
Universal recursive preference structures

Marcus Pivato

Centre d’Économie de la Sorbonne
Université Paris 1 Panthéon-Sorbonne

7th International Conference on Applied Category Theory
University of Oxford

June 2024

(1/24)

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

Rationality and preference (2/24)

In economics, the standard model of rationality endows each agent with a
preference order: a complete, transitive binary relation < over the set of all
possible outcomes.

If x and y are two outcomes, then x < y is usually interpreted

“The agent prefers x to y.”

Given a menu Y of outcomes, a rational agent chooses an element x of Y
that maximizes her preferences —i.e. such that x < y for all y ∈ Y.

In some contexts (e.g. uncertainty or multiple time periods), “rational”
preferences should take a specific form (e.g. expected utility maximization).

But in “simple” decisions, all possible preference orders are considered
equally valid — de gustibus non es disputandum.

In such decisions, the standard view is that “rationality” just is
preference-maximization.

But we shall see that this account is not entirely satisfactory.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

The problem of freedom (3/24)

Arguably, if someone has no choice over her preferences, then she is not
truly autonomous.

Like Sisyphus, she is doomed to forever struggle up her preference gradient.
But she never had any choice about what her preferences would be.

But is it even coherent to talk about “choosing” one’s own preferences?
On what basis would a person make this choice?

Presumably, on the basis of her second-order preferences —that is,
preferences over preferences.

And where do these preferences come from?

To be truly autonomous, she must also be able to chose her second-order
preferences. This presumably involves third-order preferences.

At this point, we risk falling into an infinite regress.....

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Idea. Formalize these ideas by introducing higher-order preferences.

Notation. For any set S, let Prf(S) be the set of all preference orders on S.

Let X be a menu of possible “outcomes”.

A first order preference is a preference order <1 on X .

A second order preference is a preference order <2 on Prf(X) —that is, an
element of Prf[Prf(X)].

Presumably, a rational agent first picks a <2-optimal preference <1 in
Prf(X), and then picks a <1-optimal outcome in X .

Problem: Where does <2 come from?

Presumably, it comes from a third order preference: a preference order <3

on Prf[Prf(X)]. In other words, <3 is an element of Prf (Prf [Prf(X)]).

Problem 1. We can repeat this process ad infinitum.....

Problem 2. Many elements of Prf(X) may be infeasible (e.g. due to
continuity requirements.)

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problem 3. We assumed separate preferences over X and Prf(X).

But a rational agent doesn’t form separate preferences over different aspects
of her situation; she forms holistic preferences over her entire situation.

Example. Suppose Scott (<S) prefers scotch to bourbon.
Meanwhile, Bob (<B) prefers bourbon to scotch. Thus

Lagavulin <S Buffalo Trace whereas Buffalo Trace <B Lagavulin.

But it is also meaningful to ask: Is it better to have preferences <S with a
tumbler of Buffalo Trace, or <B with a lowball of Lagavulin?

Indeed it a complete preference description would be something like:

(Lagavulin,<S) � (Buffalo Trace,<B)

� (Lagavulin,<B) � (Buffalo Trace,<S).

Thus, <2 should not be a preference over Prf(X); it should be a preference
over ordered pairs (x,<1) ∈ X × Prf(X).

By the same logic, <3 should be a preference over ordered triples
(x,<1,<2), where x ∈ X , <1∈ Prf(X), and <2∈ Prf[X × Prf(X)].

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Problems (6/24)

Problems 2 and 3 can be addressed by using a (much) more complicated
“hierarchical” model ...

But this presentation will instead focus on a recursive model.

In this model, the agent can choose from a menu of types.

Each type determines a preference order over type-outcome pairs.

In particular, this means each type determines preferences over other types.

Since types determine preferences, this means that each type implicitly
determines a preference over preferences.

Part I

Recursive preference structures

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Recursive preference structures (8/24)

As before, let X be a menu of “outcomes”.

Let T be a set of “types”.

A simple preference structure for T over X is a function q : T −→Prf(X).
It assigns a preference order <q(t) over X to each type t in T .
This is a common model in economic theory. But not what we want...

Definition.
A recursive preference structure is a function p : T −→Prf(T × X).

For each type t in T , <p(t) is a preference order over T × X .

Interpretation. For any t1, t2 ∈ T and x1, x2 ∈ X , if (t1, x1) <p(t) (t2, x2),
then this means that type t would prefer to be type t1 with outcome x1,
rather than type t2 with outcome x2. (Scott & Lagavulin < Bob & Buffalo Tr.)

Note. p induces a simple preference structure q as follows: For any t ∈ T
and x, y ∈ X , we define x <q(t) y if and only if (t, x) <p(t) (t, y).

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→
� 7→
� 7→
� 7→

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→
� 7→
� 7→
� 7→

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→ F � � � N
� 7→
� 7→
� 7→

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→ F � � � N
� 7→ � � N � F
� 7→
� 7→

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→ F � � � N
� 7→ � � N � F
� 7→ N � F � �
� 7→

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→ F � � � N
� 7→ � � N � F
� 7→ N � F � �
� 7→ F � N � �

Example (9/24)

Suppose that X = {F,�,N} and T = {�,�,�,�}.

Here is a recursive preference structure p : T −→Prf(T × X).

p
� 7→ F � � � � � N � N � N �F �F �F � N � � � �
� 7→ N � � �F � N �F � � �F �F � � � N � � � N
� 7→ � �F � � � N � N �F �F � N � � � N � � �F
� 7→ N � � �F �F � � � N �F � N � N �F � � � �

Here is the induced simple preference structure q : T −→Prf(X).

q
� 7→ F � � � N
� 7→ � � N � F
� 7→ N � F � �
� 7→ F � N � �

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Fully autonomous recursive preference structures (10/24)

Let p : T −→Prf(T × X) be a recursive preference structure.

Let < be a preference order over T × X .

Say that < is p-realizable if there is some t ∈ T such that p(t) = (<).

Problem. The set of p-realizable preference orders could be very small.

In particular, they might all induce the same first-order preferences over X .

But then a p-agent would not have much “autonomy”...

Goal: A recursive preference structure p where the set of p-realizable
preferences is very large —perhaps even includes every “feasible” (e.g.
continuous) preference order over T × X .

In this case, we could say that p is fully autonomous.

Question. Is such a thing even possible?

Existence of fully autonomous RPS (11/24)

Answer. In some cases, yes.

Let T and X be metric spaces.

Let Prfc(T × X) be the set of continuous preference orders on T × X .

Then Prfc(T × X) is itself a metric space, with the Hausdorff metric.

Theorem A. For any compact metric space X , there exists a metric space
T with a continuous surjection p : T −→Prfc(T × X).

Such an agent is fully autonomous:

in principle, she can have any preference order in Prfc(T × X).

Existence of fully autonomous RPS (11/24)

Answer. In some cases, yes.

Let T and X be metric spaces.

Let Prfc(T × X) be the set of continuous preference orders on T × X .

Then Prfc(T × X) is itself a metric space, with the Hausdorff metric.

Theorem A. For any compact metric space X , there exists a metric space
T with a continuous surjection p : T −→Prfc(T × X).

Such an agent is fully autonomous:

in principle, she can have any preference order in Prfc(T × X).

Existence of fully autonomous RPS (11/24)

Answer. In some cases, yes.

Let T and X be metric spaces.

Let Prfc(T × X) be the set of continuous preference orders on T × X .

Then Prfc(T × X) is itself a metric space, with the Hausdorff metric.

Theorem A. For any compact metric space X , there exists a metric space
T with a continuous surjection p : T −→Prfc(T × X).

Such an agent is fully autonomous:

in principle, she can have any preference order in Prfc(T × X).

Existence of fully autonomous RPS (11/24)

Answer. In some cases, yes.

Let T and X be metric spaces.

Let Prfc(T × X) be the set of continuous preference orders on T × X .

Then Prfc(T × X) is itself a metric space, with the Hausdorff metric.

Theorem A. For any compact metric space X , there exists a metric space
T with a continuous surjection p : T −→Prfc(T × X).

Such an agent is fully autonomous:

in principle, she can have any preference order in Prfc(T × X).

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Towards full autonomy (12/24)

As a recipe for “full autonomy”, Theorem A has several shortcomings.

I It only applies when X is a compact metric space.

Iyet the type space T itself is not compact.

I The function p : T −→Prfc(T × X) is surjective, but not injective.

So many types map to the same preference order.
Yet the agent can be non-indifferent between these types, as if they
differ in some invisible “non-preference” attribute....

I An agent should be able to adopt incomplete preferences if she wants.

Reason: Some options may be incommensurable with others.

I An agent should be able to adopt not only any preference order, but
also any recursive preference structure.

We will now develop a theory of “universal” recursive preference structures.

But first we need some mathematical preliminaries......

Part II

Universal recursive

preference structures

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Local continuous partial orders (14/24)

Recall. A (strict) partial order is a transitive, antisymmetric binary relation.

Any partial order on a set X corresponds to a subset of X × X .

Now suppose that X is a topological space.

A partial order is continuous if it corresponds to an open subset of X × X .

Definition. A local continuous partial order on X is a pair (Y,�), where:
I Y ⊆ X is a closed subset; and
I � is a continuous partial order on Y.

Let P (X) := {all local continuous partial orders on X}.
Wanted. A natural topology on P (X)....
For any (Y,�) in P (X), let [[Y,�]] := {(x, y) ∈ Y×Y; x 6� y}.

This is a closed subset of Y×Y (its complement is open because � is continuous).

Thus it is a closed subset of X×X (because Y itself is closed).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Topological space of partial orders (15/24)

For any compact Hausdorff space X , let K(X) := {all closed subsets of X}.

There is a natural topology on K(X), called the Vietoris topology.

(If X is a compact metric space, it is induced by the Hausdorff metric.)

Recall: There is a natural mapping P (X) 3 (Y,�) 7→ [[Y,�]] ∈ K(X×X).

Definition. The co-Vietoris topology on P (X) is obtained by pulling back
the Vietoris topology on K(X×X) through this function.

Proposition. (P. 2023) If X is compact Hausdorff, then so is P (X).

New definition. Let X be a compact Hausdorff space.

A recursive preference structure over X is a pair (T , φ) where:

I T is another compact Hausdorff space; and

I φ : T −→P (T × X) is continuous (w.r.t. co-Vietoris topology).

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Forward images of partial orders (16/24)

Wanted. A notion of morphism for recursive preference structures.

This requires further mathematical preliminaries.....

Let X and X ′ be compact Hausdorff spaces.

Let ψ : X−→X ′ be continuous.

For any local continuous partial order (Y,�) on X , let ψ¶(Y,�) be the
local continuous partial order (Y ′,�′), where

I Y ′ := ψ(Y) (a closed subset of X ′); and

I �′ is the partial order on Y ′ defined as follows: For all x′, y′ ∈ Y ′,
x′ �′ y′ ⇐⇒ x � y for all x ∈ ψ−1{x′} and y ∈ ψ−1{y′}.

This construction yields a function ψ¶ : P (X)−→P (X ′).

Proposition. (P. 2023)
If ψ : X−→X ′ is continuous, then ψ¶ : P (X)−→P (X ′) is continuous.

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Morphisms of recursive preference structures (17/24)

Let (T1, φ1) and (T2, φ2) be two recursive preference structures over X .

Let ψ : T1−→T2 be another continuous function.

Let IX : X−→X be the identity function.

Define ψ × IX : T1 ×X−→T2 ×X in the obvious way.

Let ψ† := (ψ × IX)¶ : P (T1 ×X)−→P (T2 ×X).

Definition. The function ψ is a morphism of recursive preference structures
if the following diagram commutes:

T1 P (T1 ×X)

T2 P (T2 ×X)

φ1

ψ ψ†

φ2

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Recursive preference structures are co-algebras (18/24)

Let CHS = category of compact Hausdorff spaces and continuous maps.

Our earlier result says there is a endofunctor P on CHS that:

I transforms every space X into the space P (X) of local continuous
partial orders on X ; and

I transforms every function ψ : X−→Y into ψ¶ : P (X)−→P (Y).

Now fix a compact Hausdorff space X .

Consider the endofunctor (−×X) on CHS that:

I transforms every space T into the product space (T × X); and

I transforms every function ψ : T −→S into the function
(ψ × IX) : (T × X)−→(S × X).

Now compose them to get the endofunctor RX := P ◦ (−×X).
This endofunctor transforms any space T into the space P (T × X).
An RPS φ : T −→P (T × X) is thus just an RX -coalgebra.

An RPS morphism is just a RX -coalgebra morphism.

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of

In other words: for any other (T , φ), there is a unique morphism
ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of recursive preference structures over X .

In other words: for any other RPS (T , φ) over X , there is a unique RPS
morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Universal recursive preference structures (19/24)

Let X be a compact Hausdorff space, and let (T̂ , φ̂) be an RPS over X .

Definition. (T̂ , φ̂) is a universal RPS over X if it is a terminal object in the
category of RX -coalgebras.

In other words: for any other RX -coalgebra (T , φ), there is a unique
RX -coalgebra morphism ψ : T −→T̂ .

Proposition. Suppose that (T̂ , φ̂) is a universal RPS over X . Then:

(a) (Lambek) The function φ̂ : T̂ −→P (T̂ × X) is a homeomorphism.

(b) If (T̃ , φ̃) is another universal RPS over X , then there is a (unique)
RPS isomorphism from (T̂ , φ̂) to (T̃ , φ̃).

Part (a) means (T̂ , φ̂) is fully autonomous, and has no redundant types.

Part (b) means that we can speak of “the” universal RPS over X .

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Existence of Universal RPS (20/24)

We now come to our main result.

Theorem. For any compact Hausdorff space X , there is a universal
recursive preference structure over X .

The type space of this universal RPS is a compact Hausdorff space.

The type space of a universal RPS depends on the outcome space X .

Proposition.
Let X be a compact Hausdorff space. Let (T̂ , φ̂) be its universal RPS.

I If X is metrizable, then so is T̂ .

I If X is a continuum, then so is T̂ .

I If X is a Cantor space, then so is T̂ .

I If X is a finite set with the discrete topology, then T̂ is a Cantor space.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Proof sketch. (21/24)

Consider the chain T0
φ0←− T1

φ1←− T2
φ2←− T3

φ3←− · · · ,
where T0 is the one-point space (the terminal object of CHS),
T1 := RX (T0), T2 := RX (T1), T3 := RX (T2), ...etc.
Meanwhile, φ0 : T1−→T0 is the (unique) terminal morphism;
φ1 := RX (φ0) : T2−→T1, φ2 := RX (φ1) : T3−→T2,.... etc.

Let T∞ := lim
n→∞

(Tn, φn).

The functor RX preserves ω-limits in CHS (Pivato, 2023). So there is an

isomorphism RX (T∞) = RX

(
lim
n→∞

(Tn, φn)
)
∼= lim

n→∞

(
RX (Tn), RX (φn)

)
.

But RX (Tn) = Tn+1 and RX (φn) = φn+1 for all n ∈ N. Thus,

lim
n→∞

(
RX (Tn), RX (φn)

)
= lim

n→∞
(Tn+1, φn+1) ∼= lim

n→∞
(Tn, φn) = T∞.

Putting it all together yields an isomorphism RX (T∞) ∼= T∞.

If φ : T∞−→RX (T∞) is this isomorphism, then (T∞, φ) is an RX -coalgebra.

Theorem. (Adámek, 1974) (T∞, φ) is the terminal RX -coalgebra.

Conclusion (22/24)

To incorporate notions like “autonomy” or “responsibility” into a model of
rational agency, we need metapreferences.

To formalize this, I introduced recursive preference structures (RPS).

In a topological setting, there exist fully autonomous (i.e. surjective) RPS.

Finally, there exist universal RPS —these are terminal coalgebras of an
endofunctor on the category of compact Hausdorff spaces.

Conclusion (22/24)

To incorporate notions like “autonomy” or “responsibility” into a model of
rational agency, we need metapreferences.

To formalize this, I introduced recursive preference structures (RPS).

In a topological setting, there exist fully autonomous (i.e. surjective) RPS.

Finally, there exist universal RPS —these are terminal coalgebras of an
endofunctor on the category of compact Hausdorff spaces.

Conclusion (22/24)

To incorporate notions like “autonomy” or “responsibility” into a model of
rational agency, we need metapreferences.

To formalize this, I introduced recursive preference structures (RPS).

In a topological setting, there exist fully autonomous (i.e. surjective) RPS.

Finally, there exist universal RPS —these are terminal coalgebras of an
endofunctor on the category of compact Hausdorff spaces.

Conclusion (22/24)

To incorporate notions like “autonomy” or “responsibility” into a model of
rational agency, we need metapreferences.

To formalize this, I introduced recursive preference structures (RPS).

In a topological setting, there exist fully autonomous (i.e. surjective) RPS.

Finally, there exist universal RPS —these are terminal coalgebras of an
endofunctor on the category of compact Hausdorff spaces.

Thank you.

Background: Rationality and preferences
The problem of freedom
First and second order preferences
Problem: Separate vs. holistic preferences

Part I: Recursive preference structures
Recursive preference structures
Fully autonomous recursive preference structures

Motivation
Existence

Towards full autonomy

Part II. Universal recursive preference structures
Local continuous partial orders
Topological space of partial orders
Forward images of partial orders
Morphisms of recursive preference structures
Universal recursive preference structures

Conclusion

Thank you

	Background: Rationality and preferences
	The problem of freedom
	First and second order preferences
	Problem: Separate vs. holistic preferences

	Part I: Recursive preference structures
	Recursive preference structures
	Fully autonomous recursive preference structures
	Towards full autonomy

	Part II. Universal recursive preference structures
	Local continuous partial orders
	Topological space of partial orders
	Forward images of partial orders
	Morphisms of recursive preference structures
	Universal recursive preference structures

	Conclusion
	Thank you

