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Abstract

Parametricity is a key metatheoretic property of type systems, which implies strong uniformity properties of the structure of
types within systems possessing it. In recent years, various systems of dependent type theory have emerged with the aim of
expressing such parametric reasoning in their internal logic. More recently still, such internal parametricity has been applied
to solving various problems arising from the complexity of higher-dimensional coherence conditions in type theory. This paper
presents a first step toward the unification, simplification, and extension of these methods for internalizing parametricity.
Specifically, I argue that there is an essentially modal aspect of parametricity, intimately connected with the category-theoretic
concept of cohesion. On this basis, I describe a general categorical semantics for modal parametricity, develop a corresponding
framework of axioms (with computational interpretations) in dependent type theory, and demonstrate the practical utility
of these axioms in managing the complexity of higher-dimension coherence by using them to painlessly derive induction
principles for higher inductive types. In closing, I sketch the outlines of a more general synthetic theory of parametricity, with
applications in domains ranging from homotopy type theory to the analysis of program modules.
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1 The Past, Present & Future of Internal Parametricity

Reynolds [Rey83] began his seminal introduction of the concept of parametricity with the declaration that
“type structure is a syntactic discipline for enforcing levels of abstraction.” In the ensuing decades, this idea
of Reynolds’ has been overwhelmingly vindicated by the success of type systems in achieving modularity
and abstraction in domains ranging from programming to interactive theorem proving. Yet much remains
to be done in exploring the theoretical basis for and ramifications of this idea, and Reynolds’ particular
solution to its formalization – the concept of relational parametricity.

Reynolds’ original analysis of parametricity targeted the polymorphic λ-calculus (aka System F). Intuitively,
polymorphic programs in System F cannot inspect the types over which they are defined and so must
behave essentially the same for all types at which they are instantiated. To make this intuitive idea
precise, Reynolds posed an ingenious solution in terms of logical relations, whereby every System F type is
equipped with a suitable binary relation on its inhabitants, such that all definable terms in System F must
preserve the relations defined on their component types. On this basis, Reynolds was able to establish
many significant properties of the abstraction afforded by System F’s type structure, e.g. all closed terms
of type ∀X.X → X are extensionally equivalent to the identity function.
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Reynolds’ original analysis of parametricity for System F remained wholly external to System F itself.
However, with the advent of systems of dependent type theory capable of conducting such analysis of
proofs and programs internally, the possibility arises of finding an appropriate set of axioms for dependent
type theory that would allow it to prove such parametricity theorems of its own type structure. Such
internalization could moreover have far-reaching benefits for the overall theory of parametricity. Classical
accounts of parametricity for various type systems have generally been “analytic” in nature – defined
in terms of the particular syntactic constructs and models of the systems they target. On the other
hand, axioms for parametricity internal to dependent type theory could provide a “synthetic” basis for
parametricity whereby any system satisfying these axioms would necessarily enjoy parametricity and its
consequences.

The need for such an axiomatic specification of parametricity is made all the more apparent by recent
developments in Homotopy Type Theory (HoTT) and related fields, wherein type theories with internal
parametricity have been developed and applied by various authors to the solution of several open problems in
these fields [CH20], [KS24]. Each such type theory has posed its own solution to the problem of internalizing
parametricity, and although some commonalities exist between them, there is as yet no one framework that
subsumes them all. In particular, the majority of these type theories have targeted only specific semantic
models (usually some appropriately-chosen presheaf categories) rather than an axiomatically-defined class of
models, and in this sense the analysis of parametricity offered by these type theories remains analytic, rather
than synthetic. This limits any insight into whether and how these approaches to internal parametricity
may be related to one another, generalized, or simplified.

As a first step toward the unification, simplification, and generalization of the various approaches to
parametricity, I propose an analysis of parametricity in terms of the category-theoretic concept of cohesion
(and, more specifically, Lawvere’s concept of sufficient cohesion). Cohesion here refers to a particular
relation between categories whereby a category is equipped with an adjoint string of modalities that
together make its objects behave like spaces, whose points are bound together by an abstract property of
cohesion, that constrains what maps may be defined between these spaces. Such constraint of the class
of definable maps between objects is reminiscent of intuitive idea behind Reynolds’ original formulation
of parametricity, particularly if one interprets the cohesion that binds types together as the structure of
relations that inhere between them. Moreover, by inspection of the categorical models of extant type
theories with internal parametricity, along with classical models of parametricity, one finds that many of
these (if not quite all) exhibit cohesion, in this sense. The main contribution of this paper is thus twofold:
1) to show that this basic setup of cohesion is essentially all that is needed to recover classical parametricity
results internally in dependent type theory, and 2) to show how this axiomatic framework can be applied in
solving problems arising from the complexity of coherence conditions in HoTT – specifically, the problem of
deriving induction principles for higher inductive types from their recursors. As a further illustration and
verification of this idea, this paper is also a literate Agda document wherein the axioms for and theorems
resulting from such parametricity via cohesion have been fully formalized and checked for validity. 2

{-# OPTIONS --rewriting --cohesion --flat-split --without-K #-}
module parametricity-via-cohesion where

open import Agda.Primitive
open import Data.Empty
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

2 The full source of this file can be found at https://github.com/cbaberle/Parametricity-via-Cohesion.
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2 Cohesion & Parametricity

The notion of cohesion as an abstract characterization of when one category (specifically a topos) behaves
like a category of spaces defined over the objects of another, is due primarily to Lawvere [Law07,Law05].
The central concept of axiomatic cohesion is an arrangement of four adjoint functors as in the following
diagram:

E

S

Γ ∇∆Π ⊣ ⊣ ⊣

where E ,S are both topoi, ∆, ∇ are both fully faithful, and Π preserves finite products. Given such an
arrangement, we think of the objects of E as spaces and those of S as sets (even if S is not the category of
sets), where Γ is the functor that sends a space to its set of points, ∆ sends a set to the corresponding
discrete space, ∇ sends a set to the corresponding codiscrete space, and Π sends a space to its set of
connected components. These in turn induce a string of adjoint modalities on E :

∫ ⊣ ♭ ⊣ ♯

where ∫ = ∆ ◦ Π and ♯ = ∇ ◦ Γ are idempotent monads, and ♭ = ∆ ◦ Γ is an idempotent comonad.

A concrete example of cohesion comes from the category of reflexive graphs RGph, which is cohesive
over the category of sets Set [Law05]. Here, Γ is the functor that sends a reflexive graph to its set of
vertices, ∆ sends a set V to the “discrete” reflexive graph on V whose only edges are self-loops, ∇ sends
V to the “codiscrete” (i.e. complete) graph where there is a unique edge between any pair of vertices in
V , and Π sends a reflexive graph to its set of (weakly) connected components. It is worth noting, at this
point, that many classical models of parametricity (e.g. [Atk12]) are based upon semantic interpretation of
type structure in terms of reflexive graphs. This, I wish to argue, is no accident, and the key property of
reflexive graphs underlying such interpretations is precisely their cohesive structure. More generally, for
any base topos S, we may construct its corresponding topos RGph(S) of internal reflexive graphs, which
will similarly be cohesive over S. We can therefore in fact use the language of such internal reflexive graphs
to derive parametricity results for any topos.

In fact, this same setup of cohesion is interpretable, mutatis mutandis, in the case where E ,S are not
(1-)topoi, but rather ∞-topoi, i.e. models of homotopy type theory [Shu18]. This allows us to use the
language of homotopy type theory – suitably extended with constructs for the above-described modalities
(the ♭ modality in particular, which, for technical reasons, cannot be axiomatized directly in ordinary
HoTT) – to work synthetically with the structure of such a cohesive ∞-topos. For present purposes, we
accomplish this by working in Agda with the --cohesion flag enabled, along with --without-K, which
ensures compatibility with the treatment of propositional equality in HoTT. 3

I therefore begin by recalling some standard definitions from HoTT [Uni13], which shall be essential in
defining much of the structure to follow. Essentially all of these definitions have to do with the identity type
former _≡_ and its associated constructor refl : ∀ {ℓ} {A : Set ℓ} {a : A} → a ≡ a, as defined in
the module Agda.Builtin.Equality:

module hott where

First of all, we have the induction principle for the identity type, aka the J rule:

J : ∀ {ℓ κ} {A : Set ℓ} {a : A}
→ (B : (b : A) → a ≡ b → Set κ)

3 I also enable the --rewriting flag to allow specifying certain identities as rewrite rules in order to provide them
with computational significance, and the --flat-split flag to allow pattern-matching over cohesive variables, which
although not strictly necessary for the account of parametricity in what follows, is needed for some examples involving
e.g. discreteness of the Booleans.
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→ {b : A} → (p : a ≡ b) → B a refl → B b p
J B refl b = b

We then obtain the operation of transport as the recursor for the identity type:

transp : ∀ {ℓ κ} {A : Set ℓ} {a b : A}
→ (B : A → Set κ) → a ≡ b → B a → B b

transp B p b = J (λ a _ → B a) p b

Additionally, both J and transp are symmetric, and so can be applied “in the opposite direction”:

J−1 : ∀ {ℓ κ} {A : Set ℓ} {a : A}
→ (B : (b : A) → a ≡ b → Set κ)
→ {b : A} → (p : a ≡ b) → B b p → B a refl

J−1 B refl b = b

transp−1 : ∀ {ℓ κ} {A : Set ℓ} {a b : A}
→ (B : A → Set κ) → a ≡ b → B b → B a

transp−1 B p b = J−1 (λ a _ → B a) p b

Moreover, since all functions must preserve relations of identity, we may apply a function to both sides of
an identification as follows:

ap : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ} {a b : A}
→ (f : A → B) → a ≡ b → f a ≡ f b

ap f refl = refl

The notion of contractibility expresses the idea that a type is essentially uniquely inhabited.

isContr : ∀ {ℓ} (A : Set ℓ) → Set ℓ
isContr A = Σ A (λ a → (b : A) → a ≡ b)

Similarly, the notion of equivalence expresses the idea that a function between types has an essentially
unique inverse. 4

isEquiv : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ}
→ (A → B) → Set (ℓ ⊔ κ)

isEquiv {A = A} {B = B} f =
(b : B) → isContr (Σ A (λ a → f a ≡ b))

mkInv : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ}
→ (f : A → B) → isEquiv f → B → A

mkInv f e b = fst (fst (e b))

open hott

The reader familiar with HoTT may note that, so far, I have not included anything relating to the univalence
axiom – arguably the characteristic axiom of HoTT. In fact, this is by design, as a goal of the current
formalization is to assume only axioms that can be given straightforward computational interpretations
that preserve the property that every closed term of the ambient type theory evaluates to a canonical
normal form (canonicity), so that these axioms give a constructive and computationally sound interpretation
of parametricity. While the univalence axiom can be given a computational interpretation compatible
with canonicity, as in Cubical Type Theory [CHS22], doing so is decidedly not a straightforward matter.
Moreover, it turns out that the univalence axiom is largely unneeded in what follows, save for demonstrating
admissibility of some additional axioms which permit more direct computational interpretations that are
(conjecturally) compatible with canonicity. I thus shall have need for univalence only as a metatheoretic

4 Those familiar with HoTT may note that I use the contractible fibres definition of equivalence, as this shall be the
most convenient to work with, for present purposes.
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assumption. In this setting, univalence allows us to convert equivalences between types into identifications
of those types, which may then be transported over accordingly.
Having defined some essential structures of the language of HoTT, we may now proceed to similarly define
some essential structures of the language of HoTT with cohesive modalities.
module cohesion where

Of principal importance here is the ♭ modality, which (intuitively) takes a type A to its corresponding
discretization ♭A, wherein all cohesion between points as been eliminated. However, in order for this
operation to be well-behaved, A must not depend upon any variables whose types are not themselves
discrete, in this sense. To solve this problem, the --cohesion flag introduces a new form of variable binding
@♭ x : X, which judgmentally asserts that x is an element of the discretization of X, and enforces the
restriction that X may only depend upon other variables bound with @♭. In this case, we say that x is a
crisp element of X.
This notion in hand, we may define the ♭ modality as an operation on crisp types:

data ♭ {@♭ ℓ : Level} (@♭ A : Set ℓ) : Set ℓ where
con : (@♭ x : A) → ♭ A

This modality is then equipped with the following counit map ϵ: 5

ϵ : {@♭ ℓ : Level} {@♭ A : Set ℓ} → ♭ A → A
ϵ (con x) = x

A crisp type is then discrete precisely when this map is an equivalence:
isDiscrete : ∀ {@♭ ℓ : Level} → (@♭ A : Set ℓ) → Set ℓ
isDiscrete {ℓ = ℓ} A = isEquiv (ϵ {ℓ} {A})

open cohesion

Beyond such notions of discreteness, etc., what more is required for the sake of parametricity is a way
of detecting when the elements of a given type are related, or somehow bound together, by the cohesive
structure of that type.
For this purpose, it is useful to take a geometric perspective upon cohesion, and correspondingly, para-
metricity. What we are after is essentially the shape of an abstract relation between points, and an object
I in our cohesive topos E (correspondingly, a type in our type theory) which classifies this shape in other
objects (types), in that maps I → A correspond to such abstract relations between points in A. In this case,
the shape of an abstract relation may be considered as a path, i.e. two distinct points which are somehow
connected. By way of concrete example, in the topos of reflexive graphs RGph, the role of a classifier for
this shape is played by the “walking edge” graph • → •, consisting of two points and a single non-identity
(directed) edge. More generally, using the language of cohesion, we can capture this notion of an abstract
line segment in the following axiomatic characterization of I:

I is an object of E that is strictly bipointed and weakly connected.
Unpacking the terms used in this characterization, we have the following:
• Strictly bipointed means that I is equipped with two elements i0, i1 : I, such that the proposition

(i0 ≡ i1) → ⊥ (i.e. i0 ̸= i1) holds in the internal language of E .
• Weakly connected means that the unit map η : I → ∫ I is essentially constant, in that it factors through

a contractible object/type. Intuitively, this says that the image of I in ∫ I essentially consists of a single
connected component.

Note that the above-given example of the walking edge graph straightforwardly satisfies both of these
requirements, as it consists of two distinct vertices belonging to a single (weakly) connected component. I
also note in passing that, if the assumption of weak connectedness is strengthened to strong connectedness –

5 arising from the fact that, semantically, ♭ is an idempotent comonad on crisp types.
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i.e. the object/type ∫ I is itself contractible – then the existence of such an object I as above is equivalent
to Lawvere’s axiom of sufficient cohesion [Law07]. We might therefore refer to the conjunction of the above
conditions as an axiom of weak sufficient cohesion for the ambient ∞-topos E .

We can begin to formalize such weak sufficient cohesion in Agda by postulating a type I with two given
elements i0, i1:

postulate
I : Set0

i0 i1 : I

We could also, in principle, directly postulate the strict bipointedness of I, as an axiom having the form
i0≡i1 → ⊥. However, this is in fact unnecessary, as this axiom will instead follow from an equivalent
formulation introduced in a following subsection.

On the other hand, we do not yet have the capability to postulate an axiom of weak connectedness as
written above, since we have not yet formalized the ∫ modality. We could do so, but again, it is in fact
better for present purposes to rephrase this axiom to an equivalent form involving only the ♭ modality,
which can be done as follows:

A type A is weakly connected if and only if, for every discrete type B, any function A → B is essentially
constant, in the sense of factoring through a contractible type.

To see that this equivalence holds: in one direction, assume that A is weakly connected. Then for any map
f : A → B, by the adjunction ∫ ⊣ ♭ and discreteness of B, there exist maps f♭ : A → ♭B and f ∫ : ∫ A → B,
such that the following diagram commutes:

A ∫ A

♭B B

f♭ f∫

ϵ

η

f

Then since by assumption η factors through a contractible type, so does f .

In the other direction, assume that every map f : A → B is essentially constant, for every discrete type B.
Then in particular, the map η : A → ∫ A is essentially constant, since ∫ A is discrete (as it lies in the image
of the discretization functor ∆).

Hence the property of I being weakly connected can be expressed purely in terms of its relation to the
discrete types. Specifically, if we think of maps I → A as abstract relations or paths between elements of A,
then weak connectedness of I equivalently says that all paths between points of discrete types are constant.

In order to express this property in Agda, it shall therefore be prudent first to introduce some machinery
for ergonomically handling paths, analogous to the definition of path types in Cubical Type Theory (as in
e.g. [CCHM15], [ABC+21]).

2.1 Path Types
In principle, given a, b : A, we could define the type of paths from a to b in A as the type Σf : I →
A.(f i0 = a) × (f i1 = b). However, experience with such a naïve formalization shows that it incurs a
high cost of laborious transportations along identities that should be easy enough to infer automatically.
Hence I instead follow the approach taken by Cubical Type Theory and related systems, and give an
explicit axiomatization for path types, with corresponding rewrite rules to apply the associated equalities
automatically:

postulate
Path : ∀ {ℓ} (A : I → Set ℓ) (a0 : A i0) (a1 : A i1) → Set ℓ

The introduction rule for path types corresponds to function abstraction.
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pabs : ∀ {ℓ} {A : I → Set ℓ}
→ (f : (i : I) → A i) → Path A (f i0) (f i1)

and likewise, the elimination rule corresponds to function application.
papp : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}

→ Path A a0 a1 → (i : I) → A i

We may then postulate the usual β-law as an identity for this type, along with special identities for application
to i0 and i1. All of these are made into rewrite rules, allowing Agda to apply them automatically, and thus
obviating the need for excessive use of transport. 6

pβ : ∀ {ℓ} {A : I → Set ℓ} (f : (i : I) → A i)
→ (i : I) → papp (pabs f) i ≡ f i

{-# REWRITE pβ #-}

papp0 : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}
→ (p : Path A a0 a1) → papp p i0 ≡ a0

{-# REWRITE papp0 #-}

papp1 : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}
→ (p : Path A a0 a1) → papp p i1 ≡ a1

{-# REWRITE papp1 #-}

With this formalization of path types in hand, we can straightforwardly formalize the equivalent formulation
of weak connectedness of I given above. For this purpose, we first define the map idToPath that takes an
identification a = b to a path from a to b:
idToPath : ∀ {ℓ} {A : Set ℓ} {a b : A}

→ a ≡ b → Path (λ _ → A) a b
idToPath {a = a} refl = pabs (λ _ → a)

A type A is path-discrete if for all a, b : A, the map idToPath is an equivalence.
isPathDiscrete : ∀ {ℓ} (A : Set ℓ) → Set ℓ
isPathDiscrete {ℓ = ℓ} A =

{a b : A} → isEquiv (idToPath {ℓ} {A} {a} {b})

We then postulate the following axioms:
postulate

pathConst1 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a b : A}
→ isDiscrete A → (e : Path (λ _ → A) a b)
→ Σ (a ≡ b) (λ p → idToPath p ≡ e)

pathConst2 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a b : A}
→ (dA : isDiscrete A) → (e : Path (λ _ → A) a b)
→ (q : a ≡ b) → (r : idToPath q ≡ e)
→ pathConst1 dA e ≡ (q , r)

which together imply that, if A is discrete, then it is path-discrete.
isDisc→isPDisc : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ}

→ isDiscrete A → isPathDiscrete A
isDisc→isPDisc dA e =

(pathConst1 dA e , λ (p , q) → pathConst2 dA e p q)

As it stands, we have not yet given a procedure for evaluating the axioms pathConst1 and pathConst2
when they are applied to canonical forms, which means that computation on these terms will generally get

6 We could additionally postulate an η-law for path types, analogous to the usual η-law for functions types; however,
this is unnecessary for what follows, so I omit this assumption.
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stuck and thus violate canonicity. Toward rectifying this, I prove a key identity regarding these axioms, add
a further postulate asserting that this identity is equal to refl, and convert both of these to rewrite rules:
rwPathConst1 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ}

→ {a : A} → (dA : isDiscrete A)
→ pathConst1 dA (pabs (λ _ → a)) ≡ (refl , refl)

rwPathConst1 {a = a} dA = pathConst2 dA (pabs (λ _ → a)) refl refl
{-# REWRITE rwPathConst1 #-}

postulate
rwPathConst2 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ}

→ {a : A} → (dA : isDiscrete A)
→ pathConst2 dA (pabs (λ _ → a)) refl refl ≡ refl

{-# REWRITE rwPathConst2 #-}

Although a full proof of canonicity is beyond the scope of this paper, I conjecture that adding these rules
suffices to preserve canonicity. 7 I shall check a few specific cases of this conjecture later in the paper.
So much for the (weak) connectedness of I. Let us turn our attention now to the other property previously
stipulated of I, namely strict bipointedness. As mentioned previously, we could simply postulate this
stipulation directly as an axiom – however, for the purpose of proving parametricity theorems, a more
prudent strategy is to instead formalize a class of I-indexed type families, whose computational behavior
follows from this assumption (and which, in turn, implies it). Because these type families essentially
correspond to the graphs of predicates and relations on arbitrary types, I refer to them as graph types.

2.2 Graph Types
For present purposes, we need only concern ourselves with the simplest class of graph types: unary graph
types, which, as the name would imply, correspond to graphs of unary predicates. Given a type A, a type
family B : A → Type, and an element i : I, the graph type Gph1 i A B is defined to be equal to A when
i is i0, and equivalent to Σx : A.Bx when i is i1. Intuitively, an element of Gph1 i A B is a dependent
pair whose second element only exists when i is equal to i1. We may formalize this in Agda as follows, by
postulating a rewrite rule that evaluates Gph1 i0 A B to A:
postulate

Gph1 : ∀ {ℓ} (i : I) (A : Set ℓ) (B : A → Set ℓ) → Set ℓ

g1rw0 : ∀ {ℓ} (A : Set ℓ) (B : A → Set ℓ) → Gph1 i0 A B ≡ A
{-# REWRITE g1rw0 #-}

We then have the following introduction rule for elements of Gph1 i A B, which are pairs where the second
element of the pair only exists under the assumption that i = i1. When i = i0 instead, the pair collapses to
its first element:

g1pair : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (a : A) → (b : (i ≡ i1) → B a) → Gph1 i A B

g1pair0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (a : A) → (b : (i0 ≡ i1) → B a)
→ g1pair {B = B} i0 a b ≡ a

{-# REWRITE g1pair0 #-}

The first projection from such a pair may be taken no matter what i is, and reduces to the identity function
when i is i0.

g1fst : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (g : Gph1 i A B) → A

7 perhaps not for Agda specifically, but for a more idealized system of type theory, such as Martin-Löf Type Theory
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g1β1 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (a : A) → (b : (i ≡ i1) → B a)
→ g1fst i (g1pair {B = B} i a b) ≡ a

{-# REWRITE g1β1 #-}

g1fst0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (g : Gph1 i0 A B) → g1fst {B = B} i0 g ≡ g

{-# REWRITE g1fst0 #-}

The second projection, meanwhile, may only be taken when i is equal to i1:
g1snd : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}

→ (g : Gph1 i1 A B) → B (g1fst i1 g)

g1β2 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (a : A) → (b : (i1 ≡ i1) → B a)
→ g1snd (g1pair {B = B} i1 a b) ≡ b refl

{-# REWRITE g1β2 #-}

It is straightforward to see that the inclusion of graph types makes strict bipointedness of I provable, as
follows:
strBpt : i0 ≡ i1 → ⊥
strBpt p = g1snd (transp (λ i → Gph1 i ⊤ (λ _ → ⊥)) p tt)

In fact, the converse holds under the assumption of univalence. Specifically, in the presence of univalence
and the assumption of strict bipointedness for I, the type Gph1 i A B may be regarded as a computationally
convenient shorthand for the type Σx : A.(i = i1) → Bx, in much the same way as the type Path A a0 a1
serves as shorthand for the type Σf : (Πi : I.Ai).(f i0 = a0) × (f i1 = a1). This is due to the following
equivalence:

Σx : A.(i0 = i1) → Bx

≃ Σx : A.⊥ → Bx

≃ Σx : A.⊤
≃ A

which is given by the map fst : (Σx : A.(i0 = i1) → Bx) → A and which, under univalence, becomes an
identity between its domain and codomain, thereby justifying the use of this and associated identities
as axioms for graph types. I conjecture that moreover, taking these identities as rewrite rules is fully
compatible with canonicity. 8

A few useful theorems concerning identities between elements of graph types are as follows, the latter of
which is also made into a rewrite rule:
apg1pair : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}

→ {a b : A} {aB : B a} {bB : B b}
→ (p : a ≡ b) → aB ≡ transp−1 B p bB
→ (i : I) → g1pair i a (λ _ → aB) ≡ g1pair i b (λ _ → bB)

apg1pair refl refl i = refl

apg1pair0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ {a b : A} {aB : B a} {bB : B b}

8 subject to the same caveat as before that this means canonicity for an idealized system of MLTT, and not Agda
specifically
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→ (p : a ≡ b) → (q : aB ≡ transp−1 B p bB)
→ apg1pair p q i0 ≡ p

apg1pair0 refl refl = refl
{-# REWRITE apg1pair0 #-}

In principle, we could continue in this manner, and define graph types for relations of arities greater than 1
as well. However, unary graph types are sufficient for what follows. Having thus given appropriate axioms
(and corresponding computation rules) to capture the desiderata that I be strictly bipointed and weakly
connected, we are now in a position to prove some classical parametricity theorems using this structure.

2.3 Parametricity via Sufficient Cohesion
I begin this section with an old chestnut of parametricity theorems – a proof that any polymorphic function
of type (X : Set) → X → X must act as the identity function on any path-discrete type X.
PolyId : (ℓ : Level) → Set (lsuc ℓ)
PolyId ℓ = (X : Set ℓ) → X → X

To prove the desired parametricity theorem for the type PolyId as above, we first prove a substitution
lemma for this type, which can be stated as follows:

For any function α : PolyId and any path-discrete type A with a : A and a type family B : A → Set,
there is a function B a → B (α A a).

The proof of this lemma is contained in the following submodule:
module paramId {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (B : A → Set ℓ)

(a : A) (b : B a) (α : PolyId ℓ) where

The key step in the proof of this lemma is to construct a dependent path over the type family Gph1 i A B
: I → Set as follows:

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B) (g1pair i a (λ _ → b))

Then taking the second projection of lemma0 evaluated at i1 yields an element of B evaluated at the first
projection of lemma0 evaluated at i1:

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

And we can use lemma0 to construct a path from α A a to g1fst i1 (lemma0 i1) as follows:
lemma2 : Path (λ _ → A) (α A a) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

And then since A is path-discrete, this path becomes an identity along which we can transport lemma1:
substLemma : B (α A a)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

From this substitution lemma, it straightforwardly follows that any element of PolyId must be extensionally
equivalent to the identity function when evaluated at a path-discrete type.
polyId : ∀ {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (a : A)

→ (α : PolyId ℓ) → α A a ≡ a
polyId A pdA a α =

paramId.substLemma A pdA (λ b → b ≡ a) a refl α

So far, we have proved only that the restrictions of elements of PolyId to path-discrete types are equivalent
to that of the polymorphic identity function on path-discrete types. The theorem would then after all be
trivial if it turned out that the only path-discrete types were (e.g.) those containing at most one element
(i.e. the mere propositions, in the terminology of HoTT). To show that this is not the case, we make use of
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our assumption of (weak) connectedness for I, which we have already seen implies that every discrete type
is path-discrete. One may think of the discrete types as forming their own distinct system of type theory
which is then embedded in the broader system of cohesive types we have been working in, via the ♭ modality.
We can then use the cohesive structure of the latter system to analyze properties of the embedded theory.
Moreover, the subuniverse of discrete types contains many specific nontrivial types to which these theorems
may be applied, e.g. – as in the following example – the type of Booleans Bool.
module BoolDiscrete where

Showing that Bool is discrete is a simple matter of pattern matching.
boolIsDisc : isDiscrete Bool
boolIsDisc false = (con false , refl) , λ { (con false , refl) → refl }
boolIsDisc true = (con true , refl) , λ { (con true , refl) → refl }

It follows that Bool is also path-discrete and so the above parametricity theorem may be applied to it.
boolIsPDisc : isPathDiscrete Bool
boolIsPDisc = isDisc→isPDisc boolIsDisc

polyIdBool : (α : PolyId lzero) → (b : Bool) → α Bool b ≡ b
polyIdBool α b = polyId Bool boolIsPDisc b α

This provides an opportunity to check some simple cases of the canonicity conjecture for the rewrite rules
we have so far postulated. Specifically, we may check that the proof of polyId yields a canonical form
(namely refl) when applied to canonical forms involving Booleans:

shouldBeRefl1 : true ≡ true
shouldBeRefl1 = polyIdBool (λ X → λ x → x) true

Running Agda’s normalization procedure on this term shows that it does indeed evaluate to refl.

2.4 Parametricity & (Higher) Inductive Types
The foregoing proof of parametricity for the type of the polymorphic identity function remains ultimately a
toy example. To demonstrate the true power of this approach to parametricity, I turn now to some more
intricate examples of its use in proving universal properties for simplified representations of inductive types
and higher inductive types.
In general, it is easy to write down what should be the recursion principle for an inductive type generated
by a set of constructors, but harder (though feasible) to write down the corresponding induction principle.
When one begins to consider more complex generalizations of inductive types, such as higher inductive
types, inductive-inductive types, etc., these difficulties begin to multiply.
What would be ideal would be a way of deriving the induction principle for an inductive type from its
recursor, hence requiring only the latter to be specified as part of the primitive data of the inductive type.
However, in most systems of ordinary dependent type theory this is generally not possible [Geu01]. In
HoTT, there is one way around this issue, due to Awodey, Frey & Speight [AFS18], whereby additional
naturality constraints are imposed upon the would-be inductive type, that serve to make the corresponding
induction principle derivable from the recursor. However, when one goes on to apply this technique to
higher inductive types, which may specify constructs not only for elements of a type, but also for instances
of its (higher) identity types, the complexity of these naturality conditions renders them impractical to work
with. The ballooning complexity of these conditions is an instance of the infamous coherence problem in
HoTT, whereby the complexity of coherence conditions for higher-categorical structures seemingly escapes
any simple inductive definition.
As an alternative, let us consider ways of using parametricity to derive induction principles from recursion
principles for inductive and higher inductive types, starting with the prototypical inductive type – the
natural numbers N.
First, we define the type of the recursor for N.
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RecN : Setω
RecN = ∀ {ℓ} (A : Set ℓ) → A → (A → A) → A

We may then postulate the usual constructors and identities for N. 9

postulate
N : Set0

zero : N
succ : N → N
recN : N → RecN
zeroβ : ∀ {ℓ} (A : Set ℓ) (a : A) (f : A → A)

→ recN zero A a f ≡ a
{-# REWRITE zeroβ #-}
succβ : ∀ {ℓ} (n : N) (A : Set ℓ) (a : A) (f : A → A)

→ recN (succ n) A a f ≡ f (recN n A a f)
{-# REWRITE succβ #-}
Nη : (n : N) → recN n N zero succ ≡ n
{-# REWRITE Nη #-}

From here, we may proceed as in the proof of parametricity for PolyId, by proving an analogous substitution
lemma for RecN, following essentially the same steps:

module paramN {ℓ} (α : RecN) (A : Set ℓ) (pdA : isPathDiscrete A)
(B : A → Set ℓ) (a : A) (b : B a)
(f : A → A) (ff : (x : A) → B x → B (f x)) where

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B)

(g1pair i a (λ _ → b))
(λ g → let g' j q =

transp (λ k → Gph1 k A B) q g in
g1pair i (f (g1fst i g))

(λ p →
J−1 (λ j q →

B (f (g1fst j (g' j q))))
p
(ff (g1fst i1 (g' i1 p))

(g1snd (g' i1 p)))))

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

lemma2 : Path (λ _ → A) (α A a f) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

substLemma : B (α A a f)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

In order to apply this lemma to N itself, we must further postulate that N is path-discrete. 10

postulate

9 Note that among the identities postulated as rewrite rules for N is its η-law, i.e. recN n N zero succ = n for all
n : N. This identity will be important for the following derivation of the induction principle for N, and postulating it
as a rewrite rule, rather than an axiom, is thus necessary to preserve canonicity.
10 One might think that we could show by induction that N is discrete, hence path-discrete by weak connectedness of
I; however, since we have not yet proven induction for the above-given encoding of N internally, we must instead take
path-discreteness of N as an additional axiom, from which induction on N will follow.
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pdN1 : ∀ {m n : N} (e : Path (λ _ → N) m n)
→ Σ (m ≡ n) (λ p → idToPath p ≡ e)

pdN2 : ∀ {m n : N} (e : Path (λ _ → N) m n)
→ (q : m ≡ n) (r : idToPath q ≡ e)
→ pdN1 e ≡ (q , r)

pdN : isPathDiscrete N
pdN e = (pdN1 e , λ (q , r) → pdN2 e q r)

rwPDN1 : (n : N) → pdN1 (pabs (λ _ → n)) ≡ (refl , refl)
rwPDN1 n = pdN2 (pabs (λ _ → n)) refl refl
{-# REWRITE rwPDN1 #-}

postulate
rwPDN2 : (n : N) → pdN2 (pabs (λ _ → n)) refl refl ≡ refl
{-# REWRITE rwPDN2 #-}

Induction for N then follows as a straightforward consequence of the substitution lemma. 11

indN : (P : N → Set)
→ P zero
→ ((n : N) → P n → P (succ n))
→ (n : N) → P n

indN P pz ps n =
paramN.substLemma (recN n) N pdN P zero pz succ ps

As in the case of the parametricity theorem for PolyId, we may test that the derived induction principle
for N evaluates canonical forms to canonical forms. The following example tests this for the usual inductive
proof that zero is an identity element for addition on the right (when addition is defined by induction on
the left argument).

module Nexample where
_plus_ : N → N → N
m plus n = recN m N n succ

zeroIdR : (n : N) → n plus zero ≡ n
zeroIdR n =

indN (λ m → m plus zero ≡ m) refl (λ m p → ap succ p) n

shouldBeRefl2 : succ (succ zero) ≡ succ (succ zero)
shouldBeRefl2 = zeroIdR (succ (succ zero))

Running Agda’s normalization procedure on shouldBeRefl2 again confirms that it evaluates to refl.

Moving on from inductive types to higher inductive types, we may now consider deriving the induction
principle for the circle S1, defined to be the type freely generated by a single basepoint base : S1, with a
nontrivial identification loop : base = base. The recursor for S1 thus has the following type:

RecS1 : Setω
RecS1 = ∀ {ℓ} (A : Set ℓ) → (a : A) → a ≡ a → A

Then, just as before, we may postulate the corresponding constructors and βη-laws for S1.

postulate
S1 : Set0

base : S1

11 Note that our use of the η-law for N as a rewrite rule is critical for the last step of this proof, since otherwise we
would obtain not a proof of P n, but rather P (recN n N succ zero).
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loop : base ≡ base
recS1 : S1 → RecS1

baseβ : ∀ {ℓ} (A : Set ℓ) (a : A) (l : a ≡ a)
→ recS1 base A a l ≡ a

{-# REWRITE baseβ #-}
loopβ : ∀ {ℓ} (A : Set ℓ) (a : A) (l : a ≡ a)

→ ap (λ s → recS1 s A a l) loop ≡ l
{-# REWRITE loopβ #-}
S1η : (s : S1) → recS1 s S1 base loop ≡ s
{-# REWRITE S1η #-}

The proof of induction for S1 is then in essentials the same as the one given above for N. We begin by
proving a substitution lemma for RecS1, following exactly the same steps as in the proof of the corresponding
lemma for RecN.

module paramS1 {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (B : A → Set ℓ)
(a : A) (b : B a) (l : a ≡ a)
(lB : b ≡ transp−1 B l b) (α : RecS1) where

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B) (g1pair i a (λ _ → b)) (apg1pair l lB i)

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

lemma2 : Path (λ _ → A) (α A a l) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

substLemma : B (α A a l)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

We then postulate that S1 is path-discrete, as before, in order to apply this lemma to S1 itself.

postulate
pdS11 : ∀ {s t : S1} (e : Path (λ _ → S1) s t)

→ Σ (s ≡ t) (λ p → idToPath p ≡ e)
pdS12 : ∀ {s t : S1} (e : Path (λ _ → S1) s t)

→ (q : s ≡ t) (r : idToPath q ≡ e)
→ pdS11 e ≡ (q , r)

pdS1 : isPathDiscrete S1

pdS1 e = (pdS11 e , λ (q , r) → pdS12 e q r)

rwPDS11 : (s : S1) → pdS11 (pabs (λ _ → s)) ≡ (refl , refl)
rwPDS11 s = pdS12 (pabs (λ _ → s)) refl refl
{-# REWRITE rwPDS11 #-}

postulate
rwPDS12 : (s : S1) → pdS12 (pabs (λ _ → s)) refl refl ≡ refl
{-# REWRITE rwPDS12 #-}

Then the desired induction principle for S1 follows straightforwardly.

indS1 : (P : S1 → Set)
→ (pb : P base)
→ pb ≡ transp−1 P loop pb
→ (s : S1) → P s

14



Aberle

indS1 P pb pl s =
paramS1.substLemma S1 pdS1 P base pb loop pl (recS1 s)

Although it is not in general possible to verify that this same construction is capable of deriving induction
principles for all higher inductive types – essentially because there is as yet no well-established definition of
what higher inductive types are in general – there appears to be no difficulty in extending this method
of proof to all known classes of higher inductive types. Moreover, that the proof of induction for S1 is
essentially no more complex than that for N suggests that this method is capable of taming the complexity
of coherences for such higher inductive types, and in this sense provides a solution to this instance of the
coherence problem.

3 Toward a Synthetic Theory of Parametricity

The theory so-far developed gives the rudiments of a synthetic framework for working in the internal
language of a (weakly) sufficiently cohesive ∞-topos. This framework in turn proves capable of deriving
significant parametricity results internally, with immediate applications in e.g. resolving coherence problems
having to do with higher inductive types. It remains to be seen what further applications can be developed
for this theory and its particular approach to parametricity. From this perspective, it is profitable to survey
what other approaches there are to internalizing parametricity theorems in dependent type theory, and
how they might be related to the one given in this paper.

3.1 Cohesion & Gluing
In recent years, there has been some related work toward a synthetic theory of parametricity in terms
of the topos-theoretic construction of Artin Gluing. This approach, outlined initially by Sterling in his
thesis [Ste22] and subsequently spearheaded by Sterling and his collaborators as part of the more general
programme of Synthetic Tait Computability (STC), works in the internal language of a topos equipped with
two (mere) propositions L and R, that are mutually exclusive in that L ∧ R → ⊥. The central idea of this
approach is to synthetically reconstruct the usual account of parametricity in terms of logical relations by
careful use of the open and closed modalities induced by these propositions, which play a similar role in STC
to the graph types introduced above. Using this approach, one can e.g. prove representation independence
theorems for module signatures as in recent work by Sterling & Harper [SH21].
Clearly, there is some affinity between the approach to parametricity in terms of gluing and that in terms of
cohesion presented above, not least of which having to do with the fact that they both offer characteristically
modal perspectives on parametricity. Yet there is a further sense in which these two approaches are related,
which is that every sufficiently cohesive topos contains a model of Sterling’s setup of STC for parametricity,
as follows: given a sufficiently cohesive topos E over some base topos S, for any strictly bipointed object
I ∈ E with distinguished points i0, i1 : I, the slice topos E/I, whose internal language corresponds to that
of E extended with an arbitrary element i : I, is thereby equipped with two mutually exclusive propositions,
namely i = i0 and i = i1. Hence all of the parametricity theorems available in STC can be recovered in the
above-given framework (in particular, instances of closed modalities can be encoded as higher inductive
types, which, as we have just seen, are easily added to the above framework).
On the other hand, there is no analogue in STC of the axiom of (weak) connectedness for the interval,
and its consequent parametricity theorems, most notably the above-mentioned derivability of induction
principles for higher inductive types. This suggests that in these latter results, the structure of sufficient
cohesion and its relation to parametricity plays an essential role. Nonetheless, it remains interesting to
consider how parametricity via cohesion and parametricity via gluing may yet prove to be related, and one
may hope for a fruitful cross-pollination between these two theories.

3.2 Cohesion & Coherence
As we have seen, there appears to be an intimate link between parametricity, cohesion, and coherence,
demonstrated (e.g.) by the above-given proof of induction for S1. The existence of such a link is further
supported by other recent developments in HoTT and related fields. E.g. Cavallo & Harper [CH20] have
used their system of internal parametricity for Cubical Type Theory to derive coherence theorems for
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the smash product. More recently still, Kolomatskaia & Shulman [KS24] have introduced their system of
Displayed Type Theory, which utilizes yet another form of internal parametricity to solve the problem of
representing semi-simplicial types in HoTT.
In outlining the above framework for parametricity in terms of cohesion, I hope to have taken a first step
toward the unification of these various systems that use parametricity to tackle instances of the coherence
problem. Cavallo & Harper’s system is readily assimilated to this framework, as are other related systems
that take a cubical approach to internal parametricity, such as that of Nuyts, Devriese & Vezzossi [NVD17],
since these all take their semantics in various topoi of bicubical sets, which all are sufficiently cohesive
over corresponding topoi of cubical sets. On the other hand, Kolomatskaia & Shulman’s system cannot
be assimilated in quite the same way, since their system takes its semantics in the ∞-topos of augmented
semisimplicial spaces, which is not cohesive over spaces. It thus remains to be seen if the above framework
can be generalized so as to be inclusive of this example as well. Alternatively, one might seek to generalize
or modify Kolomatskaia & Shulman’s system so as to be interpretable in an ∞-topos that is cohesive over
spaces, e.g. the ∞-topos of simplicial spaces. If this latter proves feasible, then this in turn would reveal yet
further connections between parametricity via cohesion and another prominent attempt at a solution to the
coherence problem, namely Riehl & Shulman’s Simplicial Type Theory [RS17], which takes its semantics in
simplicial spaces.
It appears, in all these cases, that parametricity is the tool for the job of taming the complexity of higher
coherences in HoTT and elsewhere. In this sense, Reynolds was right in thinking that parametricity
captures a fundamental property of abstraction, for, as any type theorist worth their salt knows, abstraction
is ultimately the best tool we have for managing complexity.
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