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Abstract

Cartesian differential categories provide a categorical framework for multivariable differential calculus and also the categorical
semantics of the differential λ-calculus. Taylor series expansion is an important concept for both differential calculus and the
differential λ-calculus. In differential calculus, a function is equal to its Taylor series if its sequence of Taylor polynomials
converges to the function in the analytic sense. On the other hand, for the differential λ-calculus, one works in a setting
with an appropriate notion of algebraic infinite sums to formalize Taylor series expansion. In this paper, we provide a formal
theory of Taylor series in an arbitrary Cartesian differential category without the need for converging limits or infinite sums.
We begin by developing the notion of Taylor polynomials of maps in a Cartesian differential category and then show how
comparing Taylor polynomials of maps induces an ultrapseudometric on the homsets. We say that a Cartesian differential
category is Taylor if maps are entirely determined by their Taylor polynomials. The main results of this paper are that in a
Taylor Cartesian differential category, the induced ultrapseudometrics are ultrametrics and that for every map f , its Taylor
series converges to f with respect to this ultrametric. This framework recaptures both Taylor series expansion in differential
calculus via analytic methods and in categorical models of the differential λ-calculus (or Differential Linear Logic) via infinite
sums.
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1 Introduction

Cartesian differential categories [3] provide the categorical foundations of multivariable differential calculus.
The key feature of a Cartesian differential category is that it comes equipped with a differential combinator
D, which for every map f : A → B produces its derivative D[f ] : A×A → B, generalizing the concept of the
total derivative from differential calculus. Cartesian closed differential categories provide the categorical
semantics of the differential λ-calculus and the resource calculus [5, 6, 7, 14, 25]. Cartesian differential
categories are also closely related to differential categories [1,2], which provide the categorical semantics
of Differential Linear Logic [13,16]. Explicitly, the coKleisli category of a differential category is a Cartesian
differential category [3,19]. Cartesian differential categories have also been successful in formalizing various
important concepts in differential calculus, such as solving differential equations and exponential functions
[22], Jacobians and gradients [23], de Rham cohomology [12], linearization [8], etc. Cartesian (closed)
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differential categories have also been quite popular in computer science, in particular since they provide
categorical frameworks for differential programming languages [10] and automatic differentiation [11].

An all-important concept in differential calculus is the notion of Taylor series. Recall that for a smooth
function f : R → R, its Taylor series at 0 (sometimes also called its Maclaurin series) is the power series:

T (f)(x) =
∞∑
k=0

1

k!
· f (k)(0)xk

where f (k) is the k-th derivative of f . Famously, Taylor series are very useful, and a lot of information
about a function can be gained from studying its Taylor series. It is often highly desirable for Taylor series
to converge (in the usual real analytical sense) and also for functions to equal their Taylor series.

The concept of Taylor series expansion is also important for both the differential λ-calculus and the
resource calculus [4,15,17,26]. In the presence of countable infinite sums, one can give full Taylor expansions
of λ-terms. In particular, Taylor expansion provides a linear approximation of ordinary application, so:

MN =
∞∑
n=0

1

n!
(DnM ·Nn)0

where DnM · Nn denotes the n-th derivative of M applied n times to N . In [25], Manzonetto provides
the categorical interpretation of this version of Taylor expansion in a Cartesian closed differential category
with infinite sums.

Taylor series expansion is also considered in Differential Linear Logic [4, 17, 27]. In [13], Ehrhard
provides the categorical versions of these ideas in differential categories with countable sums. Ehrhard’s
approach to Taylor expansion in a differential category and Manzonetto’s approach to Taylor expansion
in a Cartesian closed differential category are the same when we consider the Taylor expansion of coKleisli
maps (which is expected since recall that the coKleisli category of a differential category is a Cartesian
differential category). Moreover, Taylor series expansion of coKleisli maps in a differential category played
a fundamental role in developing codigging for differential categories and Differential Linear Logic [21].
Taylor series expansion was also considered in the coherent differentiation setting in [18] (though this
framework, while possibly related, is quite different from Cartesian differential categories and the story of
this paper).

While the notion of Taylor series for the differential λ-calculus and Differential Linear Logic is funda-
mentally the same as the notion of Taylor series in classical differential calculus, there is a crucial difference.
Indeed, to define Taylor series expansion for the differential λ-calculus or Differential Linear Logic, one
first assumes that we are in a setting with countable infinite sums in the algebraic sense. While this is a
perfectly fine thing to do in models coming from computer science, having infinite sums clashes with mod-
els coming from the analysis side of things. There are many important examples of Cartesian differential
categories that do not have infinite sums and yet still have a well-defined notion of Taylor series, such as
real smooth/entire functions, polynomials, etc. The objective of this paper is to provide a formal theory
of Taylor series in an arbitrary Cartesian differential category in such a way that it also gives a unified
story recapturing Taylor series expansion in differential calculus via convergence and for the differential
λ-calculus via algebraic infinite sums.

The key operation for developing Taylor series in Cartesian differential categories is the notion of
higher-order derivatives, which we review in Sec 2. Then, in a setting where we can scalar multiply by
positive rationals, we use higher-order derivatives to define the Taylor monomials of maps in a Cartesian
differential category. The sum of these Taylor monomials gives the Taylor polynomials of maps. In Sec 4,
we develop the theory of Taylor polynomials in a Cartesian differential category and show that the Taylor
polynomials form a sub-Cartesian differential category. In Sec 3, we also discuss the intermediate notion
of differential polynomials, which are the maps in a Cartesian differential category whose higher-order
derivative is eventual zero. We will see that every Taylor polynomial is a differential polynomial, but also
explain why the converse is not necessarily true.

In Sec 5, we define an ultrapseudometric on the homsets of a Cartesian differential category where
the distance between two maps is given by comparing their Taylor monomials. This ultrapseudometric is
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an analogue of the metric for power series that makes the formal infinite sum of a power series converge.
However, in an arbitrary Cartesian differential category, two maps can have the same Taylor monomials
but not be equal. We say that a Cartesian differential category is Taylor if maps are completely deter-
mined by their Taylor monomials. The main result is that in a Taylor Cartesian differential category,
the ultrapseudometric is an ultrametric, which then implies that the sequence of Taylor polynomials of
any map converges to said map. In other words, in a Taylor Cartesian differential category, every map
is equal to its Taylor series. We also explain how we obtain a Taylor Cartesian differential category from
a Cartesian differential category by taking equivalence classes on maps with the same Taylor monomials.
As running examples throughout the paper, we consider polynomials over a commutative semiring, real
smooth functions, and the coKleisli category of a differential category. In particular, we will also see how
for the coKleisli category of a differential category, this story of ultrametrics and Taylor series from the
Cartesian differential category point of view corresponds precisely to the same named notions used in [21]
to construct codigging and exponential functions in differential categories.

We also explain why if maps were equal to their Taylor series via some other notion of convergence or
algebraic infinite sums, then the Cartesian differential category is indeed Taylor. In particular, in Sec 6,
we show how being Taylor recaptures precisely Manzonetto’s notion of modelling Taylor expansion in a
Cartesian closed differential category from [25].

2 Cartesian Differential Categories

In this background section, we review the basics of Cartesian differential categories, primarily to set up
terminology and notation. We refer the reader to [3, 8, 19] for a more in-depth introduction to Cartesian
differential categories.

In an arbitrary category X, objects will be denoted by capital letters A,B,X, Y , etc. and maps by
minuscule letters f, g, h, etc. We denote homsets by X(A,B), maps as arrows f : A → B, identity maps
as 1A : A → A, and we use the classical notation for composition, ◦, as opposed to diagrammatic order
which was used in other papers on Cartesian (reverse) differential categories, such as in [3]. For a category
with finite products, we denote the product by ×, the projection maps by πj : A0 × . . .×An → Aj , and
the pairing operation as ⟨−, . . . ,−⟩.

In this paper, we will work with Cartesian differential categories relative to a fixed commutative
semiring k, as was done in [19]. As such, in this relative setting, the underlying structure of a Cartesian
differential category is that of a Cartesian left k-linear category [19, Sec 2.1], which can be described as
a category with finite products which is skew -enriched over the category of k-modules and k-linear maps
between them [19]. Essentially, this means that each homset is a k-module, so we have zero maps, can
take the sum of maps and also scalar multiply maps by elements of k, but also allow for maps which
do not preserve this k-module structure. Maps which do are called k-linear maps. Explicitly, a left k-
linear category is a category X such that each homset X(A,B) is a k-module with scalar multiplication
· : k × X(A,B) → X(A,B), addition + : X(A,B)× X(A,B) → X(A,B), and zero 0 ∈ X(A,B); and
such that pre-composition preserves the k-linear structure: (r · f + s · g) ◦ x = r · (f ◦ x) + s · (g ◦ x).
A map f : A → B is said to be k-linear if post-composition by f preserves the k-linear structure:
f ◦ (r · x + s · y) = r · (f ◦ x) + s · (f ◦ y). Then a Cartesian left k-linear category is a left k-linear
category X such that X has finite products and all projection maps πj are k-linear. We note that when
taking k = N, the semiring of natural numbers, (Cartesian) left N-linear categories and their N-linear
maps are the same thing as (Cartesian) left additive categories and their additive maps from [3, Def 1.1.1
& 1.2.1].

A Cartesian differential category is a Cartesian k-linear category that comes equipped with a differential
combinator, an operator that sends maps to their derivative. When taking k = N, a Cartesian N-differential
category is precisely the same thing as the original definition from [3, Def 2.1.1]. It is important to note
that in this paper, we follow the now more widely used convention for Cartesian differential categories,
which flips the convention used in early works such as in [3,25], so that the linear argument of the derivative
is in the second argument rather than in the first.

Definition 2.1 A Cartesian k-differential category [19, Sec 2.2] is a Cartesian left k-linear category
X equipped with a differential combinator D, which is a family of functions (indexed by pairs of objects
of X) D : X(A,B) → X(A × A,B) such that the seven axioms [CD.1] to [CD.7] described below hold.
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For a map f : A → B, the map D[f ] : A×A → B is called the derivative of f .

The seven axioms of a differential combinator are analogues of the basic properties of the total derivative
from multivariable differential calculus. They are that: [CD.1] the differential combinator is a k-linear
morphism, [CD.2] derivatives are k-linear in their second argument, [CD.3] identity maps and projections
are differential linear, [CD.4] the derivative of a pairing is the pairing of the derivatives, [CD.5] the chain
rule for the derivative of a composition, [CD.6] derivatives are differential linear in their second argument,
and lastly [CD.7] the symmetry of the mixed partial derivatives. Cartesian differential categories have
a very practical term calculus [3, Sec 4], which is highly useful for writing definitions and proofs. So, we
write the derivative as follows:

D[f ](a, b) :=
df(x)

dx
(a) · b

Then the axioms of the differential combinator are that:

[CD.1]
dr · f(x) + s · g(x)

dx
(a) · b = r · df(x)

dx
(a) · b+ s · dg(x)

dx
(a) · b;

[CD.2]
df(x)

dx
(a) · (r · b+ s · c) = r · df(x)

dx
(a) · b+ s · df(x)

dx
(a) · b

[CD.3]
dxj
dxj

(a0, . . . , an) · (b0, . . . , bn) = bj and
dxj
dxi

(a0, . . . , an) · (b0, . . . , bn) = 0 if i ̸= j

[CD.4]
d ⟨f0(x), . . . , fn(x)⟩

dx
(a) · b =

〈
df1(x)

dx
(a) · b, . . . , dfn(x)

dx
(a) · b

〉
[CD.5]

dg (f(x))

dx
(a) · b = dg(y)

dy
(f(a)) ·

(
df(x)

dx
(a) · b

)

[CD.6]
d
df(x)

dx
(y) · z

d(y, z)
(a, 0) · (0, b) = df(x)

dx
(a) · b

[CD.7]
d
df(x)

dx
(y) · z

d(y, z)
(a, b) · (c, d) =

d
df(x)

dx
(y) · z

d(y, z)
(a, c) · (b, d)

Example 2.2 Here are some well-known examples of Cartesian differential categories:

(i) Let k-POLY be the category whose objects are n ∈ N and where a map P : n → m is an m-tuple of
polynomials in n variables, that is, P = ⟨p1(x), . . . , pm(x)⟩ with pi(x) ∈ k[x1, . . . , xn]. Then k-POLY
is a Cartesian k-differential category where the differential combinator is given by the standard
differentiation of polynomials. So for P = ⟨p1(x), . . . , pm(x)⟩ : n → m, its derivative D[P ] : n×n → m
is defined as the tuple of polynomials D[P ] = (D[p1](x,y), . . . ,D[pm](x,y)) where D[pj ](x,y) is the

sum of the partial derivatives of pj(x), that is, D[pj ](x,y) =
∑n

i=1
∂pj
∂xi

(x)yi ∈ k[x1, . . . , xn, y1, . . . , yn].

(ii) Let R be the set of real numbers. Define SMOOTH as the category whose objects are the Eu-
clidean spaces Rn and whose maps are smooth functions between them. SMOOTH is a Carte-
sian R-differential category where the differential combinator is defined as the total derivative
of a smooth function. For a smooth function F : Rn → Rm, which is in fact an m-tuple F =
⟨f1, . . . , fm⟩ of smooth functions fi : Rn → R, its derivative D[F ] : Rn × Rn → Rm is defined as
D[F ] = (D[f1](x,y), . . . ,D[fm](x,y)) where D[fj ] : Rn × Rn → R is defined as the sum of partial

derivatives of fj , so D[fj ](x,y) =
∑n

i=1
∂f1
∂xi

(x)yi. Note that R-POLY is a sub-Cartesian differential
category of SMOOTH.

(iii) Important examples of Cartesian differential categories are the coKleisli categories of differential
categories [1, 2]. Briefly, a differential category is, amongst other things, a symmetric monoidal
category X with a comonad ! which comes equipped with a natural transformation ∂A : !A ⊗ A →
!A, called the deriving transformation [1, Def 7], that satisfies analogues of the basic rules of
differentiation such as the chain rule and the product rule. CoKleisli maps f : !A → B are interpreted
as smooth maps from A to B, where the derivative of f is given by pre-composing with the deriving
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transformation, f ◦ ∂A : !A ⊗ A → B [1, Def 2.3]. This can be made precise by saying that for
a differential category X with finite products, its coKleisli category X! is a Cartesian differential
category where the differential combinator D is defined using the deriving transformation ∂ [3, Prop
3.2.1]. For more details on differential categories, we invite the reader to see [1, 2, 13,19,21].

See [8, 19] for lists of more examples of Cartesian differential categories.

There are two important classes of maps in a Cartesian differential category that are worth mentioning:
differential linear maps [3, Definition 2.2.1] and differential constant maps [24, Sec 6]. Differential constants
are maps whose derivative is zero, while differential linear maps are maps whose derivatives are themselves.

Definition 2.3 In a Cartesian k-differential category, a map f : A → B is:

(i) a D-constant [24, Def 6.1] if
df(x)

dx
(a) · b = 0

(ii) D-linear [19, Def 2.7] if
df(x)

dx
(a) · b = f(b).

Properties of differential constants can be found in [24, Sec 6], while properties of differential linear
maps can be found in [8, Lemma 2.6].

Two essential operations which can be derived from the total derivative are partial derivatives and
higher-order derivatives. Starting with partial derivative, given a map of, say, type f : C1 ×A×C2 → B,
we’d like to take the derivative of f with respect to A while keeping the others constant. In classical
differential calculus, partial derivatives are obtained by inserting zeroes in the appropriate vector argument
of the total derivative. The same idea is true in Cartesian differential categories, where we obtain partial
derivatives by inserting zeroes into the total derivative [3, Sec 4.5].

Definition 2.4 In a Cartesian k-differential category, for a map f : C1 × A × C2 → B, its partial
derivative [19, Def 2.7] in A is the map DC1× ×C2 [f ] : C1 × A × C2 × A → B, which in term calculus is
written as:

DC1× ×C2 [f ](c1, a1, c2, a2) =
df(c1, x, c2)

dx
(a1) · a2

and is defined as follows:

df(c1, x, c2)

dx
(a1) · a2 =

df(v, x, u)

d(v, x, u)
(c1, a1, c2) · (0, a2, 0)

Moreover, we say that f : C1 ×A× C2 → B is:

(i) D-constant in A if
df(c1, x, c2)

dx
(a1) · a2 = 0

(ii) D-linear in A if
df(c1, x, c2)

dx
(a1) · a2 = f(c1, a2, c2).

Let’s now discuss higher-order derivatives, which will play a central role in the story of this paper. For

n ∈ N, denote A×n
as a shorthand for the product of n-copies of A, with the convention that A×0

= ∗
and A×1

= A. Now for a map f : A → B, applying the differential combinator n-times results in a map of

type Dn[f ] : A×2n → B called the n-th total derivative of f . However, as explained in [19, Sec 3.1], due
to the fact that total derivatives are equal to the sum of the partial derivatives [3, Lemma 4.5.1] and also
[CD.6], there is a lot of extra redundant information in Dn[f ]. For example, the second total derivative
can be worked out to be:

D2[f ](a, b, c, d) =
d
df(x)

dx
(y) · b

dy
(a) · c+ df(x)

dx
(a) · d

So we see that D2[f ] has a D[f ] summand – which does not tell us any new information about f . Instead,
all the new information comes from differentiating the first argument repeatedly.
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Definition 2.5 In a Cartesian k-differential category, for a map f : A → B and every n ∈ N, the n-th
derivative [19, Def 3.1] of f is the map ∂(n)[f ] : A×A×n → B, which is written in the term calculus as:

∂(n)[f ](a0, a1, . . . , an) :=
d(n)f(x)

dx
(a0) · a1 · . . . · an

and is defined inductively as:

d(0)f(x)

dx
(a0) = f(a0)

d(n+1)f(x)

dx
(a0) · a1 · . . . · an · an+1 =

d
d(n)f(x)

dx
(y) · a1 · . . . · an
dy

(a0) · an+1

Here are now some of the main identities for higher-order derivatives, where in particular, we highlight
that [HD.1] to [HD.7] are the higher-order versions of [CD.1] to [CD.7]. As such, [HD.5] is Faà di
Bruno’s Formula, which expresses the higher-order chain rule. Let’s introduce some notation to help write
down Faà di Bruno’s Formula. For every n ∈ N, let [0] = ∅ and let [n+ 1] = {1 < . . . < n+ 1}. Now for
every subset I = {i1 < . . . < im} ⊆ [n + 1], for a vector x = (x1, . . . , xn+1), define x|I = (xi1 , . . . , xim).
Lastly, we denote a non-empty partition of [n+ 1] as [n+ 1] = A1| . . . |Ak, and let |Aj | be the cardinality
of Aj . Then Faà di Bruno’s Formula [19, Lemma 3.14] for the n + 1-th derivative is given as a sum over
the non-empty partitions of [n+ 1].

Lemma 2.6 [19, Sec 3] In a Cartesian k-differential category:

[HD.0] If f is a D-constant then ∂n+1[f ] = 0 for all n ∈ N;
[HD.1] ∂n[r · f + s · g] = r · ∂n[f ] + s · ∂n[g] for all r, s ∈ k

[HD.2] ∂n[f ] is k-linear in its last n-arguments;

[HD.3] If f is D-linear then ∂n+2[f ] = 0 for all n ∈ N;
[HD.4] ∂n[⟨f0, . . . , fn⟩] = ⟨∂n[f0], . . . , ∂

n[fn]⟩;
[HD.5] The following equality holds:

d(n)g(f(x))

dx
(a0) · a1 · . . . · an

=
∑

[n]=A1|...|Ak

d(k)g(z)

dz
(a0) ·

(
d(|A1|)f(x)

dx
(a0) · a|A1

)
· . . . ·

(
d(|Ak|)f(x)

dx
(a0) · a|Ak

)

[HD.6] ∂n[f ] is D-linear in its last n-arguments;

[HD.7] ∂n[f ] is symmetric in its last n-arguments;

[HD.8] The following equalities hold:

d
d(n)f(u)

du
(x0) · x1 · . . . · xn

d(x0, x1, . . . , xn)
(a0, a1, . . . , an) · (b0, b1, . . . , bn)

=
d(n)

df(u)

du
(x) · y

d(x, y)
(a0, b0) · (a1, b1) · . . . · (an, bn)

=
d(n+1)f(x)

dx
(a0) · a1 · . . . · an · b0 +

n∑
i=1

d(n)f(x)

dx
(a0) · a1 · . . . ai−1 · bi · ai+1 · . . . · an
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3 Differential Polynomials

In this section, we introduce the concept of differential polynomials in a Cartesian differential category,
which will be a useful intermediate concept for the story of Taylor series. Classically, polynomials are
defined, of course, using multiplication, sums, and scalar multiplication. However, while a Cartesian dif-
ferential category has access to sums and scalar multiplication, an arbitrary Cartesian differential category
may not have a proper notion of multiplication of maps. Instead, another way of characterizing polyno-
mials amongst the smooth functions is that they are smooth functions whose nth derivative is zero. This
definition of polynomials can be easily given in a Cartesian differential category.

Definition 3.1 In a Cartesian k-differential category, a D-polynomial is a map p : A → B such that
there is a n ∈ N such that ∂(n+1)[p] = 0. For a D-polynomial p, the smallest n ∈ N such that ∂(n+1)[p] = 0
is called the D-degree of p, which we denote as deg(p).

Differential polynomials are closed under all the basic operations of a Cartesian differential category. As
such, the differential polynomials of a Cartesian differential category form a Cartesian differential category.

Lemma 3.2 In a Cartesian k-differential category,

(i) D-constants are D-polynomials of D-degree 0;

(ii) D-linear maps are D-polynomials of degree 1;

(iii) Identity maps and projections maps are D-polynomials of D-degree 1;

(iv) If p : A → B and q : A → B are D-polynomials, then r·p+s·q is a D-polynomial whose deg(r·p+s·q) ≤
max{deg(p), deg(q)};

(v) If pj : A → Bj are D-polynomials, then ⟨p0, . . . , pn⟩ : A → B0 × . . . × Bn is a D-polynomial where
deg(⟨p0, . . . , pn⟩) = max{deg(pj)};

(vi) If p : A → B and q : B → C are D-polynomials, then q ◦ p is a D-polynomial where deg(p ◦ q) ≤
deg(p)deg(q);

(vii) If p : A → B is a D-polynomial, then D[p] : A×A → B is a D-polynomial where deg (D[p]) = deg(p).

Proof. These follow mostly from Lemma 2.6. So (i) and (ii) are immediate from [HD.0] and [HD.3]
respectively, and since [CD.3] tells us that identity maps and projections are D-linear, (iii) follows from
(ii). Both (iv) and (v) are straightforward to check using [HD.1] and [HD.4] respectively. The remaining

two require a bit more explanation. So for (vi), let deg(p) = n and deg(q) = m. Consider ∂(mn+1)[q ◦ p].
Faà di Bruno’s Formula [HD.5] tells us that ∂(mn+1)[q ◦ p] is a sum indexed by non-empty partitions of

[mn+ 1] = A1| . . . |Ak, so we have that 1 ≤ k ≤ mn+ 1. If m < k, then ∂(k)[q] = 0, so all the summands
of partitions of size m < k are zero. If k ≤ m, then n ≤ mn+1

k , which means that in the partition, there

is some Aj with n < |Aj |. So ∂|Aj |[p] = 0, and since by [HD.2] ∂(k)[q] is k-linear in its last k-arguments

means that we will get zero for the summand of the partition. So we conclude that ∂(mn+1)[q ◦ p] = 0,
and thus q ◦ p is a D-polynomial. Lastly for (vii), suppose that deg(p) = n. Now [HD.8] essentially tells

us that D and ∂(−) commute, up to permutation. So since ∂(n+1)[p] = 0, we get that ∂(n+1)[D[p]] = 0
and so D[p] is a D-polynomial with at least deg (D[p]) ≤ n. Now suppose that deg (D[p]) = k < n, so

∂(k+1)[D[p]] = 0. However, note that by [HD.8] and [HD.2], we can recover ∂(k+1)[p] from ∂(k+1)[D[p]]
by coping the ith term and inserting some zeroes:

d
d(k+1)f(u)

du
(x0) · x1 · . . . · xn

d(x0, x1, . . . , xn)
(a0, a1, . . . , an) · (0, ai, 0, . . . , 0) =

d(n)f(x)

dx
(a0) · a1 · . . . · an

However since by assumption ∂(k+1)[D[p]] = 0, it follows that ∂(k+1)[D[p]] = 0. But this is a contradiction
by the definition of deg(p) = n. So we must have that deg (D[p]) = deg(p), as desired. 2

Corollary 3.3 For a Cartesian k-differential category X, let D-POLY[X] be the sub-category of D-
polynomials of X. Then D-POLY[X] is a sub-Cartesian k-differential category of X.

7
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Example 3.4 Here are the differential polynomials in our main examples:

(i) Every map in k-POLY is a D-polynomial, so D-POLY[k-POLY] = k-POLY. However, the D-degree
may not necessarily align with a polynomial’s usual degree. Indeed, consider the case for k = Z2,
the integers module 2. Then for p(x) = x2, we get that D[p](x, y) = 2xy = 0. So x2 is a D-constant
in Z2-POLY so deg(x2) = 0, which is clearly different from its usual degree of 2. However, if k is an
integral domain (which recall means for r, s ∈ k, if rs = 0 then r = 0 or s = 0) and has characteristic
zero (which recall means that for all n ∈ N, for n+1 ∈ k we have that n+1 ̸= 0), then the D-degree
does match the usual polynomial degree.

(ii) The D-polynomials in SMOOTH are precisely tuples of usual real polynomial functions, so
D-POLY[SMOOTH] = R-POLY.

(iii) The D-polynomials in the coKleisli category of a differential category with finite products correspond
precisely to the notion of polynomials in a differential category as defined by Ehrhard in [13, Sec

4.1.1]. So define ∂
(n)
A : !A⊗A⊗n → !A inductively as ∂

(0)
A = 1!A and ∂

(n+1)
A = ∂A ◦ (∂(n)

A ⊗ 1A). Then

f : !A → B is a D-polynomial if and only if f ◦ ∂
(n+1)
A = 0. However, in [13, Sec 4.1.1], Ehrhard

uses another formula for the composition of D-polynomials, which involves positive rationals, and
recaptures the notion of linear application in Differential Linear Logic [4, 17, 27]. Here, by Lemma
3.2, we get that the usual coKleisli composition of D-polynomials is again a D-polynomial, and so
D-POLY[X!] is an actual subcategory of the coKleisli category. While in well-behaved models, the
coKleisli composition and Ehrhard’s composition may correspond, in general, they need not be equal.

4 Taylor Differentials Polynomials

In this section, we introduce the notion of Taylor differential monomials and Taylor differential polynomials
of maps in a Cartesian differential category.

In differential calculus, for a smooth function f : R → R, its n-th Taylor monomial is defined as the
n-th term in its Taylor series, that is, 1

n! · f
(n)(0)xn, where f (n) is the n-th derivative of f . Then its n-th

Taylor polynomial is defined as the sum of all k ≤ n-th Taylor monomials, that is,
∑n

k=0
1
k! · f

(k)(0)xk. So,
how do we generalize these formulas in a Cartesian differential category? The first thing to address is scalar
multiplication by 1

n! . So we need to be in a setting where we can scalar multiply by positive rationals.
As such, we will need to assume that in our base commutative semiring k, every n = 1 + . . . + 1 ∈ k
is invertible. This amounts to saying that k is a Q≥0-algebra, where Q≥0 is the semiring of positive
rationals. We next need to address the xn bit. As mentioned above, arbitrary Cartesian differential
categories do not necessarily have a multiplication operation for maps. Luckily, this issue is solved thanks
to the differential combinator. Indeed, note that ∂(n)[f ] : R × R×n → R is ∂(n)[f ](x0, x1, . . . , xn) =

f (n)(x0)x1 . . . xn. So by inserting zero into the first argument and copying the second argument n times,

we get ∂(n)[f ](0, x, . . . , x) = f (n)(0)xn. So we recapture the n-th Taylor monomial using the differential

combinator via 1
n! · ∂

(n)[f ](0, x, . . . , x) = 1
n! · f

(n)(0)xn. This is the formula we generalize to define Taylor
differential monomials in the Cartesian differential setting. The sum of these Taylor differential monomials
gives us the Taylor differential polynomials.

For the remainder of this section, we assume that k is a commutative Q≥0-algebra.

Definition 4.1 In a Cartesian k-differential category, for a map f : A → B and every n ∈ N, define
M(n)[f ] : A → B as the composite:

M(n)[f ] :=
1

n!
· ∂(n)[f ] ◦ ⟨0, 1A, . . . , 1A⟩

which in the term calculus is written as:

M(n)[f ](x) =
1

n!
· d

(n)f(u)

du
(0) · x · . . . · x

8
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and then define T (n)[f ] : A → B as:

T (n)[f ] =
n∑

k=0

M(k)[f ]

We note that M(0)[f ] is given by evaluating f at 0, so M(0)[f ](a) = f(0), while M(1)[f ] is precisely

the linearization of f (also sometimes written as L[f ]), which is M(1)[f ](a) =
df(x)

dx
(0) · a [8, Prop 3.6].

Example 4.2 Here are the Taylor differential monomials/polynomials of maps in our main examples:

(i) The k-th Taylor D-monomial of a tuple of polynomials P = ⟨pi(x)⟩mi=1 : n → m is M(k)[P ] =

⟨M(k)[pi](x)⟩mi=1 where M(k)[pi](x) ∈ k[x1, . . . , xn] are the all the degree k monomials summands

of pi(x). Then the j-th Taylor D-monomial of P is T (j)[P ] = ⟨T (j)[pi](x)⟩mi=1 where T (j)[pi](x) ∈
k[x1, . . . , xn] is the sum of all degree k ≤ j monomial summands of pj(x). In particular, for p(x) =∑n

k=0 akx
k, we get that M(k)[p](x) = akx

k and T (j)[p](x) =
∑j

k=0 akx
k.

(ii) For a smooth function F = ⟨fi⟩mi=1 : Rn → Rm, its k-th Taylor D-monomial is M(k)[F ](x) =

⟨M(k)[fi](x)⟩mi=1 where M(k)[fi](x) is the usual k-th Taylor monomial of fi in the multivariable case:

M(k)[fm](x) =
∑

{i1,...,ik}⊆{1,...,n}

1

k!
· ∂(k)fm
∂xi1 . . . ∂xik

(0)xi1 . . . xik

Then the j-th Taylor D-polynomial of F is the tuple of the usual j-th Taylor polynomials of fi
in the multivariable case. In particular, for a smooth function f : R → R, we get precisely that

M(k)[f ](x) = 1
k! · f

(k)(0)xk and T (j)[f ](x) =
∑j

k=0
1
k! · f

(k)(0)xk.

(iii) In a differential category, using the contraction and dereliction natural transformations, we obtain
natural transformations of type !A → !A⊗A⊗n

. Post-composing this with the natural transformation

∂
(n)
A : !A⊗A⊗n → !A gives us the natural transformation M

(n)
A : !A → !A as defined in [21, Sec III.E].

Then define the natural transformation T
(n)
A : !A → !A as the sum T

(n)
A =

∑n
k=0M

(k)
A , as defined

in [13, Sec 3.1]. Then in the coKleisli category, the n-th Taylor D-monomial of a coKleisli map

f : !A → B is worked out to be precisely M(n)[f ] = f ◦ M
(n)
A , while its n-th Taylor D-polynomial

is T (n)[f ] = f ◦ T
(n)
A . The natural transformations M(n) and the Taylor D-monomials of coKleisli

maps played a central role in the story of [21], while the natural transformations T(n) and the Taylor
D-polynomials of coKleisli maps were studied in detail in [13].

Here are some useful identities about Taylor differential monomials and Taylor differential polynomials:

Lemma 4.3 In a Cartesian k-differential category:

(i) M(0)[f ] is a D-constant;

(ii) M(1)[f ] is D-linear;

(iii) M(n)[r · f + s · g] = r · M(n)[f ] + s · M(n)[g];

(iv) M(n)[f ](r · a+ s · b) = 1
n! ·

n∑
k=0

rksn−k

k!(n−k)! ·
d(n+1)f(x)

dx
(0) · a · . . . · a︸ ︷︷ ︸

k-times

· b · . . . · b︸ ︷︷ ︸
n− k-times

(v) M(n) [⟨f0, . . . , fn⟩] =
〈
M(n)[f0], . . . ,M(n)[fn]

〉
;

(vi) M(n)[g ◦ f ](a) =
∑

n=m1+...+mk

1
k!m1!...mk!

d(k)g(z)

dz
(f(0)) · M(m1)[f ](a) · . . . · M(mk)[f ](a);

(vii) M(n) [D[f ]] (a, b) =
dM(n)[f ](x)

dx
(a) · b

9
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(viii)
dM(n+1)[f ](x)

dx
(a) · b = 1

n! ·
d(n+1)f(x)

dx
(0) · a · . . . · a︸ ︷︷ ︸

n-times

·b;

(ix) M(n)[f ] is a D-polynomial where deg
(
M(n)[f ]

)
= n if M(n)[f ] ̸= 0 and deg

(
M(n)[f ]

)
= 0 if

M(n)[f ] = 0;

(x) M(n)
[
M(n)[f ]

]
= M(n)[f ] and M(m)

[
M(n)[f ]

]
= 0 when m ̸= n;

(xi) M(k)
[
T (n)[f ]

]
= M(k)[f ] for k ≤ n and M(k)

[
T (n)[f ]

]
= 0 if n < k;

(xii) T (n)
[
M(k)[f ]

]
= M(k)[f ] for k ≤ n and T (n)

[
M(k)[f ]

]
= 0 if n < k

(xiii) T (n)
[
T (n)[f ]

]
= T (n)[f ], and also T (k)

[
T (n)[f ]

]
= T (k)[f ] for k ≤ n and T (k)

[
T (n)[f ]

]
= T (n)[f ]

for n < k;

(xiv) T (n)[f ] is a D-polynomial where deg
(
T (n)[f ]

)
≤ n if T (n)[f ] ̸= 0 and deg

(
T (n)[f ]

)
= 0 if T (n)[f ] = 0

Proof. Now (i) follows from [24, Lem 6.3], while (ii) is given by [24, Lem 3.6.(i)]. It is straightforward to
compute that (iii) follows from [HD.1], (iv) follows from [HD.2] and the binomial theorem, (v) follows
from [HD.4], (vi) follows from [HD.5], while (vii) and (viii) follows from [HD.8]. For (ix), by Lem 3.2.(i)

and (i), we have that M(0)[f ] is a D-polynomial with deg
(
M(0)[f ]

)
= 0 always. For the n+ 1 case, from

(viii) we can compute that for 0 ≤ k ≤ n+ 1:

d(k)M(n+1)[f ](x)

dx
(a) · b1 · . . . · bk =

1

(n+ 1− k)!
· d

(n+1)f(x)

dx
(0) · a · . . . · a︸ ︷︷ ︸

n+ 1− k-times

·b1 · . . . · bk (1)

So for k = n+ 1, we get that:

d(n+1)M(n+1)[f ](x)

dx
(a) · b1 · . . . · bn+1 =

d(n+1)f(x)

dx
(0) · b1 · . . . · bn+1 (2)

Note that the right-hand side does not depend on the a, so it follows that ∂(n+1)
[
M(n+1)[f ]

]
is D-constant

in its first argument. So we get that ∂(n+2)
[
M(n+1)[f ]

]
= 0. Thus M(n+1)[f ] is a D-polynomial where

at least deg
(
M(n+1)[f ]

)
≤ n + 1. If M(n+1)[f ] = 0, then since 0 is a D-constant, deg

(
M(n+1)[f ]

)
= 0.

So suppose that M(n+1)[f ] ̸= 0. Now suppose that deg
(
M(n+1)[f ]

)
= k < n + 1, then we have that

∂(k+1)
[
M(n+1)[f ]

]
= 0. However that from (1), we get that:

0 =
1

(n+ 1)n . . . (n+ 2− k
· 0 =

1

(n+ 1)n . . . (n− k)
· d

(k+1)M(n+1)[f ](x)

dx
(0) · a · . . . · a

=
1

(n+ 1)n . . . (n+ 2− k)
· 1

(n+ 1− k)!
· d

(n+1)f(x)

dx
(0) · a · . . . · a = M(n+1)[f ](a)

But M(n+1)[f ](a) ̸= 0, so we get a contradiction. Therefore, we must also have n+ 1 ≤ deg
(
M(n+1)[f ]

)
.

So we get that deg
(
M(n+1)[f ]

)
= n + 1 as desired. Now for (x), the case when n = 0 clearly holds. For

the n+ 1, from (2), we compute that:

M(n+1)
[
M(n+1)[f ]

]
(a) =

1

n!
· d

(n+1)M(n+1)[f ](x)

dx
(0) · a · . . . · a

=
1

n!
· d

(n+1)f(x)

dx
(0) · a · . . . · a = M(n+1)[f ](a).

So M(n+1)
[
M(n+1)[f ]

]
= M(n+1)[f ] as desired. On the other hand, suppose that m ̸= n + 1. When

n + 1 < m, from (ix) we get that M(m)
[
M(n+1)[f ]

]
= 0. When m ≤ n + 1, using (1) and [HD.2], we

10
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compute that:

M(m)
[
M(n+1)[f ]

]
(a) =

1

m!
· d

(m)M(n+1)[f ](x)

dx
(0) · a · . . . · a

=
1

m!
· 1

(n+ 1−m)!
· d

(n+1)f(x)

dx
(0) · 0 · . . . · 0︸ ︷︷ ︸

n+ 1− k-times

·b1 · . . . · bk = 0

So M(m)
[
M(n+1)[f ]

]
= 0 as desired. Then (xi), (xii), and (xiii) follow from (iii) and (x), while (xiv)

follows from (ix) and Lemma 3.2.(iv). 2

We can also define what we mean by maps being Taylor differential polynomials.

Definition 4.4 In a Cartesian k-differential category,

(i) A Taylor D-monomial is a map m : A → B such that for some n ∈ N, M(n)[m] = m;

(ii) A Taylor D-polynomial is a map p : A → B such that for some n ∈ N, T (n)[p] = p.

Note that the n in the definition of Taylor differential monomials/polynomials is necessarily unique
for f ̸= 0. The terminology is justified by the fact that by Lemma 3.2.(xiv), every Taylor differential
polynomial is also a differential polynomial. Taylor differential polynomials are also closed under the
Cartesian k-differential structure.

Lemma 4.5 In a Cartesian k-differential category:

(i) For every f , M(n)[f ] is a Taylor D-monomial and T (n)[f ] is a Taylor D-polynomial;

(ii) Taylor D-monomials are Taylor D-polynomials;

(iii) If f is D-linear, then f is a Taylor D-monomial where T (1)[f ] = M(1)[f ] = f ;

(iv) Identity maps and projections maps are Taylor D-monomials;

(v) If p : A → B and q : A → B are Taylor D-polynomials, then r · p+ s · q is a Taylor D-polynomial;

(vi) If pj : A → Bj are Taylor D-polynomials, then ⟨p0, . . . , pn⟩ is a Taylor D-polynomial;

(vii) If p : A → B and q : B → C are Taylor D-polynomials, then q ◦ p is a Taylor D-polynomial;

(viii) If p : A → B is a Taylor D-polynomial, then D[p] : A×A → B is a Taylor D-polynomial.

Proof. These follow immediately from the identities in Lemma 3.2. 2

Corollary 4.6 For a Cartesian k-differential category X, let T D-POLY[X] be the sub-category of Taylor
D-polynomials of X. Then T D-POLY[X] is a sub-Cartesian k-differential category of X (and of D-POLY[X]).

Example 4.7 Here are the Taylor differential polynomials in our main examples:

(i) Every map in k-POLY is a Taylor D-polynomial, so we have that TD-POLY[k-POLY] = k-POLY =
D-POLY[k-POLY]. The Taylor D-monomials are the tuples of polynomials whose summands all have
the same degree.

(ii) The Taylor D-polynomials in SMOOTH are precisely tuples of real polynomial functions, so
TD-POLY[SMOOTH] = R-POLY = D-POLY[SMOOTH].

(iii) A coKleisli map f : !A → B is a Taylor D-monomial if there exists an n such that f ◦M(n)
A = f , and

a Taylor D-polynomial if there exists an n such that f ◦ T(n)
A = f .

(iv) In the polynomial and smooth functions examples, the Taylor D-polynomials and D-polynomials
coincide. However, this is not necessarily true in an arbitrary Cartesian differential category. A source
of counter-examples comes from looking at the D-constants. Now the only Taylor D-polynomials that
are also D-constants are precisely the maps c which are constant in the sense that c ◦ 0 = c (or in

other words, c = M(0)[c] = T (0)[c]). However, as explained in [24], there are examples of Cartesian
differential categories that have D-constants that are not constant. Indeed, every cofree Cartesian
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differential category [9,19,24] have D-constants that are not constants. Therefore in a cofree Cartesian
differential category, there are D-polynomials that are not Taylor D-polynomials.

5 Ultrametric for Taylor Series Convergence

In this section, we introduce a canonical ultrapseudometric for Cartesian differential categories, which is
defined by comparing Taylor differential monomials of maps. We then show our main result that if this
ultrapseudometric is an ultrametric, the Taylor series of a map converges to said map. For the remainder
of this section, we again assume that k is a commutative Q≥0-algebra.

So let R≥0 be the set of positive real numbers. Then recall that an ultrapseudometric on a
set M is a function d : M × M → R≥0 such that: (1) d(x, x) = 0, (2) d(x, y) = d(y, x), and (3)
d(x, z) ≤ max{d(x, y), d(y, z)}. This latter inequality is called the Strong Triangle Inequality. An
ultrapseudometric space is a pair (M, d) consisting of a set M and an ultrapseudometric d on M . It is
important to note that for an ultrapseudometric, we can have d(x, y) = 0 for x ̸= y.

Definition 5.1 In a Cartesian k-differential category X, for every homset X(A,B), define the function
dD : X(A,B)× X(A,B) → R≥0 as follows:

dD(f, g) =

{
2−n where n ∈ N is the smallest natural number such that M(n)[f ] ̸= M(n)[g]

0 if all n ∈ N, M(n)[f ] = M(n)[g]

We call dD(f, g) the D-distance between f and g.

Proposition 5.2 For every homset of a Cartesian k-differential category X, dD : X(A,B) × X(A,B) →
R≥0 is a ultrapseudometric. Moreover:

(i) Composition is non-expansive, that is, dD (g1 ◦ f1, g2 ◦ f2) ≤ max{dD(g1, g2), dD(f1, f2)};
(ii) The k-linear structure is non-expansive, that is, dD(r · f1 + s · g1, r · f2 + s · g2) ≤

max{dD(f1, f2), dD(g1, g2)};
(iii) Pairing is an isometry, that is, dD (⟨f0, . . . , fn⟩, ⟨g0, . . . , gn⟩) = max{dD(f0, g0), . . . , dD(fn, gn)};
(iv) Differentiation is non-expansive, that is, dD(D[f ],D[g]) ≤ dD(f, g)

Proof. We first show that dD is an ultrapseudometric. Trivially we have that d(x, x) = 0 and d(x, y) =
d(y, x). So we only need to check the Strong Triangle Inequality. So consider dD(f, h). If dD(f, h) = 0,

then we are done. So suppose that 0 < dD(f, h) = 2−n, which implies that M(k)[f ] = M(k)[g] for all k < n

and M(n)[f ] ̸= M(n)[g]. Now consider another map g. If dD(f, g) = 0, so M(j)[f ] = M(j)[g] for all j,
it follows that dD(g, h) = 2−n = dD(f, h). Similarly, if dD(g, h) = 0 then dD(f, g) = 2−n = dD(f, h). We

cannot have that dD(f, g) = 0 = dD(g, h) since this would imply that M(j)[f ] = M(j)[g] = M(j)[h] for
all j, which is a contradiction. Now suppose that dD(f, g) = 2−m and d(g, h) = 2−p, which means that

M(k1)[f ] = M(k1)[g] for all k1 < m and M(k2)[g] = M(k2)[h] for all k2 < p. If max{2−m, 2−p} < 2−n,

then n < min{m, p} which would imply that M(n)[f ] = M(n)[g] = M(n)[h], which is a contradiction.
So we must have that 2−n ≤ max{2−m, 2−p} < 2−n as desired. So dD is a ultrapseudometric, and thus
(X(X,Y ), dD) is an ultrapseudometric space. The compatibility of the Cartesian k-differential structure
and the ultrapseudometric is straightforward and easily follows from Lemma 4.3. 2

The category of ultrapseudometric spaces and non-expansive maps form a Cartesian closed category.
As such, an alternative way of viewing the compatibility of the Cartesian k-differential structure and
the ultrapseudometric (Prop 5.2.(i)-(iv)) is saying that a Cartesian differential category is enriched over
ultrapseudometric spaces via comparing Taylor differential monomials.

Now an ultrametric on a set M is a ultrapseudometric d : M ×M → R≥0 which also satisfies that:
(4) d(x, y) = 0 implies x = y. Then an ultrametric space is a pair (M, d) consisting of a set M and an
ultrametric d on M . In an arbitrary Cartesian differential category, two maps can have the same Taylor
differential monomials (i.e. D-distance of 0) but not be equal. Therefore dD is usually not an ultrametric.
It becomes an ultrametric when maps are completely determined by their Taylor differential monomials.
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When this is the case, we say that a Cartesian differential category is Taylor. This terminology is justified
since, in this Taylor setting, maps are indeed equal to their Taylor series.

Definition 5.3 In a Cartesian k-differential category, we say that parallel maps f : A → B and g : A → B
are Taylor-equivalent if for all n ∈ N, M(n)[f ] = M(n)[g]. We write f ∼ g if f and g are Taylor-
equivalent. Then a Cartesian k-differential category X is said to be Taylor if f ∼ g implies f = g.

Proposition 5.4 A Cartesian k-differential category X is Taylor if and only if for every homset, the
ultrapseudometric dD : X(A,B)× X(A,B) → R≥0 is an ultrametric.

Proof. Note that by definition of dD, we have that dD(f, g) = 0 if and only if f ∼ g. So the desired
statement follows immediately. 2

Of course, ultrametric spaces and non-expansive maps also form a Cartesian closed category. Thus, it
follows from Prop 5.2.(i)-(iv) that every Taylor Cartesian differential category is enriched over the category
of ultrametric spaces. We now prove the main objective of this paper:

Theorem 5.5 In a Taylor Cartesian k-differential category, for every map f : A → B, the sequence(
T (n)[f ]

)∞
n=0

converges to f with respect to the ultrametric dD, so we may write:

f =
∞∑
n=0

M(n)[f ] f(x) =
∞∑
n=0

1

n!
· d

(n)f(u)

du
(0) · x · . . . · x (3)

Proof. First recall that for all n ∈ N and k ≤ n, by Lemma 4.3.(xi), we have that M(k)
[
T (n)[f ]

]
=

M(k)[f ]. As such, the smallest possible m for which M(m)
[
T (n)[f ]

]
and M(m)[f ] might be different is

m = n+ 1. Thus we have that dD
(
T (n)[f ], f

)
≤ 2−(n+1). Now let 0 < ε be an arbitrary non-zero positive

real number. Let N be the smallest natural number such that 2−N ≤ ε. Then for all n ≥ N , we have that
dD
(
T (n)[f ], f

)
≤ 2−(n+1) < 2−n ≤ 2−N ≤ ε. So we conclude that

(
T (n)[f ]

)∞
n=0

converges to f . 2

Example 5.6 Let’s consider our ultra(pseudo)metric in our main examples:

(i) In k-POLY, the D-distance between polynomials is given by comparing the monomial summands of
same degree of the two polynomials. Since polynomials are completely determined by their monomial
summands, it follows that k-POLY is Taylor. Moreover, we note that this ultrametric for polynomials
is precisely the same as the ultrametric for power series that makes the formal infinite sum converge.

(ii) In SMOOTH, the D-distance between smooth functions is given by comparing the usual Taylor
expansions of the smooth functions. However, SMOOTH is not Taylor since two smooth functions
can have the same Taylor expansion but not be equal. The famous counter-example is the smooth

function f : R → R defined as f(x) = e
−1

x2 for x ̸= 0 and f(0) = 0. The Taylor series of f is 0, so we
have that f ∼ 0. But clearly, f ̸= 0. On the other hand, the subcategory of real entire functions is
a Taylor Cartesian differential category.

(iii) The ultrapseudometric dD defined for the coKleisli category of a differential category with finite
products is precisely the same as the ultrapseudometric defined in [21, Sec III.E]. Moreover, saying
that the coKleisli category is Taylor is precisely the same as saying that the differential category
is Taylor in the sense of [21, Def III.7]. Taylor differential categories were crucial for the story of
developing codigging for Differential Linear Logic in [21]. Examples of Taylor differential categories
can be found in [21, Sec IV].

While not every Cartesian differential category is Taylor, it is always possible to build one. This follows
from the fact that every ultrapseudometric space can be made into an ultrametric space by quotienting.
So let (M, d) be an ultrapseudometric space. Then we have an equivalence relation ∼ given by x ∼ y if and
only if d(x, y) = 0. Let M∼ be the set of equivalence classes of ∼, so [x] = {y ∈ M |x ∼ y}. Then (M∼, d∼)
is an ultrametric space where d∼ ([x], [y]) = d(x, y), which is indeed well-defined. Now for a Cartesian
k-differential category X, define the Cartesian k-differential category X∼ as having objects the same as
X, whose homsets are X∼(A,B) = X(A,B)∼, so maps are equivalence classes [f ] : A → B, and where
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composition is defined as [g]◦[f ] = [g◦f ], identity maps are [1A], the product is the same as in X, projections
are [πj ], the pairing is ⟨[f0], . . . , [fn]⟩ = [⟨f0, . . . , fn⟩], the k-linear structure is r · [f ] + s · [g] = [r · f + s · g],
and the differential combinator is given by D [[f ]] = [D[f ]].

Lemma 5.7 For a Cartesian k-differential category X, X∼ is a Taylor Cartesian k-differential category.

Proof. That X∼ is indeed a well-defined Cartesian k-differential category follows from Prop 5.2.(i)-(iv).
In fact, this is a general construction of turning an ultrapseudometric space-enriched category into an
ultrametric space-enriched category. Moreover, dD for X∼ is precisely the same as d∼, which by construction
is an ultrametric. So we conclude that X∼ is also Taylor. 2

A very natural and important question to ask is, what if there was already some other established
notion of convergence or infinite sum in our Cartesian differential category for which every map was equal
to its Taylor series? Would the resulting Taylor series for these notions be the same as the Taylor series
given by the ultrametric dD? Under natural assumptions, the answer is yes!

In the next section, we consider the algebraic infinite sum case, which is of high interest in more
computer science-related models. We conclude this section by looking at the case of having another
metric which makes the Taylor series converge. So let’s consider the case when a Cartesian differential
category may have other metrics on its homsets such that the sequence of Taylor differential polynomials
of f converges to f with respect to this metric. We will show that when this is the case, our starting
Cartesian differential category is Taylor, and therefore Taylor series obtained by convergences with respect
to either metric is the same. So by a metric space enriched Cartesian k-differential category, we
mean a Cartesian k-differential category X such that each homset X(A,B) comes equipped with a metric
b : X(A,B) × X(A,B) → R≥0 such that composition, the k-linear structure, the pairing operation, and
the differential combinator are all non-expansive (so similar to the sense of Prop 5.2.(i)-(iv)).

Lemma 5.8 In a metric space enriched Cartesian k-differential category X, if for every map f , the se-
quence

(
T (n)[f ]

)∞
n=0

converges to f with respect to the metric b, then X is Taylor.

Proof. Suppose that f ∼ g, so M(n)[f ] = M(n)[g] for all n, which in turn implies that T (n)[f ] = T (n)[g]

for all n as well. Consider b(f, g). Suppose that b(f, g) = ε ̸= 0. Now since
(
T (n)[f ]

)∞
n=0

converges to f

and
(
T (n)[g]

)∞
n=0

converges to g with respect to the metric b, then there exists an N1 and N2 such that for

all n ≥ N1 and m ≥ N2, we have that b
(
f, T (n)[f ]

)
< ε

2 and b
(
g, T (n)[g]

)
< ε

2 . Taking N = max{N1, N2},
we get that for all k ≥ N that b

(
f, T (k)[f ]

)
< ε

2 and b
(
g, T (k)[g]

)
< ε

2 . Then by the triangle inequality,
we get that:

ε = b(f, g) ≤ b
(
f, T (k)[f ]

)
+ b

(
T (k)[f ], g

)
= b

(
f, T (k)[f ]

)
+ b

(
T (k)[g], g

)
<

ε

2
+

ε

2
= ε

But ε < ε is a contradiction, so we must have b(f, g) = 0. Since b is a metric, this implies that f = g. So
we conclude that X is Taylor. 2

The converse of the above lemma is not true. Even if a Taylor Cartesian differential category has
another metric on its homsets, the sequence of Taylor differential polynomials may not converge with
respect to this other metric. For example, every Cartesian differential category is metric space enriched
by equipping the homsets with the trivial metric, b(x, y) = 1 if x ̸= y and b(x, y) = 0 if x = y. However, a
sequence (xn)

∞
n=0 converges to x with respect to the trivial metric if and only if it eventually stabilizes to

x, that is, there is some N such that for all n ≥ N , xn = x. However, there are many examples of Taylor
Cartesian differential categories where the sequence of Taylor differential polynomials never stabilizes.

6 Infinite Sums and Modelling Taylor Expansion

In this section, we consider Cartesian differential categories with countable infinite sums and show that
being Taylor is equivalent to every map being equal to the infinite sum of its Taylor differential monomials.
This implies that in a setting with countable sums, the notion of Taylor series of a map given by infinite
sums or by convergence via our ultrametric is the same. From this, we then show that Manzonetto’s
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notion of modelling Taylor expansion in a categorical model of the differential λ-calculus with countable
sums [25] is equivalent to our notion of Taylor.

We begin by discussing Cartesian differential categories with countable sums. Briefly, recall that a
commutative countably complete semiring is a commutative semiring k with an appropriate notion of
arbitrary countable sums, and such that these countable sums satisfy certain distributivity and partitions
axioms, and that a countably complete k-module is a k-module which also has arbitrary countable sums,
which again satisfy certain obvious compatibility axioms (see [20, Chap 23] for more details). Then we
define a left countably complete k-linear category to be a category whose homsets are countably
complete k-modules, so we can take countable infinite sums of maps, such that pre-composition preserves
these countable sums: (

∑
i∈I ri · fi) ◦ x =

∑
i∈I ri · fi ◦ x. A map f is said to be countably k-linear if

post-composition by f preserves the countable sums: f ◦(
∑

i∈I ri ·xi) =
∑

i∈I ri ·f ◦xi. Then a Cartesian
left countably complete k-linear category is a left countably complete k-linear category with finite
products such that the projections maps are countably k-linear. Note that a (Cartesian) left countably
complete k-linear category is also a (Cartesian) k-linear category. Then the countably complete version
of a Cartesian differential category is essentially the same but where we upgrade [CD.1] to require that
the differential combinator be countably k-linear, and also [CD.2] to asking that derivatives be countably
k-linear in their second argument.

Definition 6.1 A Cartesian countably complete k-differential category is a Cartesian left count-
ably complete k-linear category equipped with a differential combinator D such that:

[CD.1+]

d
∑
i∈I

ri · fi(x)

dx
(a) · b =

∑
i∈I

ri ·
dfi(x)

dx
(a) · b;

[CD.2+]
df(x)

dx
(a) · (

∑
i∈I

ri · bi) =
∑
i∈I

ri ·
df(x)

dx
(a) · bi

When we can scalar multiply by positive rationals, there is of course a natural notion of Taylor series
of maps. In what follows, we assume that k is also a commutative Q≥0-algebra.

Definition 6.2 In a Cartesian countably complete k-differential category, for a map f : A → B, define
the map T [f ] : A → B as the infinite sum of its Taylor D-monomials:

T [f ] =
∞∑
n=0

M(n)[f ]

The map T [f ] is called the Taylor series expansion of f .

Proposition 6.3 A Cartesian countably complete k-differential category is Taylor if and only if for every
map f , T [f ] = f .

Proof. It is straightforward to see that [CD.1+] also implies that M(n)
[∑

i∈I ri · gi
]
=
∑

i∈I ri ·M(n)[gi].

From this and Lemma 4.3.(xi), we get that M(n) [T [f ]] = M(n)[f ]. So T [f ] ∼ f . Now for the ⇒ direction,
suppose that we are in a Taylor setting. Then since T [f ] ∼ f , it follows that T [f ] = f . Conversely, for the
⇐ direction, suppose that T [f ] = f for all maps f . Now consider parallel maps such that f ∼ g, which

means that M(n)[f ] = M(n)[g] for all n. This gives us that:

f = T [f ] =

∞∑
n=0

M(n)[f ] =

∞∑
n=0

M(n)[g] = T [g] = g

So we conclude that our Cartesian countably complete k-differential category is Taylor. 2

So the above statement tells us that in a Taylor Cartesian differential category with infinite sums, every
map is equal to its Taylor series whether given via infinite sums of the Taylor differential monomials or
the convergence of the Taylor differential polynomials sequence with respect to the ultrametric dD.
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We now turn our attention to Manzonetto’s notion of modelling Taylor expansion in a Cartesian
closed differential category (also sometimes called a differential λ category). As mentioned, the categorical
semantics of the differential λ-calculus is provided by Cartesian closed differential categories. Every model
of the differential λ-calculus induces a Cartesian closed differential category [7, Thm 4.3], and conversely,
every Cartesian closed differential category induces a model of the differential λ-calculus [5, Thm 4.12].
For a more in-depth introduction to Cartesian closed differential categories and the differential λ-calculus,
we refer the reader to [5, 6, 7, 8, 14,25].

In a Cartesian closed category, we denote internal homs by [A,B], the evaluation maps by
ϵ : A× [A.B] → B, and for a map f : C × A → B, we denote its Curry by λ(f) : A → [C,B], which
recall is the unique map such that ϵ ◦ (1C × λ(f)) = f . In the term calculus, we write as usual:

λ(f)(a) = λx.f(x, a)

and so ϵ(a, λ(f)(c)) = f(a, c), or:
(λx.f(x, a)) (c) = f(a, c)

As explained in [7, Lemma 4.10], there are two equivalent ways of expressing compatibility between the
closed structure and the differential combinator: one which says that the derivative of a Curry is the Curry
of the partial derivative, and the other one which says that evaluation maps are D-linear in the internal
hom argument.

Definition 6.4 A Cartesian closed k-differential category [19, Def 2.9] is a Cartesian k-differential
category whose underlying category is also cartesian closed, and such that one of the following equivalent
axioms hold:

[CD.λ]
dλy.f(x, y)

dx
(a) · b = λy.

df(x, y)

dx
(a) · b;

[CD.ϵ]
dϵ(a, j)

dj
(f) · g = ϵ(a, g)

From this, it follows that in a Cartesian closed k-differential category, the Curry operator is k-linear.

Lemma 6.5 In a Cartesian closed k-differential category, λ(r · f + s · g) = r · λ(f) + s · λ(g), which in the
term calculus is written as:

λx. (r · f(x, a) + s · g(x, a)) = r · λx.f(x, a) + s · λx.g(x, a)

Proof. By [CD.ϵ] and [CD.2], we easily compute that:

ϵ (a, λ(r · f + s · g)(c)) = (r · f + s · g)(c, a) = r · f(c, a) + s · g(c, a)

= r · ϵ(a, λ(f)(c)) + s · ϵ(a, λ(g)(c)) = r · dϵ(a, j)
dj

(f) · (λ(f)(c)) + s · dϵ(a, j)
dj

(f) · (λ(g)(c))

=
dϵ(a, j)

dj
(h) · (r · λ(f)(c) + s · λ(g)(c)) = ϵ (a, (r · λ(f) + s · λ(g)) (c))

Since ϵ is monic in its second argument, we then get that λ(r · f + s · g)(c) = (r · λ(f) + s · λ(g)) (c). So,
we conclude that the Curry operator is indeed k-linear as desired. 2

To help define Taylor expansion in a Cartesian closed differential category, Manzonetto introduces a ⋆
operation [25, Def 4.7] which takes a map f : C × A → B and a map g : C → A, and produces a map
f ⋆ g : C ×A → B defined as:

(f ⋆ g)(c, a) =
df(c, x)

dx
(a) · g(c)

Successive application of the ⋆ operation is worked out to be:

(. . . ((f ⋆ g) ⋆ g) . . .) ⋆ g) (c, a) =
d(n)f(c, x)

dx
(a) · g(c) · . . . · g(c)
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Then in a setting with countable sums, Manzonetto defines Taylor expansion of the infinite sums of
the iterated ⋆ operations. In [25], Manzonetto worked for convenience in a setting where addition was
idempotent. Here, we provide the definition in the general case where we add back the scalar multiplication
in the Taylor expansion. We also give the unCurry version of the definition, which is equivalent to the
Curry version.

Definition 6.6 A Cartesian closed countably complete k-differential category is said to model Taylor
expansion [25, Def 5.19] if for every map f : C ×A → B and a map g : C → A,

f(c, g(c)) =
∞∑
n=0

1

n!
· d

(n)f(c, y)

dy
(0) · g(c) · . . . · g(c) (4)

We conclude with the equivalence of being Taylor and modelling Taylor expansion. To do so, we first
note that in the countably complete setting, the Curry operator is countably k-linear.

Lemma 6.7 In a Cartesian closed countably complete k-differential category, the following equality holds:
λ
(∑

i∈I ri · fi
)
=
∑

i∈I ri · λ(fi), which in the term calculus is written as:

λx.

(∑
i∈I

ri · fi(x, a)

)
=
∑
i∈I

ri · λx.fi(x, a)

Proof. The proof is essentially the same as the proof of Lemma 6.5, but where we make use of [CD.2+]
instead of simply [CD.2]. As such, we leave this as an exercise for the reader. 2

Proposition 6.8 A Cartesian closed countably complete k-differential category is Taylor if and only if it
models Taylor expansion.

Proof. For the ⇒ direction, since we are in a Taylor setting, by Prop 6.3 we have that T [h] = h for all
maps h. Then for f : C × A → B, we compute the Taylor series of its curry λ(f) by using Lemma 6.7 to
be:

T [λ(f)](a) =

∞∑
n=0

1

n!
· d

(n)λ(f)(y)

dy
(0) · a · . . . · a =

∞∑
n=0

1

n!
· d

(n)λx.f(x, y)

dy
(0) · a · . . . · a

=
∞∑
n=0

1

n!
· λx.d

(n)f(x, y)

dy
(0) · a · . . . · a = λx.

( ∞∑
n=0

1

n!
· d

(n)f(x, y)

dy
(0) · a · . . . · a

)

From this, we then compute that:

f(c, g(c)) = λ(f)(g(c))(c) = T [λ(f)](g(c))(c)

=

(
λx.

( ∞∑
n=0

1

n!
· d

(n)f(x, y)

dy
(0) · g(c) · . . . · g(c)

))
(c) =

∞∑
n=0

1

n!
· d

(n)f(c, y)

dy
(0) · g(c) · . . . · g(c)

So we model Taylor expansion as desired. For the ⇐ direction, by Prop 6.3, it suffices to show that for
every map h : C → B, T [h] = h. Now define f : C × C → B as f = h ◦ π2, so f(x, y) = h(y), and take
g = 1C : C → C. Then using the modelling Taylor expansion formula, we compute that:

h(c) = h(g(c)) = f(c, g(c)) =

∞∑
n=0

1

n!
· d

(n)f(c, y)

dy
(0) ·g(c) · . . . ·g(c) =

∞∑
n=0

1

n!
· d

(n)h(y)

dx
(0) · c · . . . · c = T [h](c)

So T [h] = h as desired. 2

17



Jean-Simon Pacaud Lemay

References

[1] Blute, R. F., J. R. B. Cockett, J.-S. P. Lemay and R. A. G. Seely, Differential categories revisited, Applied Categorical
Structures (2020).
https://doi.org/10.1007/s10485-019-09572-y

[2] Blute, R. F., J. R. B. Cockett and R. A. G. Seely, Differential categories, Math. Struct. Comput. Sci. (2006).

[3] Blute, R. F., J. R. B. Cockett and R. A. G. Seely, Cartesian Differential Categories, Theory and Applications of Categories
22, pages 622–672 (2009).

[4] Boudes, P., F. He and M. Pagani, A characterization of the taylor expansion of lambda-terms, in: Computer Science Logic
2013 (CSL 2013), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013).

[5] Bucciarelli, A., T. Ehrhard and G. Manzonetto, Categorical models for simply typed resource calculi, Electronic Notes in
Theoretical Computer Science 265, pages 213–230 (2010).

[6] Cockett, J. and J. Gallagher, Categorical models of the differential λ-calculus revisited, Electronic Notes in Theoretical
Computer Science 325, pages 63–83 (2016).

[7] Cockett, J. and J. Gallagher, Categorical models of the differential λ-calculus, Mathematical Structures in Computer
Science 29, pages 1513–1555 (2019).

[8] Cockett, J. R. B. and J.-S. P. Lemay, Linearizing combinators, Theory and Applications of Categories 38, pages 374–431
(2022).

[9] Cockett, J. R. B. and R. A. G. Seely, The Faa di Bruno construction, Theory and Applications of Categories 25, pages
394–425 (2011).

[10] Cruttwell, G., J. Gallagher and D. Pronk, Categorical Semantics of a Simple Differential Programming Language,
Electronic Proceedings in Theoretical Computer Science 333, pages 289–310 (2021).
https://doi.org/10.4204/EPTCS.333.20

[11] Cruttwell, G., B. Gavranovic, N. Ghani, P. Wilson and F. Zanasi, Categorical Foundations of Gradient-Based Learning,
ESOP 2022 pages 1–28 (2022).
https://doi.org/10.1007/978-3-030-99336-8_1

[12] Cruttwell, G. S. H., Forms and exterior differentiation in cartesian differential categories, Theory and Applications of
Categories 28, pages 981–1001 (2013).

[13] Ehrhard, T., An introduction to differential linear logic: proof-nets, models and antiderivatives, Math. Struct. Comput.
Sci. (2017).

[14] Ehrhard, T. and L. Regnier, The differential lambda-calculus, Theoretical Computer Science 309, pages 1–41 (2003).
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[26] Manzonetto, G. and M. Pagani, Böhm’s theorem for resource lambda calculus through taylor expansion, in: International
Conference on Typed Lambda Calculi and Applications, pages 153–168, Springer (2011).

[27] Pagani, M. and C. Tasson, The inverse taylor expansion problem in linear logic, in: 2009 24th Annual IEEE Symposium
on Logic In Computer Science, IEEE (2009).

19


	Introduction
	Cartesian Differential Categories
	Differential Polynomials
	Taylor Differentials Polynomials
	Ultrametric for Taylor Series Convergence
	Infinite Sums and Modelling Taylor Expansion
	References

