A Fully Compositional Theory of Digital Circuits

George Kaye

University of Birmingham

21 June 2024

Applied Category Theory 2024 (ACT 2024)

What are we going to be talking about?

Digital circuits!

Digital circuits!

What are we going to be talking about?

We want a compositional theory of digital circuits.

Using string diagrams removes much of the bureacracy (also they look pretty) The story so far

How did we get here?

Yves Lafont

'Towards an algebraic theory of Boolean circuits'

The story so far

Dan Ghica, Achim Jung, Aliaume Lopez

'Diagrammatic semantics for digital circuits'

'Do you know category theory' 'Do you want to do circuits stuff'

'No' 'Okay' **David Sprunger**

'I will help too'

Hold on a second...

Combinational circuit components

Sequential circuit components

Circuits are morphisms in a freely generated symmetric traced monoidal category (STMC).

Why not use Frobenius structure?

We want copying...

Where were we?

What are the denotational semantics of digital circuits? Certain kinds of stream functions!

$$f(\mathbf{V}_{\mathsf{O}} :: \mathbf{V}_{\mathsf{1}} :: \mathbf{V}_{\mathsf{2}} :: \dots) = \mathbf{W}_{\mathsf{O}} :: \mathbf{W}_{\mathsf{1}} :: \mathbf{W}_{\mathsf{2}} :: \dots$$

Denotational equivalence

$$\llbracket -f - \rrbracket = \llbracket -g - \rrbracket \Rightarrow -f - \approx -g -$$

We can also eliminate non-delay-guarded feedback

(Kleene fixpoint theorem)

Denotational equivalence obscures the structure of terms We want to reason more syntactically

Operational semantics Algebraic semantics a bit has changed (pretty much) new

Suppose we have two circuits with the same denotation

$\left[\left[-f \right] - \left[-g \right] \right] = \left[\left[-g \right] - \left[-g \right] \right]$

What does this tell us about the structure of these circuits?

We want to find a set of reductions for digital circuits We want to reduce circuits to their outputs syntactically in a step-by-step manner

by moving boxes and wires around

Going global

We want to compute the outputs of circuits given some inputs

$$-\overline{v} - f - \stackrel{*}{\leadsto} - g - \overline{w} -$$

How does a circuit process a value?

What about delays?

Catching the jet stream

When are two circuits observationally equivalent? Circuits have finitely many states...

Maximum number of states: |**V**|^{number of delays}

$$-f$$
 $-g$ $-$

Two circuits are observationally equivalent if the reduction procedure creates the same outputs for all inputs of length $|\mathbf{V}|^{\max number of delays} + 1.$

$-f - \approx -g - \Leftrightarrow -f - \sim -g -$

Denotational semantics \cong Operational semantics

This operational semantics is a bit different to some others...

(cf. signal flow graphs)

We want to transform the circuit

This is a superexponential upper bound for testing circuit equivalence

Can we do better?

Mealy is so back

First things first...

By these equations, $-f = \frac{1}{5} + \frac{1}{f}$

Say we have a procedure ||-|| for establishing a canonical circuit for a function $f: \mathbf{V}^m \to \mathbf{V}^n$

A circuit is normalised if it is in the image of ||-||

It's completely normal

It's completely normal

How to translate between

First encode one set of states into the other

$$\overline{s}$$
 $|enc_m|$ $=$ \overline{t} \overline{t} $|dec_m|$ $=$ \overline{s} $-$

(and for any future states)

With these equations we can derive

Is this enough?

The cores may not have the same semantics!

where *f* and *g* 'agree on the states that matter'

$-f - \approx -g - \Leftrightarrow -f - = -g -$

Denotational semantics \cong Algebraic semantics

Three different semantics for sequential digital circuits

