3].

Definition 3.1 Let ⌃ be an alphabet. We define Str⌃ as (o (o) ! . . . ! (o (o)| {z }
|⌃| times

! o ! o.

Definition 3.2 Given an alphabet ⌃ = {a1, . . . , an}, define the signature ⌃ as a1 : o (o, . . . , an : o (
o, ✏ : o. For every word w 2 ⌃⇤ define the typed term ⌃; · ` w : o and the closed term Church(w) : Str⌃ by

✏ = ✏ aiw
0 = ai w

0 and Church(w) = �a1 . . .�an.�✏. w

We can then show the following by inspecting the normal form and using Proposition 2.8.

Lemma 3.3 For every ⌃; · ` t : o, t is �⌘-equivalent to a unique wt and, a fortiori, for every ⌃; · ` u : o,
u is �⌘-equivalent to a unique Church(wu).

As a consequence, �}-terms of type Str⌃ ! Str� correspond to functions ⌃⇤ ! �⇤, but have a limited
expressivity. We consider a natural extension of these by allowing to emulate a limited kind of polymorphism
via type substitutions ⌧ [] defined as follows.

o[] = and (⌧ (�)[] = ⌧ [] (�[]

Type substitutions extend in the obvious way to typing contexts, and even to typing derivations, so
that ; � ` t : ⌧ entails []; �[] ` t : ⌧ []. In particular, it means that a Church encoding t : Str⌃
is also of type Str⌃[] for any type . This ensures that the following notion of definable string-to-string
functions makes sense and is closed under function composition.

Definition 3.4 A function f : ⌃⇤ ! �⇤ is called affine �}-definable when there exists a purely affine type
 together with a �-term f : Str⌃[] (Str� such that f and f coincide up to Church encoding; i.e., for
every string t 2 ⌃⇤, Church(f(t)) =�⌘ f Church(t).

Example 3.5 The function reverse : ⌃⇤ ! ⌃⇤ that reverses its input is affine �}-definable. Supposing
that we have ⌃ = {a1, . . . , ak}, one �}-term that implements it is

�s.�a1. . . .�ak.�✏. s (�x.�z.x (a1 z)) . . . (�x. (ak z)) (�x.x) ✏ : Str⌃[o (o] (Str⌃

This definition involves terms defined in the full calculus that still requires to work with the ! type
constructor that occurs in Str. But we also have an equivalent characterization in terms of purely affine
terms. This characterization is obtained by inspecting the normal form of a �} definition.

Lemma 3.6 (particular case of [25, Lemma 5.25], easier to prove from Proposition 2.8)

Let ⌃ = {a1, . . . , an} and � = {b1, . . . , bk} be alphabets. Up to �⌘-equivalence, every term of type
Str⌃[] (Str� is of the shape �s.�b1. . . .�bk.�✏. o (s d1 . . . dn d✏) such that o, d✏ and the dis are purely
linear �}-terms with no occurrence of s, that is, terms such as we have typing derivations

�; · ` o : (o �; · ` di : (�; · ` d✏ :

5

Implicit automata in �-calculi III

This lemma and the fact that reverse is definable mean that an affine �}-definable function ⌃⇤ ! �⇤

can, without loss of generality, be given by a �}-transducer, which we define as follows (see e.g. [30,
Definition 2.6] or [27, Definition 3.22] for similar definitions).

Definition 3.7 A �}-transducer with input ⌃⇤ and output �⇤ is given by the following types and terms
from the purely affine planar �-calculus with constants in �:

• an iteration type ,
• for each a 2 ⌃, a term da : (over the signature �,
• a term d✏ :
• and a term o : (o.

The underlying function is then defined by mapping a word w0 . . . wn to the word corresponding to the
normal form of o (dwn (. . . (dw0 d✏) . . .)).

3.2 The category of planar diagrams

We will now introduce a category of what we are going to call planar diagrams. The idea is that the
morphisms may be represented by graphs with (an ordered set of) vertices labelled by polarities p 2 {�,+}
and edges labelled by words over some fixed output alphabet �. Also given would be a partition of the
vertices into input and outputs, and then the composition would be represented by pasting the diagrams
together and concatenating labels, in an order prescribed by the polarities and whether the nodes involved
are inputs or outputs. One such diagram is pictured in Figure 2.

+

�

+

�

�

+

�

+

�

+

a

b

aba

Figure 2. A geometric realization of a morphism from + � + � � to + � + � +. The edge directions are not part of the
definition, but inferred from the polarity labels of the source and targets. When the label is ✏, we omit it from the picture.

The major restriction that we will put on the diagrams living on our category is that they be planar.
While we will define these morphisms in a combinatorial way for simplicity, this condition is more intuitive
when interpreted geometrically. A geometric interpretation of a diagram can be given by writing out the
nodes in order on the boundary of a bounding rectangle (filled in grey in Figure 2), the inputs sitting on
the left boundary and outputs on the right boundary, and tracing out the edges within that square. A
diagram is then geometrically planar when it is possible to do so without making the edges cross.

On the other hand, the combinatorial definition goes as follows.

Definition 3.8 (V,<,E), consisting of an undirected graph (V,E) (E ✓ [V]2) and a total order < over
V , is called combinatorially planar if for every four vertices a < b < c < d then we do not have both edges
between a and c and between b and d.

Checking that a combinatorial planar structure can be realized as a geometrical planar structure is
relatively straightforward. Proving that conversely a structure with a geometrically planar realization is
combinatorially planar can be done using the Jordan curve theorem.

While the diagrams formally do not have a direction, an intended traversal direction is going to be
induced by the label of the vertices and whether they are in the input or output sets. More precisely

• if v is an input vertex of polarity + or an output vertex of polarity �, then it is an implicit source and
• if v is an output vertex of polarity + or an input vertex of polarity �, then it is an implicit target.

6

Pradic, Price

In morphisms, we will restrict edges so that they contain exactly one implicit source and target, so overall
they are all orientable. This allows to define the composition f � g of two diagrams unambiguously. This
can be done for geometrical representations of f and g as follows:
(i) paste the two diagrams together, identifying the output boundary of g with the input boundary of f
(ii) take the new bounding rectangle to be the union of those for f and g; erase the nodes that do not

belong to its boundary, as well as the edges that dangle in its interior and loops
(iii) concatenate the labels along the implicit direction of the edges they are labelling
The way we restricted the edges so that they may be oriented makes sure that the last step is well-defined
and yields a picture where each interior edge is unambiguously labelled by a word. This process, pictured
on an example in Figure 3, can be easily adapted beat-for-beat with the combinatorial definition. However,
checking that this yields a diagram which is still planar is more easily done geometrically.

+

�

+

+

+

�

+

�

a

b

c

;

+

+

�

+

�

+

+

�

x

z

y

7�!

+

�

+

+

+

�

+

�

a

b

c

+

+

�

x

z

y

7�!
+

�

+

+

+

�

ax

czb

Figure 3. How morphisms compose

Let us summarize what is a legal diagram from a combinatorial standpoint.

Definition 3.9 A combinatorial planar diagram labelled by a monoid M is a tuple (Vin, Vout, ⇢, <,E, `)
where

• Vin and Vout are disjoint finite sets of vertices
• < is a total order over Vin [Vout

• ⇢ : Vin [Vout ! {+,�} assigns polarities to vertices
• E contains subsets of Vin [Vout of size exactly two
• ` : E ! M assigns labels to edges

subject to the following restrictions, setting V = Vin [Vout:

• all vertices in (V,E) must have degree at most one
• vin < vout for every vin 2 Vin and vout 2 Vout

• (V,<,E) must be planar
• every edge e 2 E contains an implicit source as well as a target.

We can now give an official formal definition of categories of diagrams TransDiag⌃ where ⌃ is going to
be the output alphabet. To make the monoidal structure on TransDiag⌃ strict and our lives easier, we will
take objects to be words over {+,�} rather than labelled sets of inputs and outputs, and determine the
vertices of the diagrams by positions in the input and output objects.

Definition 3.10 Let ⌃ be a finite alphabet. The category of planar diagrams over ⌃, TransDiag⌃, is
defined as follows.

• Objects are finite words in {+,�}⇤.
• Morphisms, for A = a1 . . . an and B = b1 . . . bm a morphism A ! B is a planar combinatorial

diagram labelled by ⌃⇤ where:
· Vin = {(�1, 1), . . . , (�1, n)}
· Vout = {(1, 1), . . . , (1,m)}

7

Implicit automata in �-calculi III

· < is defined by setting (i, q) < (j, r) if and only if (i, iq) <lex (j, jr) in the lexicographic order
• Identities are given by diagrams where all labels are ✏ and containing all possible edges
{(�1, k), (1, k)}

• Composition h = f ; g is given by identifying the output vertices (1, k) of g with the input vertices
(�1, k) of f and composing the combinatorial diagrams as explained above.

The free monoid structure on objects {+,�}⇤ extends to a strict monoidal structure on TransDiag⌃,
i.e., tensoring of objects is concatenation and the unit I is ✏. Over morphisms, tensoring can be pictured as
putting two diagrams on top of each other as in Figure 4. Note that the planarity of our diagrams means
that this tensor cannot be equipped with a symmetric structure and that I is not a terminal object.

+

�

+

+

+

�

+

a

b

c

⌦
+

�

+

+
x

z

7�!

+

�

+

+

�

+

+

+

�

+

+

a

b

c

x

z

Figure 4. The monoidal product of two morphisms

�

+

�

+

(a) id�+ : �+ ! �+

�

+

�

+

(b) ⌘�+ : I ! (�+)⌦ (�+)⇤

�

+

�

+

(c) "�+ : (�+)⇤ ⌦ (�+) ! I

Figure 5. Identity, cup and cap for the object �+

Our category also carries a strict pivotal structure (Definition 2.6). The dual w
⇤ of an object w is

obtained by reversing it and flipping the polarities. For instance, (+��)⇤ is ++�. Going by this definition,
note we also have (w⇤)⇤ = w. We also have natural transformations ⌘A : I ! A⌦A

⇤ and "A : A⇤ ⌦A ! I
that we picture in Figure 5. They satisfy the yanking equations, which gives us in particular the closed
structure by setting A (B = B ⌦ A

⇤, evA,B = idB ⌦ "A and ⇤A,B,C(f) = (idA ⌦ ⌘B); (f ⌦ idB⇤) as per
Lemma 2.7.

Finally, observe that we may define a natural order on combinatorial diagrams sharing the same vertices.
Given two such diagrams d and d

0 with respective edge sets Ed and E
0
d, we say that d d

0 whenever Ed ✓ E
0
d

and their edge labellings coincide over Ed. This gives an order on hom-sets of TransDiag⌃ where composition
and tensoring are easily checked to be both monotone. Together with the observation that we have cups
and caps that satisfy the yanking equations, we thus have.

Lemma 3.11 TransDiag⌃ equipped with the concatenating tensor and inclusion of labelled edges is a strict
monoidal-closed poset-enriched category.

Finally, we note that, for any set of vertices, the bottom element in this order we have defined over
diagrams is given by the graph with no edges. Tensoring bottom elements yield bottom elements and idI
is the bottom element of [I, I]TransDiag⌃

.

8

Pradic, Price

3.3 Two-way planar transducers

Following Colcombet and Petrişan [8], we formally define our notion of two-way planar reversible transducers
(2PRFTs) as being functors whose domain Shape⌃ is category whose morphisms represent infixes of words.
In our situation it will mostly have the advantage of concision and making the relationship between 2PRFTs
and TransDiag obvious.

Definition 3.12 For any finite alphabet ⌃, there is a three object category Shape⌃ generated by the
following finite graph, where there is one morphism for each a 2 ⌃.

in states out.

a

/

Morphisms states ! states are identified with words of ⌃⇤ by writing au for a;u and ✏ for idstates (note that
the composition is left-to-right). For any category C and objects I and O of C, define a (C, I, O)-automaton
with input alphabet ⌃ to be a functor A : Shape⌃ ! C with A(in) = I and A(out) = O. Given such an
automaton A, its semantics is the map ⌃⇤ ! [I,O]C given by w 7! A(.);A(w);A(/).

In this framework, we can for instance define deterministic finite automata as (FinSet, 1, 2)-functors
and nondeterministic ones as (FinRel, 1, 1)-functors, and check that the semantics computes the languages
as we expect it. As the category TransDiag⌃ corresponds to transition profiles as studied in [28], we will
use that to define 2PRFTs in a completely equivalent way. In that case, we will pick I and O such that
[I,O]TransDiag⌃

⇠= ⌃⇤?, where ⌃⇤? is the disjoint union of ⌃⇤ with a singleton containing a ? element; this is
required because we will obtain this function by reading off the label of a specific edge of a morphism that
may not always exist.

Example 3.13 Let us build a (TransDiag{0,1,2},+,+)-automaton with input alphabet {0, 1, 2} that pads
any string in {0, 1, 2}⇤ to ensure that every 2 is preceded by a 1 in the output. First, here is a standard
automata-theoretic picture of such a device and its transition table:

q
!
0start

q
!
1

q
!
2

q

3

q
!
4

./✏

//✏

0/0
1/1

2/✏
., 0, 2/1

1/✏

2/2

. / 0 1 2

q
!
0 q

!
1 /✏

q
!
1 q

!
2 /✏ q

!
1 /0 q

!
1 /1 q

3 /✏

q
!
2

q

3 q

!
4 /1 q

!
4 /1 q

!
4 /✏ q

!
4 /1

q
!
4 q

!
1 /2

Using the ordering given by the subscripts and assigning + to the forward vertices, i.e., q!i , and � to
the backward vertices, i.e., q j , we obtain the word F (states) = +++�+. For each letter a 2 ⌃ t {., /}
we assign the morphism F (a) of the functor by reading it off the table.

F (.) F (0) F (1) F (2) F (/)

+ +

+

+

�

+

+

+

+

�

+

+

+

+

�

+

+

+

+

�

+

+

1

0

1

1

1

2

9

Implicit automata in �-calculi III

Definition 3.14 A two-way planar reversible transducer (2PRFT) T with input alphabet ⌃ and output
alphabet � is a (TransDiag�, ✏,+�)-automaton with input alphabet ⌃.

Writing �⇤? for the disjoint union of �⇤ with a singleton {?} containing a designated ? element, the
semantics of such a 2PRFT T induces a function

⌃⇤ [✏,+�]TransDiag�
�⇤?

semantics of T read off the label
(? if there is no edge)

Note that our choice of ✏ and +� means that by convention, both “initial” and “final” states must
occur before the initial and after the final reading of /, while the convention of [28, Definition 2.1] and in
Example 3.13 is slightly different for the initial state. In that version, it should start by reading ., making
the 2PRFTs of [28] isomorphic to (TransDiag�,+,+)-automata rather than (TransDiag�, ✏,+�)-automata.
But it is not hard to see that both options induce the same class of string-to-string functions. It will turn
out that Definition 3.14 matches much more closely �-transducers, so we favor it out of convenience.

4 Equivalence between planar transducers and �} for strings

Now that we have introduced properly our two classes of string-to-string functions, affine �}-definable
functions and first-order transductions, as well as two formalisms that define them, �}-transducers and
2PRFTs, we will now embark on the proof that they are equivalent.
Theorem 1.1 Affine string-to-string �}-definable functions and first-order string transductions coincide.

To prove that affine �}-definable functions are first-order transduction, we use the fact that the for-
mer class correspond to �}-transductions and then define a map from �}-transductions to 2PRFTs that
preserves the semantics. To do so, we define an interpretation of purely affine �}-terms (with duplicable
free variables in �) in the category TransDiag�. One difficulty is that TransDiag� is not affine monoidal
closed, that is, I is not a terminal object. So instead of terminal maps we will use ?A 2 [A, I]TransDiag�
and establish that �-reductions correspond to inequalities in TransDiag� in Subsection 4.1. We will then
conclude in Subsection 4.2. Proving the converse, which will amount to a coding exercise and a reference
to [29] once the right characterization of first-order transductions as compositions of more basic functions
is recalled, will be done in Subsection 4.3.

4.1 Interpreting �}

All results of this subsection hold for any strict monoidal-closed poset-enriched category C with a family
of least elements ?X 2 [X, I]C stable under ⌦ and with ?I = idI, provided we are given an object JoK of C
and, for every constant x : ⌧ in � a suitable interpretation JxK : I ! J⌧K, where J⌧K is extended inductively
over all types by setting for J⌧ (�K a chosen internal hom J⌧K (J�K. This interpretation also extends
to contexts by tensoring as usual by setting J·K = I and J�, x : ⌧K = J�K ⌦ J⌧K. The extension of J�K over
all purely affine �} typing derivations 6 is then given in Figure 6. One thing to note is that the overall
interpretation JtK of a term t can be carried out in polynomial time in the size of t because type-checking
is polynomial-time and composition in TransDiag� can be performed in logarithmic space.

While we will not have that t =�⌘ u implies JtK = JuK, it will be the case that:
• ⌘-equivalences t =⌘ u will be mapped to equalities of morphisms JtK = JuK
• �-reductions t !� u will be mapped to inequalities JtK � JuK

so that, in particular, a normal form tNF of t will always satisfy JtNFK JtK. Let us now establish that,
beginning with ⌘-equivalence.

Lemma 4.1 When �;� ` t : ⌧ (�, we have J�x. t xK = JtK.

Proof By definition J�x. f xK = ⇤J�K,J⌧K,J�K(evJ⌧K,J�K�(JfK⌦idJ⌧K)), and the latter is equal to JtK by using the
universal property of the internal hom. 2

6 It can actually be shown that the interpretation of a legal typing derivation �;� ` t : ⌧ only depends on the
conclusion. But we won’t need to make use of that fact.

10

Pradic, Price

x a variable of �
�;� ` x : ⌧ 7�! JxK � ?J�K : J�K ! J⌧K

�;�, x : ⌧,�0 ` x : ⌧ 7�! ?J�K ⌦ idJ⌧K ⌦?J�0K : J�K ⌦ J⌧K ⌦ J�0K ! J⌧K

�;�, x : ⌧ ` t : �

�;� ` �x.t : ⌧ (� 7�!
JtK : J�K ⌦ J⌧K ! J�K

⇤J�K,J⌧K,J�K(JtK) : J�K ! J⌧K (J�K

�;� ` t : ⌧ (� �;�0 ` u : ⌧

�;�,�0 ` t u : � 7�!
JtK : J�K ! J⌧K (J�K JuK : J�0K ! J⌧K
evJ⌧K,J�K � (JtK ⌦ JuK) : J�K ⌦ J�0K ! J�K

Figure 6. Interpretation of purely affine �}-terms over � (parameterized by JoK and JxK : I ! J⌧K for x : ⌧ occurring in �).

Corollary 4.2 If we have t =⌘ u, then we have that JtK = JuK.

Proof idea Easy induction using Lemma 4.1. 2

Lemma 4.3 Suppose we have �;�, x : ⌧,�0 ` t : � and �;�00 ` u : ⌧ . Then we have

Jt[u/x]K JtK � (idJ�K ⌦ JuK ⌦ idJ�0K) (: J�,�00,�0K ! J⌧K)

Proof The proof is by induction over the typing derivation of t. We will use throughout that � and ⌦ are
monotone, that ?A ⌦?B = ?A⌦B as well as idI = ?I and that ?A f for any f : I ! A without calling
explictly attention to it.

• If t is the variable x, then both sides are equal to ?J�K ⌦ JuK ⌦?J�0K.
• If t a variable other than x from the linear part of the context, say y from � such that we have
� = ⇥, y : �,⇥0 (the case where y is from �0 is treated analogously), we derive the following using
that ?J�00K ?J�K � JuK:

Jy[u/x]K = ?J⇥K ⌦ idJ�K ⌦?J⇥0,�00,�0K

= ?J⇥K ⌦ idJ�K ⌦?J⇥0K ⌦?�00 ⌦?J�0K

 ?J⇥K ⌦ idJ�K ⌦?J⇥0K ⌦ (?J�K � JuK)⌦?J�0K

= ?J⇥K ⌦ idJ�K ⌦?J⇥0K ⌦ (?J�K � JuK)⌦?J�0K

= (?J⇥K ⌦ idJ�K ⌦?J⇥0K ⌦?J�K ⌦?J�0K) � (idJ�K ⌦ JuK ⌦ idJ�0K)

= JyK � (idJ�K ⌦ JuK ⌦ idJ�0K)

• If t is a variable of �, the desired inequality follows from

?J�,�00,�0K ?J�K⌦J⌧K⌦J�0K � (idJ�K ⌦ JuK ⌦ idJ�0K)

• If t = f g for f : ⌧ (�, g : ⌧ , we have two subcases according to which context x appears in.
· Suppose x appears in the context of f so that we have, �0 = �0f ,�

0
g and judgements

�;�, x : ⌧,�0f ` f : ⌧ (� and �;�0g ` g : ⌧

11

Implicit automata in �-calculi III

By the induction hypothesis, we have Jf [u/x]K JfK�(idJ�K⌦JuK⌦ idJ�0
f K), which allows to derive

Jt[u/x]K = Jf [u/x] gK
= evJ⌧K,J�K � (Jf [u/x]K ⌦ JgK)
 evJ⌧K,J�K �

⇣⇣
JfK � (idJ�K ⌦ JuK ⌦ idJ�0

f K)
⌘
⌦ JgK

⌘

= evJ⌧K,J�K �
⇣⇣

JfK � (idJ�K ⌦ idJ⌧K ⌦ idJ�0
f K)

⌘
⌦ JgK

⌘
� (idJ�K ⌦ JuK ⌦ idJ�0

f K ⌦ idJ�0
gK)

= evJ⌧K,J�K �
⇣
JfK � (idJ�,x:⌧,�0

f K ⌦ JgK)
⌘
� (idJ�K ⌦ JuK ⌦ idJ�0

f K ⌦ idJ�0
gK)

= Jf gK � (idJ�K ⌦ JuK ⌦ idJ�0
f K ⌦ idJ�0

gK)

· The case when x appears in the context of g is very similar and left to the reader.
• If t[u/x] = �y. t

0[u/x] with y 6= x, then the premise of the rule under consideration is �;�, x : ⌧,�0, y :
⌧
0 ` t : � and the induction hypothesis thus is

Jt0[u/x]K Jt0K � (idJ�K ⌦ JuK ⌦ idJ�0K ⌦ idJ⌧ 0K)

So the result is then derived as follows, using the monotonicity of ⇤ and that we have ⇤A,B,C(h � (`⌦
idB)) = ⇤A,B,C(h) � ` in monoidal closed categories:

Jt[u/x]K = J�y. t0[u/x]K
= ⇤J�K⌦J⌧K⌦J�0K,J⌧ 0K,J�K(Jt0[u/x]K)
 ⇤J�K⌦J⌧K⌦J�0K,J⌧ 0K,J�K(Jt0K � (idJ�K ⌦ JuK ⌦ idJ�0K ⌦ idJ⌧ 0K))

= ⇤J�K⌦J⌧K⌦J�0K,J⌧ 0K,J�K(Jt0K) � (idJ�K ⌦ JuK ⌦ idJ�0K))

= J�y. t0K � (idJ�K ⌦ JuK ⌦ idJ�0K))
2

Corollary 4.4 If we have t !� u, then we have that JtK � JuK.

Proof idea Easy induction using monotonicity of � and ⌦ together with Lemma 4.3. 2

We can thus conclude with the only information we will need in the next subsection.

Corollary 4.5 For any t whose normal form is tNF, we have JtNFK JtK.

4.2 From �}-transducers to 2PRFTs

Now we fix an output alphabet � for the �}-transducer. We shall then use the interpretation from the
previous subsection with C = TransDiag�, JoK = +� and the interpretation of the constants of � given in
Figure 7.

Lemma 4.6 For w 2 �⇤, �; · ` w : o is interpreted by the diagram +

�
w .

Proof This is done by an induction over w. When w = ✏, this is obvious. When w = aw
0, we have

Jaw0K = Ja w
0K = (JaK ⌦ Jw0K); evJoK,JoK. Applying the induction hypothesis and drawing out the picture of

this composition, we can conclude by chasing the path.

12

Pradic, Price

+

�

+

�

a

(a) JaK for a 2 �

+

�

(b) J✏K

Figure 7. Interpretation of constants as diagrams

+

�

+

�

a

+

�
w
0

+

�

=
+

�
aw
0

(JaK ⌦ Jw0K) ; ev+�,+�

2

Theorem 4.7 Every �}-transducer can be converted into an equivalent 2PRFT in polynomial time.

Proof As per Definition 3.7, assume that we have a purely affine iteration type , terms �; · ` da : (

for each a 2 ⌃, �; · ` o : (o and �; · ` d✏ : o (. Using the semantic interpretation given above,
we obtain the respective morphisms JdaK : I ! JK (JK (for each a 2 ⌃), JoK : I ! JK (+� and
Jd✏K : I ! JK. We define the equivalent 2PRFT T on the generating morphisms of Shape⌃ as follows.

T (a) = ⇤�1I,JK,JK(JdaK) T (/) = ⇤�1I,JK,JoK(JoK) and T (.) = Jd✏K

To prove that T computes the same function as the �}-transducer given, let’s consider the diagram below.

⌃⇤ {t | �; · ` t : o} {w | w 2 �⇤} �⇤

[I,+�]TransDiag�
�⇤?

normalize

J�K
J�K

T

w 7!o (dwn (...d✏)...))

�(1) (2)

⇠=

⇠=

✓

By inspecting the definitions, the map defined by the �}-transducer is obtained by following the topmost
maximal path while the map defined by T is given by the bottommost maximal path, which we must argue
define the same map. To do so, it suffices to show that faces (1) and (2) commute while the central face
denotes an inequality between maps; here all nodes are equipped with an order structure by taking the
discrete order for the objects on the top row, the order from the enriched structure of TransDiag� for
[I,+�]TransDiag�

and by taking for �⇤? the minimal order such that ? w for w 2 �⇤. Then the maps

13

Implicit automata in �-calculi III

are ordered by pointwise ordering. That the inequality “top path bottom path” suffices to derive “top
path = bottom path” is because the top path necessarily is a maximal element for the pointwise ordering
of maps. This is due to the fact that �⇤ consists of the maximal elements of �⇤?.

That (2) commutes is exactly the statement of Lemma 4.6 while the inequality in the central face is
Corollary 4.5. All that remains to be proven is that (1) commutes. This is witnessed by the chain of
equations below for a fixed input word w = w1 . . . wn 2 ⌃⇤.

T (.w/) = T (/) � T (wn) � . . . � T (w1) � T (.) (by functoriality)

= ⇤�1I,JK,JoK(JoK) � ⇤
�1
I,JK,JK(JdwnK) � . . . � ⇤�1I,JK,JK(Jdw1K) � Jd✏K (by definition of T)

= evJK,JoK � (JoK ⌦ idJK) � evJK,JK � (JdwnK ⌦ idJK) � . . . � evJK,JK � (Jdw1K ⌦ idJK) � Jd✏K
(because ⇤�1

A,B,C(f) = evB,C � (f ⌦ idB))

= evJK,JoK � (JoK ⌦ (evJK,JK � (JdwnK ⌦ . . . evJK,JK � (Jdw1K ⌦ Jd✏K) . . .)))
(by functoriality of ⌦ and A⌦ I = A)

= Jo (dwn . . . (dw1 d✏) . . .)K (by definition of J�K)

2

4.3 From first-order transductions to �}

Now we wish to prove the converse direction of Theorem 1.1, that is that every FO-transduction can be
encoded in �}. Much like in [29,28], we rely on the fact that affine �}-definable string-to-string functions
are closed under composition. Using this and the seminal Krohn-Rhodes decomposition theorem, it was
already shown that affine �}-definable functions include all sequential functions [29, Theorem 5.4]. We thus
rely on the same strategy that is used in [28] to show that 2PRFTs compute all first-order transductions.

Lemma 4.8 (rephrasing of [6, Lemma 4.8], see also [28, Lemma 4.3]) Every first-order transduc-
tion can be decomposed as f � reverse � g � reverse � h where f is computed by a monotone register
transducer and the functions g and h are aperiodic sequential.

Example 3.5 already shows that reverse is affine �}-definable. Now it only remains to show that
functions computed by monotone register transducers [3] are affine �}-definable. Those machines go
through their inputs in a single left-to-right pass, storing infixes of their outputs in registers that they may
update by performing concatenations of previously stored values and constants. Monotone here corresponds
to the further restrictions that those machines have no control states, that the output corresponds to a
single register and that the register updates satisfy a monotonicity condition in addition to being copyless.

First, let us define the notion of update those machines can use. For simplicity, throughout the rest of
this section we assume a fixed output alphabet �, disjoint from the set of natural numbers, and a fixed
input alphabet ⌃.

Definition 4.9 The set of copyless monotone register update from n registers to k registers, which we
write RegUp(n, k), is the subset consisting of those k-uples (w0, . . . , wk�1) of words over �[{0, . . . , n� 1}
such that:

• every index i < n occurs at most once in the overall tuple (copylessness/affineness)
• if we have that i j < n occurring in w`i and w`j respectively, then we have either that `i < `j , or
`i = `j and i occurs before j in w`i . (monotonicity/planarity)

Given � 2 RegUp(k, `) and �
0 2 RegUp(n, k), the composition � � �

0 2 RegUp(n, `) is defined by
substituting each index i < k in � by the ith component of �0 (this preserves copylessness and monotonicity).

At the intuitive level, an element of RegUp(n, k) encodes a function (�⇤)n ! (�⇤)k that can operate
by concatenating together the components of its inputs, subject to restrictions that match affineness and

14

Pradic, Price

planarity 7 . For the sequel, write ⇡` 2 RegUp(k, 1) for ` < k for the obvious projections, ✏
k for the

updates of RegUp(0, k) that initialize every register with the empty word and RegContent for the canonical
isomorphism RegContent : RegUp(0, 1) ⇠= �⇤. With this in hand, we give a working definition of monotone
register transducers.

Definition 4.10 A monotone register transducer consists of the following:
• a number n of registers
• for each input letter a 2 ⌃, a copyless monotone register update �a : xn ! x

n.

It computes the function
⌃⇤ �! �⇤

a1 . . . an 7�! RegContent(⇡0 � �an � . . . � �a1 � ✏k)

Now we will argue that for every monotone register transducer with n registers, we can produce an
equivalent �}-transducer with some iteration type n (o. The intuition behind the definition of n is
that a register holding a string that support concatenations can be encoded using the type o (o and
composition. As we need n copies of those, we thus set

n = (o (o) (. . . ((o (o)| {z }
n-fold

(o

so that n (o is a sufficiently expressive stand-in for the n-fold tensor of o (o.

Lemma 4.11 Every � 2 RegUp(k, n) maps to a �}-term �; · ` � : n (k in a way that is compatible
with composition, that is � � �0 =�⌘ �z. �

0 (� z). Finally, if � 2 RegUp(0, 1), we have RegContent(�) =�⌘

� (�x.x).

Proof idea For � = (w1, . . . , wn) 2 RegUp(k, n), define � : n ! k to be the term �F f1 . . . fk.F t1 . . . tn
where ti is obtained by recursion over wi, starting with the identity and postcomposing with

• the appropriate constant from � when we encounter a letter of �
• fk if we encounter the index k

This is typable in �} specifically because the transitions are monotone and copyless. Then it is relatively
straightforward to check that we have the advertised equations. 2

Then the �}-terms corresponding to transitions will essentially precompose the suitable terms � de-
fined in Lemma 4.11. This corresponds to applying the exponentiation operation, defined by t (o =
�X.�z. X (t z). This operation is compatible with composition, i.e. we have (t (o) � (u (o) =�⌘
(u � t) (o for arbitrary terms t and u which make those expressions typecheck.

Lemma 4.12 Every function definable by a monotone register transducer is �}-definable.

Proof idea Suppose we are given such a transducer with n registers and transitions (�a)a2⌃ and let us build
terms as per Definition 3.7. We take for iteration type n (o, da = �a (o, d✏ = �Z.Z (�x.x) . . . (�x.x)
and o = �K.(K � ⇡0) (�Z.Z (�x.x)). Then using Lemma 4.11, we can check step-by-step we have the
desired equations. 2

5 Conclusion

We have now proven that affine �}-definable string-to-string functions correspond exactly to first-order
transductions. One key aspect of the proof was to use a semantic interpretation of purely affine �-terms as
planar diagrams to compile �}-transducers to 2PRFTs. This result essentially closes the open questions
raised in [29] and provides an alternative, less syntactic, proof for the soundness part of its main theorem.

7 This could have alternatively been defined as a free affine strict monoidal category with a monoid object and
generators for the letters of �.

15

Implicit automata in �-calculi III

We will now discuss further results that could be derived by adapting the material we have developed
in the previous section. We will then list some questions that arise because of, or could be solved using,
the interpretation of terms as (planar) diagrams.

5.1 Discussion on variations: dropping planarity, regular transductions & tree languages

A natural variation on TransDiag� is to drop the planarity requirement on the morphisms so that wires may
cross in the geometric realizations of diagrams. If we do so, the tensor product becomes symmetric, that
is we have a natural isomorphisms �A,B : A⌦ B ! B ⌦ A such that �A,B = �

�1
B,A and �A,I = idA 8 , while

still keeping a poset-enriched autonomous structure. This change makes the order of nodes in diagrams
irrelevant, and objects with the same number of + and � occurring isomorphic 9 . This allows to model
the commutative variation of �}, which we call �a, where we include the exchange rule:

�; �, y : ⌧2, x : ⌧1,�0 ` t : �

�; �, x : ⌧1, y : ⌧2,�0 ` t : �

If we define what are (affine) �a-definability and �a-transducers in a manner analogous to �}-definability
and �}-transducers, as well as the notion of (not necessarily planar) two-way reversible finite transducers
(2RFTs, which match the notion in [9] and thus capture all regular transductions), we have the following.

Theorem 5.1 Affine �a-definable functions and regular transductions coincide:
• �a-transducers can be translated into equivalent 2RFTs in polynomial time
• regular transductions are �a-definable

Proof idea The first point is obtained by an easy adaptation the arguments of Subsections 4.1 (where
we add the interpretation of the exchange rule using the symmetry �) and 4.2. The second point is also
obtained by an argument similar to the one in Subsection 4.3: Lemma 4.8 holds if we replace “aperiodic
sequential” by “sequential” and “first-order transduction” by “regular transduction”. We then need to know
that all sequential functions are �a-definable, which is true by [29, Theorem 5.4]. 2

This statement should be contrasted with [27, Theorem 1.1] which states that regular string-to-string
transductions coincide with functions definable in a variant of �a which is augmented with additives 10 .
There, �-terms defining string-to-string functions are compiled into streaming string transducer (SSTs).
But this translation can yield a machine that has a state-space whose size is non-elementary in terms of
the size of an input �a-transduction free of additives connectives. Since the translations between 2RFTs
and SSTs is Elementary [9], the translation we offer here is more efficient. On the other hand, the
second point improves on [27] by compiling first-order transductions in a smaller �-calculus at the cost
of employing Lemma 4.8 that relies on the powerful and relatively complex technique of Krohn-Rhodes
decomposition instead of a direct polynomial-time compilation of SSTs.

While we have only investigated functions that take strings as inputs in this paper, the tools we have
introduced can be used to study functions that take ranked trees as input (and still output strings). Indeed,
ranked trees, that are parameterized by finite ranked alphabet, can be represented by Church encodings
and given precise affine typing (c.f. [27, §2.3]). In that case, �a-terms get compiled to what amounts to
reversible tree-walking transducers with string output (or simply reversible tree-walking automata if we
take the output alphabet to be empty) as defined by restricting Definitions 3.5 and 3.8 of [30] to string

8 This is of course assuming a strict monoidal product.
9 Quotienting sensibly yields a (poset-enriched) category isomorphic to the one computed by applying the Int
construction [21, §4] to the category whose objects are natural numbers regarded as finite sets and morphisms from
n to k are the subsets of n⇥ �⇤ ⇥ k that induce partial injections from n to k. The composition is then defined by
f � g = {(i, uv, j) | 9`. (i, u, `) 2 f ^ (`, v, j) 2 g} and then the traced monoidal structure is defined analogously to
that of the category of partial injections.
10 And also linear instead of affine, however in the presence of additives, this distinction is not very important
(see [15, §1.2.1] for a discussion).

16

Pradic, Price

outputs. As a result, we can give a new proof of the following theorem, which is also a consequence of [30,
Theorem 1.4] 11 .

Theorem 5.2 Every �a tree-to-string transducer can be turned into an equivalent reversible tree-walking
transducer.

This result means the affine �-calculus without additives cannot recognize all regular tree languages [5],
whereas allowing additives captures all regular tree transductions [27, Theorem 1.2].

5.2 Perspectives

A natural question is whether Theorem 5.2 admits a converse: is every language recognized by a reversible
tree-walking automaton also recognized by some �a-term? Another natural question is “what are the tree
languages recognized by �}-terms?”. Clearly, they should be recognized by tree-walking automata that
are not only reversible, but also planar in the obvious sense. This is an actual restriction, as a non-
planar tree-walking automaton could count the number of leaves modulo 2, which a planar device could
not. So we can also ask the question: is every language recognized by a planar reversible tree-walking
automaton also recognized by some �}-term? These questions might be challenging since we are currently
not aware of a convenient tool similar to the Krohn-Rhodes theorem or [7, Theorem 3.4] that would allow to
decompose tree-walking transducers. A first step might be to check that those transducers, as well as their
planar variant, are closed under composition. This would require considering tree-to-tree transductions as
discussed in [30], which would naturally lead to extending our diagrammatic constructions so that they
may depend on a ranked alphabet, much like the categories of register updates considered in [27]. A variant
of the operad of spliced arrows specified in [23, Definition 1.1] could be of use.

We have treated only affine �}-definable functions in this paper. The next question is whether we
can also get a characterization of �}-definable functions implemented by terms of type Str⌃[] ! Str�. It
is plausible they correspond to first-order polyblind functions alluded to in [26] 12 , which are obtained by
closing first-order transductions under compositions by substitution [26, Definition 4.1]. Our hope is that
this correspondence can be established using a similar strategy as [25, §5.3].

References

[1] Abramsky, S., Temperley–Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics, in:
G. Chen, L. Kauffman and S. Lomonaco, editors, Mathematics of Quantum Computation and Quantum Technology,
volume 20074453, pages 515–558, Chapman and Hall/CRC (2007), ISBN 978-1-58488-899-4 978-1-58488-900-7.
https://doi.org/10.1201/9781584889007.ch15

[2] Adamek, J. and V. Trnkova, Automata and Algebras in Categories, Kluwer Academic Publishers, USA, 1st edition (1990),
ISBN 0792300106.

[3] Alur, R. and P. Černý, Expressiveness of streaming string transducers, in: K. Lodaya and M. Mahajan, editors, IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December
15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages 1–12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010).
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1

[4] Arbib, M. A. and E. G. Manes, Adjoint machines, state-behavior machines, and duality, Journal of Pure and Applied
Algebra 6, pages 313–344 (1975), ISSN 0022-4049.
https://doi.org/https://doi.org/10.1016/0022-4049(75)90028-6

[5] Bojańczyk, M. and T. Colcombet, Tree-walking automata do not recognize all regular languages, SIAM Journal on
Computing 38, pages 658–701 (2008).
https://doi.org/10.1137/050645427

[6] Bojańczyk, M., L. Daviaud and S. N. Krishna, Regular and First-Order List Functions, in: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science - LICS ’18, pages 125–134, ACM Press, Oxford, United Kingdom
(2018), ISBN 978-1-4503-5583-4.
https://doi.org/10.1145/3209108.3209163

11 Both arguments essentially appeal to Girard’s geometry of interaction, but theirs is based on compiling executions
of an abstract machine evaluating �-terms while we focus on a semantic interpretation of linear logic.
12 In which they were called first-order comparison-free. We follow the terminological change introduced in [10].

17

https://doi.org/10.1201/9781584889007.ch15
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/https://doi.org/10.1016/0022-4049(75)90028-6
https://doi.org/10.1137/050645427
https://doi.org/10.1145/3209108.3209163

Implicit automata in �-calculi III

[7] Bojańczyk, M. and A. Doumane, First-order tree-to-tree functions, in: H. Hermanns, L. Zhang, N. Kobayashi and D. Miller,
editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany (online
conference), July 8-11, 2020, pages 252–265, ACM (2020).
https://doi.org/10.1145/3373718.3394785

[8] Colcombet, T. and D. Petrişan, Automata Minimization: a Functorial Approach, Logical Methods in Computer Science
16 (2020).
https://doi.org/10.23638/LMCS-16(1:32)2020

[9] Dartois, L., P. Fournier, I. Jecker and N. Lhote, On reversible transducers, in: I. Chatzigiannakis, P. Indyk, F. Kuhn and
A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-
14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 113:1–113:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017).
https://doi.org/10.4230/LIPIcs.ICALP.2017.113

[10] Douéneau-Tabot, G., Hiding pebbles when the output alphabet is unary, in: M. Bojanczyk, E. Merelli and D. P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,
France, volume 229 of LIPIcs, pages 120:1–120:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPICS.ICALP.2022.120

[11] East, J., Presentations for Temperley–Lieb Algebras, The Quarterly Journal of Mathematics 72, pages 1253–1269 (2021),
ISSN 0033-5606.
https://doi.org/10.1093/qmath/haab001

[12] Freyd, P. J. and D. N. Yetter, Braided compact closed categories with applications to low dimensional topology, Advances
in Mathematics 77, pages 156–182 (1989), ISSN 0001-8708.
https://doi.org/https://doi.org/10.1016/0001-8708(89)90018-2

[13] Girard, J.-Y., Linear logic, Theoretical Computer Science 50, pages 1–101 (1987), ISSN 0304-3975.
https://doi.org/10.1016/0304-3975(87)90045-4

[14] Girard, J.-Y., Towards a geometry of interaction, in: J. W. Gray and A. Scedrov, editors, Categories in Computer Science
and Logic, volume 92 of Contemporary Mathematics, pages 69–108, American Mathematical Society, Providence, RI
(1989). Proceedings of a Summer Research Conference held June 14–20, 1987.
https://doi.org/10.1090/conm/092/1003197

[15] Girard, J.-Y., Linear logic: its syntax and semantics, in: J.-Y. Girard, Y. Lafont and L. Regnier, editors, Advances in
Linear Logic, volume 222 of London Mathematical Society Lecture Notes, pages 1–42, Cambridge University Press (1995).
https://doi.org/10.1017/CBO9780511629150.002

[16] Goguen, J. A., Minimal realization of machines in closed categories, Bull. Amer. Math. Soc. 78, pages 777–783 (1972).
http://dml.mathdoc.fr/item/1183533991

[17] Grellois, C., Semantics of linear logic and higher-order model-checking, Ph.D. thesis, Université Paris 7 (2016).
https://tel.archives-ouvertes.fr/tel-01311150/

[18] Grellois, C. and P.-A. Melliès, Finitary semantics of linear logic and higher-order model-checking, in: Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, pages 256–268 (2015).
https://doi.org/10.1007/978-3-662-48057-1_20

[19] Hillebrand, G. G. and P. C. Kanellakis, On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi,
in: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, pages 253–263, IEEE Computer
Society (1996), ISBN 978-0-8186-7463-1.
https://doi.org/10.1109/LICS.1996.561337

[20] Hines, P., Temperley-Lieb Algebras as two-way automata, http://www.dcs.gla.ac.uk/~simon/qnet/talks/Hines.pdf
(2006). Slides of a talk given at the QNET Workshop 2006.

[21] Joyal, A., R. Street and D. Verity, Traced monoidal categories, in: Mathematical proceedings of the cambridge philosophical
society, volume 119, pages 447–468, Cambridge University Press (1996).

[22] Kelly, G. M., Basic concepts of enriched category theory, Reprints in Theory and Applications of Categories 10, pages
1–136 (2005).
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf

[23] Melliès, P.-A. and N. Zeilberger, The categorical contours of the Chomsky-Schützenberger representation theorem (2023).
This is a thoroughly revised and expanded version of a paper with a similar title (hal-03702762, arXiv:2212.09060)
presented at the 38th Conference on the Mathematical Foundations of Programming Semantics (MFPS 2022). 62 pages,
including a 13 page Addendum on ”gCFLs as initial models of gCFGs”, and a table of contents.
https://hal.science/hal-04399404

18

https://doi.org/10.1145/3373718.3394785
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.4230/LIPIcs.ICALP.2017.113
https://doi.org/10.4230/LIPICS.ICALP.2022.120
https://doi.org/10.1093/qmath/haab001
https://doi.org/https://doi.org/10.1016/0001-8708(89)90018-2
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1090/conm/092/1003197
https://doi.org/10.1017/CBO9780511629150.002
http://dml.mathdoc.fr/item/1183533991
https://tel.archives-ouvertes.fr/tel-01311150/
https://doi.org/10.1007/978-3-662-48057-1_20
https://doi.org/10.1109/LICS.1996.561337
http://www.dcs.gla.ac.uk/~simon/qnet/talks/Hines.pdf
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
https://hal.science/hal-04399404

Pradic, Price

[24] Moreau, V. and L. T. D. Nguyễn, Syntactically and semantically regular languages of lambda-terms coincide through
logical relations (2023). 2308.00198.

[25] Nguyễn, L. T. D., Implicit automata in linear logic and categorical transducer theory, Ph.D. thesis, Université Paris XIII
(Sorbonne Paris Nord) (2021).
https://theses.hal.science/tel-04132636

[26] Nguyễn, L. T. D., C. Noûs and C. Pradic, Comparison-free polyregular functions, in: N. Bansal, E. Merelli and J. Worrell,
editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 139:1–139:20, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021).
https://doi.org/10.4230/LIPICS.ICALP.2021.139

[27] Nguyễn, L. T. D., C. Noûs and C. Pradic, Implicit automata in typed �-calculi II: streaming transducers vs categorical
semantics, CoRR abs/2008.01050 (2020). 2008.01050.

[28] Nguyễn, L. T. D., C. Noûs and C. Pradic, Two-way automata and transducers with planar behaviours are aperiodic (2023).
2307.11057.

[29] Nguyễn, L. T. D. and C. Pradic, Implicit automata in typed �-calculi I: aperiodicity in a non-commutative logic, in:
A. Czumaj, A. Dawar and E. Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 135:1–135:20,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/LIPIcs.ICALP.2020.135

[30] Nguyễn, L. T. D. and G. Vanoni, (almost) affine higher-order tree transducers, CoRR abs/2402.05854 (2024). 2402.
05854.
https://doi.org/10.48550/ARXIV.2402.05854

[31] Rutten, J., Universal coalgebra: a theory of systems, Theoretical Computer Science 249, pages 3–80 (2000), ISSN 0304-
3975. Modern Algebra.
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00056-6

[32] Selinger, P., A Survey of Graphical Languages for Monoidal Categories, page 289–355, Springer Berlin Heidelberg (2010),
ISBN 9783642128219.
https://doi.org/10.1007/978-3-642-12821-9_4

[33] Spivak, D. I., Poly: An abundant categorical setting for mode-dependent dynamics (2020). 2005.01894.

19

2308.00198
https://theses.hal.science/tel-04132636
https://doi.org/10.4230/LIPICS.ICALP.2021.139
2008.01050
2307.11057
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
2402.05854
2402.05854
https://doi.org/10.48550/ARXIV.2402.05854
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/978-3-642-12821-9_4
2005.01894

	Introduction
	Background
	Categorical preliminaries
	The planar -calculus

	First-order string-to-string transductions in the planar affine -calculus
	Definable string-to-string functions in the planar affine -calculus
	The category of planar diagrams
	Two-way planar transducers

	Equivalence between planar transducers and for strings
	Interpreting
	From -transducers to 2PRFTs
	From first-order transductions to

	Conclusion
	Discussion on variations: dropping planarity, regular transductions & tree languages
	Perspectives

	References
	(TransDiag, +, +)-automata vs 2PRFTs

