
Submitted to MFPS 2024

A Semantic Proof of Generalised Cut Elimination for Deep
Inference

⋆

Robert Atkey
a,1

Wen Kokke
a,2

a
Mathematically Structured Programming Group

Computer and Information Sciences
University of Strathclyde
Glasgow, Scotland, UK

Abstract

Multiplicative-Additive System Virtual (MAV) is a logic that extends Multiplicative-Additive Linear Logic with a self-dual
non-commutative operator expressing the concept of “before” or “sequencing”. MAV is also an extenson of the the logic Basic
System Virtual (BV) with additives. Formulas in BV have an appealing reading as processes with parallel and sequential
composition. MAV adds internal and external choice operators. BV and MAV are also closely related to Concurrent Kleene
Algebras.

Proof systems for MAV and BV are Deep Inference systems, which allow inference rules to be applied anywhere inside a
structure. As with any proof system, a key question is whether proofs in MAV can be reduced to a normal form, removing
detours and the introduction of structures not present in the original goal. In Sequent Calcluli systems, this property is
referred to as Cut Elimination. Deep Inference systems have an analogous Cut rule and other rules that are not present in
normalised proofs. Cut Elimination for Deep Inference systems has the same metatheoretic benefits as for Sequent Calculi
systems, including consistency and decidability.

Proofs of Cut Elimination for BV, MAV, and other Deep Inference systems present in the literature have relied on intrincate
syntactic reasoning and complex termination measures. For Linear Logic, Okada has pioneered semantic proofs of Cut
Elimination, using Girard’s Phase Space model of Linear Logic and techniques akin to Normalisation by Evaluation in λ-
calculus, which avoid this intrincate reasoning, but these have not been extended to the Deep Inference systems for BV and
MAV.

In this work, we present a concise semantic proof that all MAV proofs can be reduced to a normal form avoiding the Cut rule
and other “non analytic” rules. Due to the self-dual “before” connective, we cannot use Okada’s Phase Space technique, which
relies on closure under double negation. We build the model more directly using closed lower sets and the Chu construction.
We also develop soundness and completeness proofs of MAV (and BV) with respect to a class of models. We have mechanised
all our proofs in the Agda proof assistant, which provides both assurance of their correctness as well as yielding an executable
normalisation procedure.

Keywords: Linear Logic, Deep Inference, Algebraic Semantics, Metatheory

⋆ This work was funded by the Engineering and Physical Sciences Research Council: Grant number EP/T026960/1,
AISEC: AI Secure and Explainable by Construction.
1 Email: robert.atkey@strath.ac.uk
2 Email: wen.kokke@strath.ac.uk

MFPS 2024 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

https://www.ukri.org/about-us/epsrc/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T026960/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T026960/1
robert.atkey@strath.ac.uk
wen.kokke@strath.ac.uk


Atkey, Kokke

1 Introduction

We present an algebraic semantics and semantic proof of generalised cut-elimination for the multiplicative-
additive system MAV [22], which extends the basic system BV 3 [17,18] with the additives of multiplicative-
additive linear logic [15, MALL]. The proof technique also extends to the additive units and the exponen-
tials. Our proofs are constructive and mechanised in Agda [2].

1.1 BV, MAV, and Deep Inference

MAV and BV are Deep Inference systems. Deep Inference [19] is generalisation of Gentzen’s methodology
for designing proof systems, which arose from Guglielmi’s attempts to relate process algebra [24,25, CCS]
to Classical Linear Logic [15, CLL]. The problem with such a relation is that, while the multiplicative
connectives of Linear Logic capture parallel composition, no connective of Linear Logic captures sequential
composition. Eventually, Guglielmi’s attempts yielded BV, which extends Multiplicative Linear Logic [15,
MLL] with a self-dual non-commutative connective for sequential composition. Such a connective was
already present in another extension of Linear Logic, Pomset logic [29], where it arose from the study of
coherence space semantics of Linear Logic [16, Ch. 8]. Recently, Nguyễn and Straßburger [27,26] showed
that, while BV is similar to Pomset logic, the two are not the same, as the theorems of BV form a proper
subset of the theorems of Pomset logic. Neither BV nor Pomset logic has a sequent calculus. Tiu [33]
showed that no sequent calculus can capture BV, and it is assumed that this result extends to Pomset
logic.

Cut-elimination, or admissibility of Cut, is the fundamental property of Gentzen Sequent Calculi systems,
which states that proofs using the Cut rule to introduce “detours” can be normalised to ones without.
Crucial properties such as consistency and decidability follow from Cut-elimination. The Deep Inference
analogue of Cut-elimination is the admissibility of the whole up fragment of the calculus, which includes
the Deep Inference form of Cut (which we describe in Section 2 below) as well as duals of most of the
other rules of the calculus. Admissibility of the up fragment has the same metatheoretic benefits for Deep
Inference systems as it does for Sequent Calculus ones.

Guglielmi [19, Sec. 4.1] proves admissibility via the Splitting Theorem, which shows that proofs of conjoined
structures can be split into separate subproofs. This is proved by a detailed syntactic analysis of proofs.
Horne [22] gave a syntactic proof of the admissibility of the up fragment for MAV, that extends Guglielmi’s
technique with further reasoning about the additives. The proof is quite lengthy and involves intricate
syntactic reasoning and the subtle and complex termination measures.

We present an alternative proof of cut-elimination via a semantic model. This proof avoids some of the
intricacy of Horne’s proof. We believe our proof to be more robust in the presence of extensions, due
to our use of standard constructions such as Day monoids, order ideals, and the Chu construction. We
demonstrate this by scaling down to plain BV and up to MAV with additive units, and also to BV with
exponentials (Guglielmi and Straßburger’s System NEL [31,20]).

The technique of demonstrating Cut Elimination by construction of a semantic model for MALL is due
to Okada [28], who shows that the phase space model of MALL, described by Girard [15, Sec. 4.1] and
Troelstra [34, Ch. 8], can be constructed from cut-free proofs. The completeness of this model directly
yields the existence of a cut-free proof for every proof constructible in the MALL sequent calculus. The
same technique was used by Abrusci [1] for non-commutative linear logic, by De, Jafarrahmani, and
Saurin [13] for MALL with fixed points, and by Frumin [14] for Bunched Implications.

The phase semantic proof of cut-elimination does not easily extend to include the kind of self-dual connec-
tive present in BV and its extensions. The phase space model derives duality by means of double negation
with respect to the monoidal structure, which means that any connective has a derived dual. Attempts to
extend the model with the non-commutative connective result in two distinct but dual non-commutative
connectives, reminiscent of the non-commutative tensor and par introduced by Slavnov [30].

3 BV stands for Basic System Virtual, owing to an early interpretation of CCS interaction as the pairwise production
and annihilation of virtual particles in physics [22, Fn. 2].

2



Atkey, Kokke

1.2 Contribution and Content of this Paper

To our knowledge, all prior work on the metatheory of Deep Inference systems like BV and MAV has been
carried out using syntactic techniques such as rewriting with termination measures, or translations into
other logics with known Cut-Elimination properties.

Our main contribution is the use of semantic techniques to derive the admissibility of identity expansion,
cut, and the other co- rules of MAV. To this end, we have developed a number of results concerning the
semantics of BV and MAV:

(i) In Section 3.2, we propose MAV-algebras as the algebraic counterpart of MAV. In short, an MAV-
algebra is a ∗-autonomous partial order with meets, with another partially ordered monoid structure
that is duoidal with respect to the ∗-autonomous structure.

(ii) Normal proofs (our name for the “up” fragment) as we define them in the next section do not prima
facie support all the structure of an MAV-algebra, so we define the weaker notion of MAV-frame
(Definition 3.13). These play the same role as Kripke structures do for modal and substructural
logics. The first main technical contribution of the paper is in showing that every MAV-frame can be
completed to an MAV-algebra.

(iii) We then show that MAV-frames are strongly complete (in the terminology of Okada) for MAV by
proving that the MAV-frame constructed from normal proofs can be used to deduce that all MAV-
provable structures have normal proofs in Theorem 4.2. Completeness in the usual sense also follows
in Theorem 4.3.

We describe the MAV Deep Inference system in Section 2 and motivate the idea for readers not familiar
with such systems.

As far as we are aware, the semantics of BV and its extensions have not been considered before in the
literature. The crucial part of the proof is that the standard Chu construction extends to the self-dual
non-commutative connective of BV and MAV (Proposition 3.43 and Proposition 3.47). Our development
of the semantics of MAV and BV also opens the possibility of using these logics as sound and complete
systems for reasoning about the MAV-frame structures we define.

All of our proofs have been mechanised and checked in the Agda proof assistant [2]. We briefly discuss the
mechanisation in Section 5 and provide a hyperlinked guide to the proof relating it to our mathematical
development in Appendix A. Aside from the benefits of checking the proof, the Agda proof is executable
and yields a program for actually normalising proofs.

We present our proof in the full generality of MAV, but note that essentially the same proof applies to the
subsystem BV as well. We have also extended the proof technique to include the additive units, and to
BV with exponentials (System NEL, analysed by Guglielmi and Straßburger [31,20]) We discuss further
extensions in Section 6.

2 The system MAV

In Deep Inference terminology, proofs operate on structures, which simultaneously play the role of formulas
and sequents in traditional Sequent Calculus systems. There are a number of different notations in the
literature for the structures of BV and related systems. For familiarity’s sake, we opt for a notation similar
to the formulas of normal Linear Logic, albeit extended with the self-dual non-commutative connective ◁.

The structures of MAV are formed from positive and negative atoms (α and α) drawn from some set of
atomic propositions, units (I ), the non-commutative connective seq (◁), the multiplicative connectives
tensor and par (� and O) and additive connectives with and plus (N and �).

P,Q,R, S ∶∶= α ∣ α ∣ I ∣ P ◁Q ∣ P � Q ∣ P O Q ∣ P N Q ∣ P � Q

Duality (P ) is an involutive function on structures that obeys the De Morgan laws for the multiplicative

3



Atkey, Kokke

and additive connectives and preserves the self-dual connective ◁.

I = I P � Q = P O Q P O Q = P � Q

α = α P ◁Q = P ◁Q P N Q = P � Q P � Q = P N Q

Structures are considered equivalent modulo the equality ≃, which is the smallest congruence defined by
the associativity, commutativity, and identity laws that ensure that (◁, I ) forms a monoid, and (�, I )
and (O, I ) form commutative monoids.

P ◁ I ≃ P I ◁ P ≃ P P ◁ (Q◁R) ≃ (P ◁Q)◁R

P � I ≃ P P � Q ≃ Q � P P � (Q � R) ≃ (P � Q) � R

P O I ≃ P P O Q ≃ Q O P P O (Q O R) ≃ (P O Q) O R

Structure contexts are one-hole contexts over structures. Plugging (C{P}) replaces the hole in C with P .

C,D ∶∶= { } ∣ C ◁Q ∣ P ◁D ∣ C � Q ∣ P � D ∣ C O Q ∣ P O D ∣ C N Q ∣ P N D ∣ C � Q ∣ P � D

The inference rules of MAV are presented as a rewriting system on structures. As this may be surpris-
ing to readers unfamiliar with deep inference, let us examine how this presentation relates to the usual
presentation of linear logic. Rule (1), shown below, is the axiom rule in the usual one-sided presentation
of linear logic. In the one-sided presentation, the turnstile is vestigial syntax, and can be removed. In
BV, the O connective plays the same role as the comma does in the antecedent of a linear logic sequent,
and the I plays the same role as the empty sequent, which would give us rule (2) for BV. However, BV’s
inference rules can work arbitrarily deep in the structure. (Hence, deep inference.) Hence, the axiom for
BV is rule (3), where C is a one-hole structure context.

⊢ P, P
(1)

I

P O P
(2)

C{I }
C{P O P}

(3)

Rule (4) is the cut rule in the usual one-sided presentation of linear logic. In rule (4), as in any branching
inference rule, the branching enforces the disjointness of the premise derivations. In BV, disjointness is
internalised by the � connective. Hence, it plays the same role as branching does in sequent calculus.
This would give us rule (5) for BV. However, as BV’s inference rules can work arbitrarily deep in the
structure, and the system contains the (Switch) rule, the surrounding context of Os is unnecessary—and
too restrictive. Hence, the cut for BV is rule (6).

⊢ Γ, P,Γ
′

⊢ ∆, P ,∆
′

⊢ Γ,Γ
′
,∆,∆

′ (4)
(Γ O P O Γ

′) � (∆ O P O ∆
′)

Γ O Γ
′ O ∆ O ∆

′ (5)
C{P � P}

C{I }
(6)

Beautifully, internalising branching makes the symmetry between the axiom and cut plain to see. In BV,
to acknowledge this symmetry and the connection with CSS, the axiom and cut rules are referred to as
interaction and co-interaction.

Proof trees are a cumbersome presentation for BV’s derivations—they are convenient for branching sequent
proofs, but BV derivations are sequences of structures. Rewriting systems, on the other hand, are a well-
known and convenient notation for such derivations. Hence, in MAV, inference rules are presented as
rewrite rules.

4



Atkey, Kokke

Inference, written ⟶, is the smallest relation defined by the following axioms:

P O P ⟶ I Interact

(P � Q) O R ⟶ P � (Q O R) Switch

I N I ⟶ I Tidy

(P ◁Q) O (R◁ S) ⟶ (P O R)◁ (Q O S) Sequence

P � Q ⟶ P Left

P � Q ⟶ Q Right

(P N Q) O R ⟶ (P O R) N (Q O R) External

(P ◁Q) N (R◁ S) ⟶ (P N R)◁ (Q N S) Medial

I ⟶ P � P CoInteract

I ⟶ I � I CoTidy

(P � R)◁ (Q � S) ⟶ (P ◁Q) � (R◁ S) CoSequence

P ⟶ P N Q CoLeft

Q ⟶ P N Q CoRight

(P � R) � (Q � R) ⟶ (P � Q) � R CoExternal

(P � R)◁ (Q � S) ⟶ (P ◁Q) � (R◁ S) CoMedial

C{P} ⟶ C{Q} if P ⟶ Q Mono

If P ⟶ Q, we say that P can be inferred from Q, i.e. the arrow points from conclusion to premise.

N.B. P ⟶ Q is an inference rule, not a sequent. In sequent calculus notation, it is Q

P
, not P ⊢ Q.

Derivation, written ⟶
⋆ is the reflexive, transitive closure of inference. Invertible derivation, written

⟷
⋆, is the symmetric core of derivation, i.e. P ⟷

⋆
Q = P ⟶

⋆
Q ∩Q ⟶

⋆
P . Proofs are derivations

that terminate in the unit, e.g. a derivation P ⟶
⋆
I is a proof of P .

The inference rules come in dual pairs. For every rule P ⟶ Q, there is a dual rule Q ⟶ P . The
exception is (Switch), which is self-dual, up to commutativity. The (CoInteract), (CoLeft), and
(CoRight) rules introduce new structures going left-to-right. Normal proofs, which we define below,
avoid these synthetic rules.

Remark 2.1 In BV, the structural connectives are usually presented as lists, distinguished only by their
brackets: P �Q is written as (P Q); P OQ is written as [P Q]; and P◁Q is written as ⟨P Q⟩. Inferences,
derivations, and proofs are presented vertically, as (7), (8), and (9), respectively.

Q

P
(7)

Q

P
(8) P (9)

The relation between the deductive system for BV and rewrite systems is well-known, e.g. by Kahra-
manogullari [23], who implements proof search for several deep inference systems in Maude [9]. Inferences
rules are usually named with the combination of a letter and an up or down arrow, e.g. (Interact) and
(CoInteract) are i↓ and i↑, respectively. The exception are self-dual rules, which are named with a
single letter, e.g. (Switch) is usually named s.

5



Atkey, Kokke

Definition 2.2 A derivation is normal when it does not use (CoInteract) nor any of the other (CoX)
rules, and its uses of (Interact) are restricted to (AtomInteract), as defined by the following axiom:

α O α ⟶ I AtomInteract

Normal derivations avoid the use of rules that introduce new structures into proofs, and so can be termed
analytic in contrast to the need for the synthetic rules to synthesise new structures.

Our main result, Theorem 4.2, is that every structure that is provable in full MAV also has a normal
proof. Therefore, the system with only analytic rules is complete for MAV provability. Horne [22] proves
this result via a syntactic proof involving rewriting and termination measures. In the following sections,
we construct a semantic proof that normal proofs are complete for MAV.

3 Semantic Models for MAV

To prove the normalisation property for all MAV proofs, we use a semantic technique that is akin to
Okada’s phase space method and to Normalisation by Evaluation (NbE) [6]. We construct a semantics of
the whole proof system from the system of normal proofs. This semantics is constructed in such a way
that after interpreting a proof, the (existence of) a normal form can be extracted (or read back or reified
in NbE terminology) from the semantic proof.

To our knowledge, the semantics of MAV have not been previously studied in the literature. The rules are
an extension of MALL, so an MAV-algebra will partly be a ∗-autonomous partial order (Definition 3.3)
with meets and joins. The additional structure for ◁ satisfies the conditions of a duoidal category [3,
Definition 6.1] (Definition 3.5). We show that MAV is sound for MAV-algebras in Theorem 3.11.

To build MAV-algebras from normal proofs, we define the weaker notion of an MAV-frame (Defini-
tion 3.13). We show that a combination of certain closed lower sets (Section 3.4.2) and the Chu con-
struction (Section 3.4.3) construct an MAV-algebra from any MAV-frame. Much of these constructions
are well-known, but we have new results on lifting the Day construction of monoids on closed lower sets
and the preservation of duoidal relationships that are required for MAV.

3.1 Pomonoidal, ∗-autonomous, and Duoidal Structure on Partial Orders

The algebraic semantics of MAV is a collection of interacting monoids on a partial order. We collect here
the basic definitions and kinds of interaction we will need.

Definition 3.1 A partial order monoid (pomonoid) (•, i) on a poset (A,≤) comprises a binary operator
• ∶ A×A → A that is monotone in both arguments and an element i ∈ A such that the usual monoid laws
hold. A commutative pomonoid is a pomonoid where additionally x • y = y • x.

Definition 3.2 A commutative pomonoid (•, i) on a poset (A,≤) is residuated if there is a function
l∶ A ×A → A such that x • y ≤ z iff x ≤ y l z.

Linear logic adds a duality, or negation, to a commutative pomonoid structure. Semantically, duality with
commutativity is captured in the definition of ∗-autonomous category, due to Barr [5]. For our purposes,
we need the partial order analogue, also called a CL algebra by Troelstra [34].

Definition 3.3 A ∗-autonomous partial order is a structure (A,≤,⊗, I,¬) where (⊗, I) is a pomonoid on
(A,≤) and ¬ ∶ Aop

→ A is an anti-monotone and involutive operator on A, together satisfying x⊗ y ≤ ¬z
iff x ≤ ¬(y ⊗ z). A ∗-autonomous partial order satisfies mix if ¬I = I.

Remark 3.4 The structure of a ∗-autonomous partial order has a number of immediate consequences,
but we leave description of these until after the definition of MAV-algebra in Definition 3.7.

BV and MAV extend linear logic by adding a non-commutative pomonoid structure that interacts with
the existing pomonoid via a kind of interchange law (the (Sequence) rule in the proof system). We

6



Atkey, Kokke

follow [3, Definition 6.1] generalising these to the case of monoids with differing units. Their terminology
is of a category having duoidal structure. We find it useful to describe one pomonoid as being duoidal
over another to emphasise the non-symmetric nature of the relationship, and by analogy with one monoid
distributing over another.

Definition 3.5 A pomonoid (•, i) is duoidal over another pomonoid (⊲, j) on a partial order (A,≤) if
the following inequalities hold:

(i) (w ⊲ x) • (y ⊲ z) ≤ (w • y) ⊲ (x • z)
(ii) j • j ≤ j

(iii) i ≤ i ⊲ i

(iv) i ≤ j

Remark 3.6 In the case when the two pomonoids share a common unit the last three conditions for a
duoidal relationship are automatically satisfied. We can also ignore the existence of the units and just
describe two binary operators as being duoidal. If • is a join, or ⊲ is a meet, then all the conditions for a
duoidal relationship are automatically met.

3.2 MAV-algebras

We define MAV-algebras as the algebraic semantics of MAV. The definition is a direct translation of the
rules of MAV into order-theoretic language, using the definitions we have seen so far.

Definition 3.7 An MAV-algebra is a structure (A,≤,⊗,⊲, I,¬) with the following properties:

(i) (A,≤,⊗, I,¬) is ∗-autonomous and satisfies mix.

(ii) (A,≤,⊲, I) is a pomonoid.

(iii) ⊲ is self dual: ¬(x ⊲ y) = (¬x) ⊲ (¬y).
(iv) (⊗, I) is duoidal over (⊲, I).
(v) (A,≤) has binary meets, which we write as x& y.

Proposition 3.8 Let (A,≤,⊗,⊲, I,¬) be a MAV-algebra.

(i) There is another commutative pomonoid structure (`, I) on (A,≤), defined as x` y = ¬(¬x⊗¬y).
(ii) (⊗, I) and (`, I) are linearly distributive [10]: x⊗ (y ` z) ≤ (x⊗ y)` z.

(iii) (A,≤) has binary joins, given by x⊕ y = ¬(¬x& ¬y).
(iv) ⊕ distributes over ⊗: x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).
(v) & distributes over `: (x` z)& (y ` z) = (x& y)` z.

(vi) ⊲ is duoidal over `: (w ` x) ⊲ (y ` z) ≤ (w ⊲ y)` (x ⊲ z).
(vii) ⊲ is duoidal over &: (w & x) ⊲ (y & z) ≤ (w ⊲ y)& (x ⊲ z).
(viii) ⊕ is duoidal over ⊲: (w ⊲ x)⊕ (y ⊲ z) ≤ (x⊕ y) ⊲ (x⊕ z).
Definition 3.9 Let At be a set of atomic propositions. Given an MAV-algebra (A,≤,⊗,⊲, I,¬) and
valuation V ∶ At → A, define the interpretation of MAV Formulas as follows: JI K = I, JαK = V (α),
JαK = ¬V (α), JP � QK = JP K ⊗ JQK, JP O QK = JP K ` JQK, JP ◁QK = JP K ⊲ JQK, JP N QK = JP K & JQK,
and JP � QK = JP K⊕ JQK.

Lemma 3.10 For all P , JP K = ¬JP K.

Theorem 3.11 The interpretation in Definition 3.9 is sound: for all structures P , if P ⟶
⋆

I , then
I ≤ JP K.

7



Atkey, Kokke

Proof Each of the required inequalities has been established in Proposition 3.8. □

Remark 3.12 More generally, if P ⟶
⋆
Q in MAV, then JQK ≤ JP K in an MAV-algebra. Note that the

ordering is reversed! It will be reversed again in the definition of MAV-frame.

3.3 MAV-frames

To prove completeness of the normal proofs of MAV, we will construct a particular MAV-algebra from the
structures and normal proofs. Since normal proofs do not a priori have all the necessary structure for an
MAV-algebra, in the following sections we develop a procedure to construct MAV-algebra from the lighter
requirements of an MAV-frame. In Section 4 we will show that the MAV-algebra constructed from the
normal proof MAV-frame allows us to prove that all proofs in MAV can be normalised to normal proofs.

Definition 3.13 An MAV-frame is a structure (F,≤,`,⊲, i,+) where (F,≤) is a partial order, (F,≤,`, i)
is a commutative pomonoid, (F,≤,⊲, i) is a pomonoid, + is a binary monotone function on (F,≤), and
these data satisfy the following inequalities:

(i) (w ⊲ x)` (y ⊲ z) ≤ (w ` y) ⊲ (x` z)
(ii) (x + y)` z ≤ (x` z) + (y ` z)
(iii) (w ⊲ x) + (y ⊲ z) ≤ (w + y) ⊲ (x + z)
(iv) i + i ≤ i

Remark 3.14 An MAV-frame is essentially two duoidal relationships and a distributivity law.

Remark 3.15 MAV-frames have a intuitive reading as CCS-like process algebras (see Milner [25] for an
introduction to CCS). If we assume the existence of a collection of “action” elements a ∈ F and their duals
a ∈ F , satisfying a ` a ≤ i, then we can read the constructs of an MAV-frame as parallel composition,
sequential composition, and choice. The ordering is interpreted as a reduction relation. An interesting
avenue for future work would be to discover to what extent MAV can be thought of as a logic for processes
in this process algebra.

Remark 3.16 MAV-frames (and MAV-algebras) are also very similar to the definition of a Concurrent
Kleene Algebra (CKA) due to Hoare, Möller, Struth and Wehrman [21, Definition 4.1]. One difference is
that we do not assume that + is a join, nor do we assume the existence of infinitary joins. Consequently,
we have no analogue of the Kleene Star. Another difference is that the duoidal relationship is reversed in
MAV-frames, indicating that MAV-frames capture evolution of processes while MAV-algebras and CKA
capture properties of processes.

Proposition 3.17 The normal proof MAV-frame NMav is the partial order arising as the quotient of
the preorder formed from the structures of MAV and P ≤ Q if there is a normal derivation P ⟶

⋆
Q,

defined as (S,⟶⋆
,O,◁, I ,N), where S is the set of all MAV structures. The required (in)equalities

follow directly from the definition of ⟶⋆ for normal proofs.

Remark 3.18 The construction of the MAV-frame NMav does not use the � and � structure of MAV
directly. This structure is recovered by duality from the other connectives by the constructions in the rest
of this section. This corresponds to the fact that the Co-X rules in MAV that we wish to show admissible
are the ones that mention the � and � connectives, with the exception of (Switch), which has a special
role to play in Proposition 4.1 in mediating interaction.

3.4 Constructing MAV-algebras from MAV-frames

We construct MAV-algebras from MAV-frames in a three step process. In Section 3.4.1, we use lower
sets and the Day construction to add meets, joins and residuals for pomonoids to a partial order. This
construction creates joins freely, so we restrict to +-closed lower sets (i.e., order ideals, but not necessarily
over a ∨-semilattice) in Section 3.4.2 to turn the + operation in MAV-frames into joins. Restricting to
+-closed lower sets separates the Day construction of pomonoids into two separate cases, depending on
how the original pomonoid interacts with +. Finally, we create the ∗-autonomous structure using the Chu
construction in Section 3.4.3. The necessary duoidal structure is maintained through each construction.

8



Atkey, Kokke

3.4.1 Lower Sets and Day pomonoids

Definition 3.19 Given a partial order (A,≤), the set of lower sets Â consists of subsets F ⊆ A that are
down-closed: x ∈ F and y ≤ x implies y ∈ F . Lower sets are ordered by inclusion. Define the embedding
η ∶ A → Â as η(x) = {y ∣ y ≤ x}.

Proposition 3.20 For any (A,≤), the function η is monotone, and (Â,⊆) has meets and joins given by
intersection and union respectively.

Proposition 3.21 If (•, i) is a pomonoid on (A,≤), then there is a corresponding Day pomonoid (•̂, î)
on Â defined as F •̂G = {z ∣ z ≤ x • y, x ∈ F, y ∈ G} and î = η(i). Moreover:

(i) If (•, i) is a commutative pomonoid, then so is (•̂, î).
(ii) (•̂, î) has left and right residuals, which coincide when it is commutative. We will only be interested

in residuals for commutative pomonoids, which we write as F l G.

(iii) The embedding preserves the monoid: η(x • y) = η(x) •̂ η(y).
Remark 3.22 Proposition 3.21 is the Day monoidal product on functor categories [12] restricted to the
case of partial orders and lower sets.

Remark 3.23 When (A,≤) is an MAV-frame, Proposition 3.21 gives us two pomonoids (̂̀, Î) and (⊲̂, Î)
on Â. Moreover, the next proposition states that the duoidal relationship between these monoids is
preserved by the Day construction:

Proposition 3.24 If (•, i) is duoidal over (⊲, j) then (•̂, î) is duoidal over (⊲̂, ĵ).

3.4.2 +-closed Lower Sets
In the Phase Semantics, structures are interpreted as elements that are fixed points of a closure operator
defined by a double negation with respect to the monoid on the original frame. This closure operator
generates a partial order of “facts” whose meets and joins exactly correspond to the syntactic ones when
the original monoid is derived from the proofs. As we mentioned in the introduction, the presence of a
self-dual operator in BV means that we cannot use double negation closure, and we have to proceed more
deliberately to preserve join-like structure in an MAV-frame when building MAV-algebras. We do this by
defining +-closed lower sets as those that are closed under finite +-combinations of their elements. This
leads to a closure operator on lower sets that allows us to immediately deduce that +-closed lower sets form
a lattice. We also preserve the Day-pomonoids from lower sets, but in two different ways, depending on
how the original pomonoid interacts with +. In Proposition 3.32 we handle pomonoids that distribute over
+, and in Proposition 3.33 we handle pomonoids that are duoidal under +. We need these constructions
to lift the ` and ⊲ pomonoids from MAV-frames to +-closed lower sets. Finally in this section, we show
that duoidal structure on lower sets from Proposition 3.24 is preserved in +-closed lower sets.

For this section, we assume that (A,≤) is a partial order with a monotone binary operation + ∶ A×A → A
(we do not assume that + is a join or even a pomonoid.)

Definition 3.25 A lower set F ∈ Â is +-closed if x ∈ F and y ∈ F imply x + y ∈ F . +-closed lower sets
are ordered by subset inclusion and form a partial order (Â+,⊆).

Proposition 3.26 Let U ∶ Â+ → Â be the “forgetful” function that forgets the +-closed property. There is
a monotone function α ∶ Â → Â

+ such that for all F ∈ Â
+, α(UF ) = F and for all F ∈ Â, F ⊆ U(αF ).

Proof To define α, we close lower sets under all +-combinations. To this end, for F ∈ Â, define ctxt(F ),
the set of all +-combinations of F inductively built from constructors leaf ∶ F → ctxt(F ) and node ∶
ctxt(F ) × ctxt(F ) → ctxt(F ). We define the sum of a context as sum(leaf x) = x and sum(node(c, d)) =
sum(c) + sum(d). Now define: α(F ) = {x ∣ c ∈ ctxt(F ), x ≤ sum(c)}. This is +-closed, by taking the
node combination of contexts. α ◦ U is idempotent because α does not introduce any elements to lower
sets that are already closed. For arbitrary lower sets F , F ⊆ U(αF ) by the leaf constructor. □

9



Atkey, Kokke

Definition 3.27 Define the embedding η
+ ∶ A → Â

+ as η+(x) = α(η(x)).
Remark 3.28 By this proposition, U ◦α is a closure operator on Â [11], and the closed elements are those
of Â+. The next proposition is standard for showing that meets and joins exist on the closed elements for
some closure operator.

Proposition 3.29 (Â+,⊆) has all meets and joins. In the binary case, meets are defined by intersection
and joins are defined by F ∨G = α(UF ∪ UG).
Proposition 3.30 η

+(x + y) ⊆ η
+(x) ∨ η

+(y).
Remark 3.31 Proposition 3.30 is the reason for requiring +-closure. This property will allow us to prove
the crucial embedding property for all structures in Section 4.

Proposition 3.32 For a commutative pomonoid (•, i) on (A,≤) that distributes over + (i.e., (x+y)•z ≤

(x•z)+(y•z) holds), we have that F •̂+G = α(UF •̂UG) and ĵ
+
= α(ĵ) define a residuated commutative

pomonoid on Â
+. Moreover, η+(x • y) = η

+(x) •̂+ η+(y).

Proof Define an operation •c ∶ ctxt(F ) × ctxt(G) → ctxt(F •̂G) that “multiplies” two trees, such that
sum(c) • sum(d) ≤ sum(c •c d), using the distributivity. This allows us to show that α preserves the
monoid operation: αF •̂+ αF = α(F •̂G). With this, we can show that the monotonicity, associativity,
unit, and commutativity properties of •̂ transfer over to •̂+. The definition of the residual from lower sets
is already +-closed, by distributivity. □

Proposition 3.33 For a pomonoid (⊲, j) on (A,≤), if this satisfies (w ⊲ x)+ (y ⊲ z) ≤ (w+ y)⊲ (x+ z)
then the Day construction F ⊲̂G = {z ∣ z ≤ x ⊲ y, x ∈ F, y ∈ G} on lower sets is +-closed when F and G
are. We write F ⊲̂

+
G to indicate when we mean this construction as an operation on +-closed lower sets.

If j + j ≤ j, then the Day unit ĵ = η(j) is also closed and we write it as ĵ
+
∈ Â

+. Together (⊲̂+, ĵ+) form
a pomonoid on (Â+,⊆). Moreover, η+(x ⊲ y) ≤ η

+(x) ⊲̂+ η+(y).

Proof Since + is duoidal over (⊲, j), the Day monoid ⊲̂ is automatically +-closed by calculation. The
monoid structure directly transfers. Similarly, η(j) is automatically +-closed since j + j ≤ j. □

Remark 3.34 Generalising the situation for the unit j in Proposition 3.33, η(x) is closed for any x such
that x + x ≤ x. Note that if + were a join on (A,≤), then this would automatically be satisfied.

Remark 3.35 We have used the same decoration •̂+ and ⊲̂
+ for two separate constructions of pomonoids

on +-closed lower sets. We will be careful to distinguish which we mean: in our present application, a
symmetric operator like • will distribute over + and so •̂+ will be constructed by Proposition 3.32; and a
non-symmetric operator like ⊲ will be duoidal under + and so ⊲̂

+ will be constructed by Proposition 3.33.

Remark 3.36 If we have two pomonoids on (A,≤) that share a unit, then the two constructions of units
in Propositions 3.32 and 3.33 will yield the same element of Â+.

Proposition 3.37 If (•, i) is duoidal over (⊲, j) on (A,≤), and (•, i) distributes over + (as in Proposi-
tion 3.32) and + is duoidal over (⊲, j) (as in Proposition 3.33), then (•̂+, î+) is duoidal over (⊲̂+, ĵ+) on
(Â+,⊆).

Proof The duoidal relationship established in Proposition 3.24 carries over thanks to the properties of α
and U . The fact that î+ ⊆ ĵ

+ relies on the condition j + j ≤ j to collapse +-contexts of js. □

3.4.3 Chu Construction
To construct suitable MAV-algebras, we use the partial order version of the Chu construction [5, Appendix
by Po-Hsiang Chu]. The Chu construction builds ∗-autonomous categories from symmetric monoidal closed
categories with pullbacks. In the partial order case, the requirement for pullbacks simplifies to binary
meets. For this section, we let (A,≤,•, i,l) be a partial order with a residuated pomonoid structure and
all binary meets.

10



Atkey, Kokke

Definition 3.38 Let k be an element of A. Chu(A, k) is the partial order with elements pairs (a+, a−)
such that a+ • a− ≤ k, with ordering (a+, a−) ⊑ (b+, b−) when a

+
≤ b

+ and b
−
≤ a

−. There is a monotone
embedding function η

c ∶ A → Chu(A, k) defined as ηc(x) = (x, x l k).
Proposition 3.39 (Chu(A, k),⊑) has a ∗-autonomous structure defined as:

(a+, a−)⊗ (b+, b−) = (a+ • b+, (b+ l a
−) ∧ (a+ l b

−)) I = (i, k) ¬(a+, a−) = (a−, a+)

Moreover, ηc(x • y) = η
c(x)⊗ η

c(y) and η
c(i) = I.

Remark 3.40 If we choose k = i, then (Chu(A, i),⊑) has ∗-autonomous structure that satisfies mix.

Proposition 3.41 If A has binary joins, then (Chu(A, k),⊑) has binary meets, given by (a+, a−) &
(b+, b−) = (a+ ∧ b

+
, a
− ∨ b

−).
Remark 3.42 Since (Chu(A, k),⊑,⊗, I,¬) is a ∗-autonomous partial order, then Proposition 3.41 also
means that Chu(A, k) has all binary joins, with (a+, a−)⊕ (b+, b−) = (a+ ∨ b

+
, a
− ∧ b

−).

We now turn to the self-dual duoidal structure required to interpret the ◁ connective. First we transfer
pomonoids from (A,≤) to self-dual pomonoids on (Chu(A, k),⊑) provided they interact well with k:

Proposition 3.43 Let (⊲, j) be a pomonoid on (A,≤) such that (•, i) is duoidal over k⊲k ≤ k and j ≤ k,
then x ⊲ y = (x+ ⊲ y

+
, x
−
⊲ y

−) and J = (j, j) form a self-dual pomonoid on Chu(A, k).

Proof x ⊲ y is well-defined because (x+ ⊲ y
+) • (x− ⊲ y

−) ≤ (x+ • x−) ⊲ (y+ • y−) ≤ k ⊲ k ≤ k. J is well
defined because j • j ≤ j ≤ k. The pomonoid laws all transfer directly. □

Remark 3.44 When k = j, the two conditions in the proposition are automatically satisfied. Moreover,
if k = i = j, then not only does the ∗-autonomous structure satisfy mix, but we also have I = J .

Finally, we need to show that if (•, j) is duoidal over (⊲, j), then their Chu counterparts are in the same
relationship. Due to the use of residuals in the definition of ⊗, we need the following fact about duoidal
residuated pomonoids:

Lemma 3.45 If (•, j) is duoidal over (⊲, j) in a partial order (A,≤) and (•, j) has a residual l, then
(w l x) ⊲ (y l z) ≤ (w ⊲ y) l (x ⊲ z).
Remark 3.46 Lemma 3.45 is in some sense the “intuitionistic” version of the duoidal relationship for `
arising as the dual of that for ⊗ in a ∗-autonomous partial order, as we saw in Proposition 3.8.

Proposition 3.47 If (•, i) is duoidal over (⊲, j) on (A,≤), and (⊲, j) satisfies the conditions of Propo-
sition 3.43, then (⊗, I) and (⊲, J) are in a duoidal relationship on Chu(A, k).

Proof For the positive half of the Chu construction, this is a direct consequence of the duoidal relationship.
For the negative half, we use Lemma 3.45 and the fact that meets are always duoidal. □

3.4.4 Construction of MAV-algebras from MAV-frames
The propositions in the preceeding three sections together prove that every MAV-frame yields an MAV-
algebra:

Theorem 3.48 If (F,≤,`,⊲, i,+) is an MAV-frame, then (Chu(F̂+, î+),⊑) has the structure of an MAV-
algebra.

With this theorem we can define a notion of validity in MAV in terms of truth in all MAV-frame generated
algebras. By Theorem 3.11, MAV is sound for this notion of validity:

Theorem 3.49 MAV is sound for the MAV-frame semantics: if P ⟶
⋆
I then for all MAV-frames F ,

I ⊑ JP K in (Chu(F̂+, î+),⊑).
11



Atkey, Kokke

4 Semantic Cut-Elimination and Proof Normalisation

Let Chu(N̂Mav
+
, Î

+) be the MAV-algebra constructed (Theorem 3.48) from the normal proof MAV-frame
(Proposition 3.17), where elements are positive/negative pairs of +-closed lower sets of structures. We
define the valuation of atoms as V (α) = η

c(η+(α)). By Theorem 3.11, we have an interpretation of MAV
structures JP K such that if P ⟶

⋆
I , then I ⊑ JP K. We now prove our main proposition about this

interpretation in the MAV-algebra derived from the MAV-frame of normal proofs NMav that will allow
us to derive the admissibility of all the non-normal proof rules of MAV.

Proposition 4.1 For all structures P , JP K ⊑ ¬(ηc(η+(P ))).

Proof By Definition 3.38, this statement comprises two inclusions between pairs of +-closed lower sets:

(i) η
+(P ) ⊆ JP K−

(ii) JP K+ ⊆ η
+(P ) l+

Î
+

We prove the second assuming the first. It suffices to prove that JP K+ •̂+ η+(P ) ⊆ Î
+, which follows from

the first part and the property of all Chu-elements that JP K+ •̂+JP K− ⊆ Î
+.

We prove the first part by induction on P . In the cases when P = I or P = α, we already have
JP K− = η

+(P ). When P = α, we have JαK− = η
+(α) l+

Î
+. It suffices to prove that η+(α) •̂+ η+(α) ⊆ Î

+,
which follows from the preservation of monoid operations by η

+ and the (AtomInteract) rule.

When P = Q O R, Q N R, or Q ◁ R, the result follows from preservation of the corresponding monoid
structure by η

+. For example, η+(Q O R) ⊆ η
+(Q) •̂+ η+(R) ⊆ JQK− •̂+JRK− = JQ O RK−.

When P = Q � R, we have η
+(Q � R) ⊆ η

+(Q) and η
+(Q � R) ⊆ η

+(R), by the (Left) and (Right)
rules. Therefore, η+(Q � R) ⊆ η

+(Q) ∨ η
+(R) ⊆ JQK− ∨ JRK− = JQ � RK−.

When P = Q � R, we have JQ � RK− = (JQK+ l JRK−) ∧ (JRK+ l JQK−). We prove inclusion in the
left-hand side, the right-hand side is similar. The key property we need to prove is:

η
+(Q � R) •̂+(η+(Q) l+

Î
+) ⊆ η

+(R) (10)

Using the monoidality and monotonicity of α, this inclusion is implied by the following inclusion in N̂Mav:

η(Q � R) •̂(U(η+(Q)) l Î) ⊆ η(R)

which follows from the (Switch) rule of MAV and calculation. Using 10, and inclusion (ii) above, we can
prove the inequality we need:

η
+(Q � R) •̂+JQK+ ⊆ η

+(Q � R) •̂+(η+(Q) l+
Î
+) ⊆ η

+(R) ⊆ JRK−

Using the residuation property of •̂+ we can conclude. □

Theorem 4.2 If P ⟶
⋆
I in MAV, then there is a normal proof P ⟶

⋆
I .

Proof By Theorem 3.11, P ⟶
⋆
I in MAV implies I ⊑ JP K. Combined with Proposition 4.1, we have

I ⊑ ¬ηc(η(P ). By Definition 3.38 of the ordering of Chu elements, we have η+(P ) ⊆ Î
+. Since P ∈ η

+(P ),
we have P ∈ Î

+, which by definition means that there is a normal proof P ⟶
⋆
I . □

Another consequence of Proposition 4.1 is that MAV is complete for the MAV-frame semantics:

Theorem 4.3 MAV is complete for the MAV-frame semantics: if, for all MAV-frames F , JI K ⊑ JP K in
(Chu(F̂+, Î+),⊑), then P ⟶

⋆
I .

12



Atkey, Kokke

5 Mechanisation in Agda

We formalised the proofs in the paper in Agda [2]. The source code is available at the following URL:

https://github.com/bobatkey/semantic-cut-elimination

Furthermore, a hyperlinked HTML rendition of the source can be browsed at the following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024

In Appendix A, we provide a guide to the mechanisation relating the Definitions, Propositions, and Theo-
rems in the previous sections to the Agda definitions in the mechanisation. The formalisation uses setoids
to represent sets, and reuses definitions from the Agda Standard Library [32] where appropriate.

We did not attempt to formalise Horne’s syntactic proof of generalised cut-elimination directly. We suspect
that this would likely be quite involved, due to the widespread and implicit use of syntactic equalities when
manipulating structures, as well as the construction of the relevant termination measures. We found that
the semantic constructions were relatively straightforward to formalise in Agda.

In addition to increasing the confidence in our results, a key benefit of the formalised proof in a proof assis-
tant for constructive proof such as Agda is that the proof normalisation procedure defined by Theorem 4.2
is executable. As an example, we have normalised the one-step proof below:

((I � I )◁ (I N I )) O ((I N I )◁ (I � I )) (Interact)
−−−−−−⟶ I

The proof normalises to a 38-step normal proof, of which 9 are inference steps, and the remainder are
(sometimes spurious) equalities. The example can be found at the following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Example.html

6 Extensions and Future Work

We have presented a semantic proof of generalised Cut elimination for the Multiplicative-Additive System
Virtual (MAV), which reduces Horne’s approximately 41 page proof to a 7 page proof.

Our proof technique is modular, and can be adapted with relative ease to a variety of related systems. To
evidence this claim, we have adapted our Agda formalisation to prove generalised cut elimination to the
following systems:

BV The basic system does not have the additives (i.e. N and �). The proof is a straightforward restriction
of our proof for MAV, but only relies on lower sets, rather than +-closed lower sets. The source code
of the proof is available at the following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/BV.CutElim.html

MAUV The multiplicative-additive-unital system adds the additive units (i.e. ⊤ and 0, using Girard’s
notation). The proof is a straightforward extension of our proof for MAV, and requires the use of
lower sets which are 0-closed as well as +-closed. The source code of the proof is available at the
following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAUV.CutElim.html

NEL Non-commutative exponential logic [20] extends BV with the exponentials (i.e. ! and ?, using Gi-
rard’s notation). The proof is a straightforward extension of our proof for MAV, and requires that
we: (i) add near-exponentials, which do not satisfy monoidality, to BV-frames; (ii) construct expo-
nentials on lower sets, which adds monoidality; (iii) construct exponentials on Chu spaces, which adds
duality; and (iv) extend the main proposition (Proposition 4.1) to account for the new connectives,
which requires lemmas similar to those for � and O. The source code of the proof is available at the
following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/NEL.CutElim.html

13

https://github.com/bobatkey/semantic-cut-elimination
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Example.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/BV.CutElim.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAUV.CutElim.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/NEL.CutElim.html


Atkey, Kokke

The work opens up several paths for future work. The theory, developed here, for lifting Day pomonoids
to +-closed lower sets enables alternative Cut-elimination proofs for other substructural logics, such as
MALL and Bunched Implications. (Okada’s technique has already been applied to Bunched Implications
by Frumin [14].) We find the technique of using +-closed lower sets more revealing in how the join structure
is preserved than the use of impredicative closure operators in Frumin’s proof or double negation closure
in Okada’s.

We plan to investigate extensions of MAV with exponentials, as in the system NEL, and with a Kleene Star
operator, which can be seen as the exponential for the ◁ connective. Adding a Kleene Star would tighten
the connection with Concurrent Kleene Algebras we highlighted in Remark 3.16. It would interesting to
see to what extent MAV can be seen as a logic for processes represented as elements of MAV-frames.
Furthermore, we plan to investigate fixpoint operators following Baelde [4] and De, Jafarrahmani and
Saurin [13]. The latters’ use of Okada’s technique is not compatible with Agda’s type theory, as it relies
on impredicativity to construct fixpoints with the double negation closure. We believe that our more direct
predicative technique will be able to use Agda’s inductive and coinductive types.

Lastly, we plan to extend our semantics of BV and MAV to a categorical semantics that considers equalities
between proofs as well as provability. Such a semantics ought to be useful for treating MAV as a session-
typed language, as considered by Ciobanu and Horne [8]. The necessary analogue of MAV-algebras has
already been investigated by Blute, Panangaden, and Slavnov [7] as BV-categories, which are Aguiar
and Mahajan’s 2-monoidal (or duoidal) categories [3] extended with duality. The key task will be to
categorify the constructions in this paper to show how the categorical analogue of MAV-frames induces
MAV-categories.

Acknowledgement

We would like to thank Ross Horne for helpful comments and pointers to related work. This work
was funded by the UKRI Engineering and Physical Sciences Research Council (EPSRC), grant number
EP/T026960/1 “AISEC: AI Secure and Explainable by Construction”.

References

[1] Abrusci, V. M., Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, The
Journal of Symbolic Logic 56, pages 1403–1451 (1991), ISSN 00224812.
http://www.jstor.org/stable/2275485

[2] Agda Developers, Agda.
https://agda.readthedocs.io/en/v2.6.4/

[3] Aguiar, M. and S. Mahajan, Monoidal Functors, Species and Hopf Algebras, American Mathematical Society (2010),
ISBN 9781470417680.
https://doi.org/10.1090/crmm/029

[4] Baelde, D., Least and greatest fixed points in linear logic, ACM Trans. Comput. Log. 13, pages 2:1–2:44 (2012).
https://doi.org/10.1145/2071368.2071370

[5] Barr, M., *-Autonomous Categories, Springer Berlin Heidelberg (1979), ISBN 9783540348504.
https://doi.org/10.1007/bfb0064579

[6] Berger, U., M. Eberl and H. Schwichtenberg, Normalisation by Evaluation, in: B. Möller and J. V. Tucker, editors,
Prospects for Hardware Foundations, ESPRIT Working Group 8533, NADA - New Hardware Design Methods, Survey
Chapters, volume 1546 of Lecture Notes in Computer Science, pages 117–137, Springer (1998).
https://doi.org/10.1007/3-540-49254-2_4

[7] Blute, R., P. Panangaden and S. Slavnov, Deep inference and probabilistic coherence spaces, Applied Categorical Structures
20, page 209–228 (2010), ISSN 1572-9095.
https://doi.org/10.1007/s10485-010-9241-0

[8] Ciobanu, G. and R. Horne, Behavioural Analysis of Sessions Using the Calculus of Structures, page 91–106, Springer
International Publishing (2016), ISBN 9783319415796.
https://doi.org/10.1007/978-3-319-41579-6_8

14

https://www.ukri.org/about-us/epsrc/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T026960/1
http://www.jstor.org/stable/2275485
https://agda.readthedocs.io/en/v2.6.4/
https://doi.org/10.1090/crmm/029
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.1007/bfb0064579
https://doi.org/10.1007/3-540-49254-2_4
https://doi.org/10.1007/s10485-010-9241-0
https://doi.org/10.1007/978-3-319-41579-6_8


Atkey, Kokke

[9] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and J. Quesada, Maude: specification and
programming in rewriting logic, Theoretical Computer Science 285, pages 187–243 (2002), ISSN 0304-3975. Rewriting
Logic and its Applications.
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00359-0

[10] Cockett, J. and R. Seely, Linearly distributive functors, Journal of Pure and Applied Algebra 143, page 155–203 (1999),
ISSN 0022-4049.
https://doi.org/10.1016/s0022-4049(98)00110-8

[11] Davey, B. A. and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press (2002), ISBN
9780511809088.
https://doi.org/10.1017/cbo9780511809088

[12] Day, B., On closed categories of functors, page 1–38, Springer Berlin Heidelberg (1970), ISBN 9783540362920.
https://doi.org/10.1007/bfb0060438

[13] De, A., F. Jafarrahmani and A. Saurin, Phase Semantics for Linear Logic with Least and Greatest Fixed Points, in:
A. Dawar and V. Guruswami, editors, 42nd IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2022), volume 250 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 35:1–35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022), ISBN 978-3-95977-261-
7, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.35

[14] Frumin, D., Semantic cut elimination for the logic of bunched implications, formalized in Coq, in: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2022, page 291–306, Association for
Computing Machinery, New York, NY, USA (2022), ISBN 9781450391825.
https://doi.org/10.1145/3497775.3503690

[15] Girard, J., Linear logic, Theor. Comput. Sci. 50, pages 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

[16] Girard, J.-Y., P. Taylor and Y. Lafont, Proofs and Types, Cambridge University Press, USA (1989), ISBN 0521371813.

[17] Guglielmi, A., A calculus of order and interaction, Technical report, Knowledge Representation and Reasoning Group,
Department of Computer Science, Dresden University of Technology (1999). The technical report is no longer available.
The author states it was “thoroughly rewritten” as A System of Interaction and Structure [18].

[18] Guglielmi, A., A system of interaction and structure, ACM Trans. Comput. Logic 8, page 1–es (2007), ISSN 1529-3785.
https://doi.org/10.1145/1182613.1182614

[19] Guglielmi, A., Deep inference, in: B. W. Paleo and D. Delahaye, editors, All about Proofs, Proofs for All, College
Publications (2015), ISBN 978-1-84890-166-7.

[20] Guglielmi, A. and L. Straßburger, A system of interaction and structure V: the exponentials and splitting, Math. Struct.
Comput. Sci. 21, pages 563–584 (2011).
https://doi.org/10.1017/S096012951100003X

[21] Hoare, T., B. Möller, G. Struth and I. Wehrman, Concurrent kleene algebra and its foundations, The Journal of Logic
and Algebraic Programming 80, page 266–296 (2011), ISSN 1567-8326.
https://doi.org/10.1016/j.jlap.2011.04.005

[22] Horne, R., The consistency and complexity of multiplicative additive system virtual, Scientific Annals of Computer Science
25, pages 245–316 (2015).
https://doi.org/10.7561/SACS.2015.2.245

[23] Kahramanoğulları, O., Maude as a platform for designing and implementing deep inference systems, Electron. Notes
Theor. Comput. Sci. 219, page 35–50 (2008), ISSN 1571-0661.
https://doi.org/10.1016/j.entcs.2008.10.033

[24] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science, Springer Berlin Heidelberg (1980),
ISBN 978-3-540-10235-9.
https://doi.org/10.1007/3-540-10235-3

[25] Milner, R., Communication & Concurrency, Prentice Hall, Philadelphia, PA (1989).

[26] Nguyên, L. T. D. and L. Straßburger, A System of Interaction and Structure III: The Complexity of BV and Pomset
Logic, Logical Methods in Computer Science Volume 19, Issue 4 (2023).
https://doi.org/10.46298/lmcs-19(4:25)2023

15

https://doi.org/https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/s0022-4049(98)00110-8
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1007/bfb0060438
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.35
https://doi.org/10.1145/3497775.3503690
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1017/S096012951100003X
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.1016/j.entcs.2008.10.033
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.46298/lmcs-19(4:25)2023


Atkey, Kokke

[27] Nguyễn, L. T. D. u. T. and L. Straßburger, BV and Pomset Logic Are Not the Same, in: F. Manea and A. Simpson,
editors, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022), volume 216 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 32:1–32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2022), ISBN 978-3-95977-218-1, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.CSL.2022.32

[28] Okada, M., Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic, Theoretical
Computer Science 227, pages 333–396 (1999), ISSN 0304-3975.
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00058-4

[29] Retoré, C., Pomset logic: A non-commutative extension of classical linear logic, in: Lecture Notes in Computer Science,
pages 300–318, Springer Berlin Heidelberg (1997).
https://doi.org/10.1007/3-540-62688-3_43

[30] Slavnov, S., On noncommutative extensions of linear logic, Logical Methods in Computer Science Volume 15, Issue 3
(2019).
https://doi.org/10.23638/LMCS-15(3:30)2019

[31] StraßBurger, L. and A. Guglielmi, A system of interaction and structure IV: The exponentials and decomposition, ACM
Transactions on Computational Logic 12, page 1–39 (2011), ISSN 1557-945X.
https://doi.org/10.1145/1970398.1970399

[32] The Agda Community, Agda Standard Library (2023).
https://github.com/agda/agda-stdlib

[33] Tiu, A., A System of Interaction and Structure II: The Need for Deep Inference, Logical Methods in Computer Science
Volume 2, Issue 2 (2006).
https://doi.org/10.2168/LMCS-2(2:4)2006

[34] Troelstra, A. S., Lectures on Linear Logic, Center for the Study of Language and Information, Stanford, CA (1992).

A Statements and corresponding Agda definitions

The table below lists the main definitions, propositions, and theorems in the paper together with the
qualified name of the corresponding Agda definition. The names of the Agda definitions are hyperlinked
to the HTML rendition of the source code, which is available at the following URL:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024

If the version of the paper you are reading does not support hyperlinks, you can reconstruct the URL to
any definition by taking the URL above, adding a /, the module path followed by .html, and the definition
name prefixed with a #. For instance, the URL to the definition of `¬_ is:

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Structure.html#`¬_

The table has three columns. The first gives an intuitive name to the definition, proposition, or theorem
statement. The second links to its statement in the paper, if applicable. The third gives the name of the
corresponding Agda definition, and links to its statement online.

Table A.1: Statements and corresponding Agda definitions.

Section 2

Structures P,Q,R, S MAV.Structure.Structure

Duality P MAV.Structure.`¬_

Symmetric MAV

Equality ≃ MAV.Symmetric._≃_

Inference ⟶ MAV.Symmetric._⟶_

Derivation ⟶
⋆

MAV.Symmetric._⟶⋆_

16

https://doi.org/10.4230/LIPIcs.CSL.2022.32
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1007/3-540-62688-3_43
https://doi.org/10.23638/LMCS-15(3:30)2019
https://doi.org/10.1145/1970398.1970399
https://github.com/agda/agda-stdlib
https://doi.org/10.2168/LMCS-2(2:4)2006
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Structure.html#Structure
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Structure.html#`¬_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Symmetric.html#_≃_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Symmetric.html#_⟶_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Symmetric.html#_⟶⋆_


Atkey, Kokke

Invertible derivation ⟷
⋆

MAV.Symmetric._⟷⋆_

Normal MAV Definition 2.2

Equality ≃ MAV.Base._≃_

Inference ⟶ MAV.Base._⟶_

Derivation ⟶
⋆

MAV.Base._⟶⋆_

Invertible derivation ⟷
⋆

MAV.Base._⟷⋆_

Section 3.1

Pomonoids Definition 3.1 IsPomonoid

if Commutative Definition 3.1 IsCommutativePomonoid

if Residuated Definition 3.2 IsResiduatedCommutativePomonoid

if Duoidal Definition 3.5 IsDuoidal

∗-autonomous partial order Definition 3.3 IsStarAutonomous

(The preceding definitions can be found under Algebra.Orderd.Structures.)

Section 3.2

MAV-algebra Definition 3.7 MAV.Model.Model

Interpretation Definition 3.9 MAV.Interpretation.J_K

Soundness Theorem 3.11

for Equality MAV.Interpretation.J_Keq

for Inference MAV.Interpretation.J_Kstep

for Derivation MAV.Interpretation.J_Ksteps

Section 3.3

MAV-frame Definition 3.13 MAV.Frame.Frame

Normal MAV-frame Proposition 3.17 MAV.Base.frame

Section 3.4.1

Lower sets Definition 3.19 LowerSet

Day pomonoid Proposition 3.21 module Day

if Commutative Proposition 3.21 module DayCommutative

if Duoidal Proposition 3.24 module DayDuoidal

(The preceding definitions can be found under Algebra.Ordered.Construction.LowerSet.)

Section 3.4.2

+-closed lower sets Definition 3.25 Ideal

+-closed Day pomonoid

if Commutative Proposition 3.32 module DayCommutative

if Duoidal Proposition 3.33 module DayDuoidal

17

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Symmetric.html#_⟷⋆_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Base.html#_≃_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Base.html#_⟶_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Base.html#_⟶⋆_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Base.html#_⟷⋆_
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Structures.html#IsPomonoid
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Structures.html#IsCommutativePomonoid
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Structures.html#IsResiduatedCommutativePomonoid
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Structures.html#IsDuoidal
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Structures.html#IsStarAutonomous
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Orderd.Structures.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Model.html#Model
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Interpretation.html#⟦_⟧
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Interpretation.html#⟦_⟧eq
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Interpretation.html#⟦_⟧step
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Interpretation.html#⟦_⟧steps
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Frame.html#Frame
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Base.html#frame
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.LowerSet.html#LowerSet
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.LowerSet.html#Day
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.LowerSet.html#DayCommutative
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.LowerSet.html#DayDuoidal
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.LowerSet.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Ideal.html#Ideal
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Ideal.html#DayCommutative
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Ideal.html#DayDuoidal


Atkey, Kokke

(The preceding definitions can be found under Algebra.Ordered.Construction.Ideal.)

Section 3.4.3

Chu construction Definition 3.38 Construction.Chu

for duoidal pomonoids Proposition 3.47 module Construction.SelfDual

(The preceding definitions can be found under Algebra.Ordered.Construction.Chu.)

Section 3.4.4

MAV-algebras from MAV-frames Theorem 3.48 MAV.Frame.FrameModel.model

Section 4

Main lemma Proposition 4.1 MAV.CutElim.main-lemma

Generalised cut-elimination Theorem 4.2 MAV.CutElim.cut-elim

18

https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Ideal.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Chu.html#Construction.Chu
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Chu.html#Construction.SelfDual
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/Algebra.Ordered.Construction.Chu.html
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.Frame.html#FrameModel.model
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.CutElim.html#main-lemma
https://bobatkey.github.io/semantic-cut-elimination/MFPS/2024/MAV.CutElim.html#cut-elim

	Introduction
	BV, MAV, and Deep Inference
	Contribution and Content of this Paper

	The system MAV
	Semantic Models for MAV
	Pomonoidal, *-autonomous, and Duoidal Structure on Partial Orders
	MAV-algebras
	MAV-frames
	Constructing MAV-algebras from MAV-frames

	Semantic Cut-Elimination and Proof Normalisation
	Mechanisation in Agda
	Extensions and Future Work
	Acknowledgement 
	References
	Statements and corresponding Agda definitions

