A model of linear logic using polynomials in Homotopy Type Theory

Elies Harington Samuel Mimram

Ecole Polytechnique ´

21st of june MFPS 2024

 \bullet 1988 : Normal functors, power series and λ -calculus - Jean-Yves Girard

イロト イ押 トイヨ トイヨト

重

- 1988 : Normal functors, power series and λ -calculus Jean-Yves Girard
- Normal functors form a 2-category, cartesian closed but not 2-cartesian closed.

 \leftarrow

- 1988 : Normal functors, power series and λ -calculus Jean-Yves Girard
- Normal functors form a 2-category, cartesian closed but not 2-cartesian closed.
- MFPS 2021 : A Cartesian Bicategory of Polynomial Functors in Homotopy Type Theory (Finster, Mimram, Lucas, Seiller).
- 1988 : Normal functors, power series and λ -calculus Jean-Yves Girard
- Normal functors form a 2-category, cartesian closed but not 2-cartesian closed.
- MFPS 2021 : A Cartesian Bicategory of Polynomial Functors in Homotopy Type Theory (Finster, Mimram, Lucas, Seiller).
- Our contribution : polynomial functors in types form a model of linear logic.
- 1988 : Normal functors, power series and λ -calculus Jean-Yves Girard
- Normal functors form a 2-category, cartesian closed but not 2-cartesian closed.
- MFPS 2021 : A Cartesian Bicategory of Polynomial Functors in Homotopy Type Theory (Finster, Mimram, Lucas, Seiller).
- Our contribution : polynomial functors in types form a model of linear logic.
- Linear logic : " $(A \implies B) \simeq (A \multimap B)$ "

A polynomial in sets is an expression

$$
P(X) = \sum_{b \in B} X^{E_b}
$$

where B is a set and $(E_b)_{b \in B}$ a family of sets indexed by B.

 \leftarrow

∍

A polynomial in sets is an expression

$$
P(X) = \sum_{b \in B} X^{E_b}
$$

where B is a set and $(E_b)_{b \in B}$ a family of sets indexed by B. No coefficients, but repetitions allowed :

$$
3\times X^2=X^2\sqcup X^2\sqcup X^2
$$

 \leftarrow

$$
(B, (\mathit{E}_b)_{b \in B}) \iff (\mathit{E} \to B)
$$

so the data of a polynomial P can be encoded as a map of sets

$$
E \xrightarrow{\quad p \quad} B
$$

- \bullet $b \in B$ represents a monomial
- $E_b \mathrel{\mathop:}= p^{-1}(b)$ is the exponent of the monomial b

It induces a polynomial functor

$$
\begin{aligned} \mathsf{Set} &\rightarrow \mathsf{Set} \\ &X \mapsto \sum_{b \in \mathcal{B}} X^{E_b} \end{aligned}
$$

Example

Induced functor:

 $Set \rightarrow Set$ $X \mapsto X^2 \sqcup X \sqcup \mathbb{1}$

重

 $2Q$

メロメメ 御き メミメメ ミメー

Polynomials with sorts/colors

$$
\{x,y\} \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} \{0,1\}
$$

$$
\begin{aligned} \mathsf{Set}^{\{x,y\}} &\rightarrow \mathsf{Set}^{\{0,1\}} \\ (X,Y) &\mapsto (XY,X+Y) \end{aligned}
$$

 \rightarrow \equiv

 \rightarrow

 \leftarrow \Box -4 - 同 299

É

Composition of polynomials

Generally, a diagram of sets

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
$$

induces a polynomial functor

 $P : Set^{\prime} \rightarrow Set^{\prime}$

 \rightarrow 4 \equiv \rightarrow

4日下

э

Generally, a diagram of sets

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
$$

induces a polynomial functor

$$
P:\mathbf{Set}^I\to\mathbf{Set}^J
$$

If $P:\mathbf{Set}^{I}\to\mathbf{Set}^{J}$ and $Q:\mathbf{Set}^{J}\to\mathbf{Set}^{K}$ are polynomial, so is $Q\circ P.$

Generally, a diagram of sets

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
$$

induces a polynomial functor

$$
P:\mathbf{Set}^I\to\mathbf{Set}^J
$$

- If $P:\mathbf{Set}^{I}\to\mathbf{Set}^{J}$ and $Q:\mathbf{Set}^{J}\to\mathbf{Set}^{K}$ are polynomial, so is $Q\circ P.$
- Composition can already be defined at the level of diagrams, but it's only associative/unital up to isomorphism.

Generally, a diagram of sets

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
$$

induces a polynomial functor

$$
P:\mathbf{Set}^I\to\mathbf{Set}^J
$$

- If $P:\mathbf{Set}^{I}\to\mathbf{Set}^{J}$ and $Q:\mathbf{Set}^{J}\to\mathbf{Set}^{K}$ are polynomial, so is $Q\circ P.$
- Composition can already be defined at the level of diagrams, but it's only associative/unital up to isomorphism.
- Polynomials in sets thus form a $(2,1)$ -category.

Linear polynomials: spans

A polynomial $P(X) = \sum_{b \in B} X^{E_b}$ is **linear** when E_b is a singleton for all b .

 \rightarrow \rightarrow \rightarrow \rightarrow

э

 \leftarrow

Linear polynomials: spans

- A polynomial $P(X) = \sum_{b \in B} X^{E_b}$ is **linear** when E_b is a singleton for all b .
- In diagram form, this means $p : E \to B$ is an isomorphism.
- Up to isomorphism of polynomials, we can take $p = id_B$, so linear polynomials correspond to spans

$$
1 \xleftarrow{s} B \xrightarrow{t} J \qquad \iff \qquad 1 \xleftarrow{s} B \xrightarrow{\mathrm{id}_B} B \xrightarrow{t} J
$$

Linear polynomials: spans

- A polynomial $P(X) = \sum_{b \in B} X^{E_b}$ is **linear** when E_b is a singleton for all b .
- In diagram form, this means $p : E \to B$ is an isomorphism.
- Up to isomorphism of polynomials, we can take $p = id_B$, so linear polynomials correspond to spans

$$
1 \xleftarrow{s} B \xrightarrow{t} J \qquad \iff \qquad 1 \xleftarrow{s} B \xrightarrow{\mathrm{id}_B} B \xrightarrow{t} J
$$

And they compose via pullbacks

A model of linear logic ?

Spans are linear polynomials. To get a model of LL, we would like

$$
(A \implies B) \simeq (!A \multimap B)
$$

Poly(*l*, *J*) \simeq Span(*l*, *J*)

for a suitable functor $! :$ Span \rightarrow Span.

 \leftarrow

一 4 (国)

∍

Spans are linear polynomials. To get a model of LL, we would like

$$
(A \implies B) \simeq (!A \multimap B)
$$

Poly(*l*, *J*) \simeq Span(*l*, *J*)

for a suitable functor ! : $Span \rightarrow Span$.

A polynomial functor $P:\mathsf{Set}\to\mathsf{Set}$ is determined by $B:\mathsf{Set},E_{(-)}:B\to\mathsf{Set},$ so by a span

$$
\mathbf{Set} \xleftarrow[t_{(-)} B \longrightarrow 1]
$$

- This suggests !(1) \simeq Set, but there is not set of all sets.
- \bullet So we restrict the size of the sets E_h .

A polynomial is **finitary** if the E_b 's in its definition are finite sets. Notation : $\text{Poly}_{\text{Fin}}(I, J)$

G.

 299

4日下

A polynomial is **finitary** if the E_b 's in its definition are finite sets. Notation : $\text{Poly}_{\text{Fin}}(I, J)$ Examples:

- $X \mapsto X^3 + X + 1$ is finitary
- $\bullet X \mapsto \mathbb{N} \times X$ is finitary
- $(X_k)_{k\in\mathbb{N}}\mapsto ((X_k)^k)_{k\in\mathbb{N}}$ is finitary
- $X \mapsto X^{\mathbb{N}}$ is **not** finitary
- a linear polynomial is always finitary

э

A model of linear logic ??

A finite set E is characterized by its cardinality $\#E \in \mathbb{N}$. Do we now have

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

4 0 F ∢母 → < 3

 \triangleright \rightarrow \exists \rightarrow

э

A model of linear logic ??

A finite set E is characterized by its cardinality $\#E \in \mathbb{N}$. Do we now have

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

• Poly $_{\text{Fin}}$ and Span are (2, 1)-categories

 \leftarrow

 \triangleright \rightarrow \exists \rightarrow

э

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

- Poly $_{\text{Fin}}$ and Span are $(2, 1)$ -categories
- So $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1})$ and $\text{Span}(\mathbb{N}, \mathbb{1})$ are groupoids.

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

- Poly $_{\text{Fin}}$ and Span are $(2, 1)$ -categories
- So $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1})$ and $\text{Span}(\mathbb{N}, \mathbb{1})$ are groupoids.
- Isomorphism classes are in bijection, but not an equivalence of groupoids :

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

- Poly $_{\text{Fin}}$ and Span are (2, 1)-categories
- So $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1})$ and $\text{Span}(\mathbb{N}, \mathbb{1})$ are groupoids.
- Isomorphism classes are in bijection, but not an equivalence of groupoids :
- $P(X) = X \times X$ has a non trivial automorphism $(a, b) \mapsto (b, a)$

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

- Poly $_{\text{Fin}}$ and Span are (2, 1)-categories
- So $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1})$ and $\text{Span}(\mathbb{N}, \mathbb{1})$ are groupoids.
- Isomorphism classes are in bijection, but not an equivalence of groupoids :
- $P(X) = X \times X$ has a non trivial automorphism $(a, b) \mapsto (b, a)$
- the corresponding span $\mathbb{N}^{\frac{2 \leftarrow +}{\leftarrow}}\mathbb{1} \to \mathbb{1}$ doesn't have any

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\mathbb{N}, \mathbb{1})$?

- Poly $_{\text{Fin}}$ and Span are $(2, 1)$ -categories
- So $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1})$ and $\text{Span}(\mathbb{N}, \mathbb{1})$ are groupoids.
- Isomorphism classes are in bijection, but not an equivalence of groupoids :
- $P(X) = X \times X$ has a non trivial automorphism $(a, b) \mapsto (b, a)$
- the corresponding span $\mathbb{N}^{\frac{2 \leftarrow +}{\leftarrow}}\mathbb{1} \to \mathbb{1}$ doesn't have any
- \bullet Need to replace $\mathbb N$ by the groupoid Fin of finite sets and bijections.

Already observed by Finster et. al. that groupoids are necessary for a cartesian closure of polynomials.

Here we reach the same observation.

Already observed by Finster et. al. that groupoids are necessary for a cartesian closure of polynomials.

Here we reach the same observation.

 \bullet However not easy to work with groupoids : not even a LCC category...

Already observed by Finster et. al. that groupoids are necessary for a cartesian closure of polynomials.

Here we reach the same observation.

- \bullet However not easy to work with groupoids : not even a LCC category...
- but it is LCC up to homotopy !

Already observed by Finster et. al. that groupoids are necessary for a cartesian closure of polynomials.

Here we reach the same observation.

- \bullet However not easy to work with groupoids : not even a LCC category...
- but it is LCC up to homotopy !

Working homotopically is essential : composition of spans of groupoids needs to be done by homotopy pullback.

Working homotopically can be cumbersome in set theory, hence we work in **Homotopy Type** Theory :

• An extension of Martin Löf type theory,

- 4 E

4 **D F**

 \triangleright \rightarrow \exists \rightarrow

G.

Working homotopically can be cumbersome in set theory, hence we work in **Homotopy Type** Theory :

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of homotopy theory

Working homotopically can be cumbersome in set theory, hence we work in **Homotopy Type** Theory :

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- all maps between types are automatically functorial

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- all maps between types are automatically functorial
- all constructions inside HoTT are automatically **homotopy invariant** :

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- all maps between types are automatically functorial
- all constructions inside HoTT are automatically **homotopy invariant** :
	- \bullet quotients are homotopy quotients : they add homotopies instead of equating elements

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- all maps between types are automatically functorial
- all constructions inside HoTT are automatically **homotopy invariant** :
	- \bullet quotients are homotopy quotients : they add homotopies instead of equating elements
	- Σ-types are Grothendieck constructions

- An extension of Martin Löf type theory,
- types are thought of as spaces, in the sense of **homotopy theory**
- e.g. sets are types, groupoids are types, higher groupoids are types. . .
- all maps between types are automatically functorial
- all constructions inside HoTT are automatically **homotopy invariant** :
	- \bullet quotients are homotopy quotients : they add homotopies instead of equating elements
	- Σ-types are Grothendieck constructions
	- \bullet fibers are homotopy fibers, pullbacks are homotopy pullbacks...

Spans and polynomials in HoTT

- Polynomials and spans in HoTT : same as before, but replace "set" with "type".
- A polynomial is **finitary** if the E_b 's are finite **sets** (seen as types).
- Write Fin for the type of finite sets and bijections.

 $\text{Poly}_{\text{Fin}}(\mathbb{1}, \mathbb{1}) \simeq \text{Span}(\text{Fin}, \mathbb{1})$

so $11 \sim$ Fin.

Spans and polynomials in HoTT

- Polynomials and spans in HoTT : same as before, but replace "set" with "type".
- A polynomial is **finitary** if the E_b 's are finite sets (seen as types).
- Write Fin for the type of finite sets and bijections.

$$
\text{Poly}_{\mathrm{Fin}}(\mathbb{1},\mathbb{1})\simeq\text{Span}(\mathrm{Fin},\mathbb{1})
$$

so $11 \sim$ Fin.

More generally, define $!I :=$ finite sets colored by I, i.e.

$$
!I \simeq \sum_{E:\text{Fin}} (E \to I)
$$

Theorem

$$
\text{Poly}_{\mathrm{Fin}}(I,J)\simeq \text{Span}(!I,J)
$$

Elies Harington **[Polynomials in Homotopy Type Theory](#page-0-0)** 21st of juneMFPS 2024 14/22

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

∍

 299

4 0 8

$$
I \xleftarrow{\mathbf{S}} E \xrightarrow{\mathbf{P}} B \xrightarrow{\mathbf{t}} J
$$

\n
$$
\text{Poly}_{\text{Fin}}(I, J) = \sum_{E:\mathcal{U}} \sum_{B:\mathcal{U}} (E \rightarrow I) \times (E \rightarrow_{\text{Fin}} B) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:\mathcal{U}} \left(\sum_{E:\mathcal{U}} (E \rightarrow_{\text{Fin}} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:\mathcal{U}} \left(\sum_{F:B \rightarrow \text{Fin}} ((\sum_{b:B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:\mathcal{U}} (B \rightarrow \sum_{F:\text{Fin}} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:\mathcal{U}} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= \text{Span}(II, J)
$$

 2990

$$
I \xleftarrow{\mathbf{S}} E \xrightarrow{\mathbf{P}} B \xrightarrow{\mathbf{t}} J
$$

\n
$$
\text{Poly}_{\text{Fin}}(I, J) = \sum_{E:U} \sum_{B:U} (E \rightarrow I) \times (E \rightarrow_{\text{Fin}} B) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{E:U} (E \rightarrow_{\text{Fin}} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{F: B \rightarrow \text{Fin}} ((\sum_{b: B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow \sum_{F: \text{Fin}} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= \text{Span}(H, J)
$$

 2990

$$
I \xleftarrow{\mathbf{S}} E \xrightarrow{\mathbf{P}} B \xrightarrow{\mathbf{t}} J
$$

\n
$$
\text{Poly}_{\text{Fin}}(I, J) = \sum_{E:U} \sum_{B:U} (E \rightarrow I) \times (E \rightarrow_{\text{Fin}} B) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{E:U} (E \rightarrow_{\text{Fin}} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{F: B \rightarrow \text{Fin}} ((\sum_{b: B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow \sum_{F: \text{Fin}} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= \text{Span}(H, J)
$$

 2990

重

$$
I \xleftarrow{s} E \xrightarrow{P} B \xrightarrow{t} J
$$

\nPoly_{Fin}(*I*, *J*) = $\sum_{E \mathcal{U}} \sum_{B \mathcal{U}} (E \rightarrow I) \times (E \rightarrow_{Fin} B) \times (B \rightarrow J)$
\n≈ $\sum_{B \mathcal{U}} (\sum_{E \mathcal{U}} (E \rightarrow_{Fin} B) \times (E \rightarrow I)) \times (B \rightarrow J)$
\n≈ $\sum_{B \mathcal{U}} (\sum_{F:B \rightarrow Fin} ((\sum_{b:B} F(b)) \rightarrow I)) \times (B \rightarrow J)$
\n≈ $\sum_{B \mathcal{U}} (B \rightarrow \sum_{F:Ein} (F \rightarrow I)) \times (B \rightarrow J)$
\n≈ $\sum_{B \mathcal{U}} (B \rightarrow II) \times (B \rightarrow J)$
\n= Span(II, J)

重

$$
I \xleftarrow{\mathbf{s}} E \xrightarrow{\rho} B \xrightarrow{t} J
$$

\n**Poly**_{Fin} $(I, J) = \sum_{E:U} \sum_{B:U} (E \rightarrow I) \times (E \rightarrow_{Fin} B) \times (B \rightarrow J)$
\n
$$
\simeq \sum_{B:U} \left(\sum_{E:U} (E \rightarrow_{Fin} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{F: B \rightarrow Fin} ((\sum_{b:B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow \sum_{F:Fin} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= Span(II, J)
$$

$$
I \xleftarrow{s} E \xrightarrow{P} B \xrightarrow{t} J
$$

\n**Poly**_{Fin} $(I, J) = \sum_{E:U} \sum_{B:U} (E \rightarrow I) \times (E \rightarrow_{Fin} B) \times (B \rightarrow J)$
\n
$$
\simeq \sum_{B:U} \left(\sum_{E:U} (E \rightarrow_{Fin} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{F: B \rightarrow Fin} ((\sum_{b:B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow \sum_{F:Fin} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= Span(I, J)
$$

 2990

$$
I \xleftarrow{s} E \xrightarrow{P} B \xrightarrow{t} J
$$

\nPoly_{Fin} $(I, J) = \sum_{E:U} \sum_{B:U} (E \rightarrow I) \times (E \rightarrow_{Fin} B) \times (B \rightarrow J)$
\n
$$
\simeq \sum_{B:U} \left(\sum_{E:U} (E \rightarrow_{Fin} B) \times (E \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} \left(\sum_{F: B \rightarrow Fin} ((\sum_{b:B} F(b)) \rightarrow I) \right) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow \sum_{F:Fin} (F \rightarrow I)) \times (B \rightarrow J)
$$

\n
$$
\simeq \sum_{B:U} (B \rightarrow II) \times (B \rightarrow J)
$$

\n
$$
= \text{Span}(1, J)
$$

A parenthesis : higher categorical coherences

• Switching from sets to groupoids makes Poly and Span into 3-categories.

 \leftarrow

∍

- Switching from sets to groupoids makes Poly and Span into 3-categories.
- Going to arbitrary types, we get an ∞ -category : associativity and unitality up to isomorphisms, themselves satisfying coherence laws, etc.

- Switching from sets to groupoids makes **Poly** and **Span** into 3-categories.
- Going to arbitrary types, we get an ∞ -category : associativity and unitality up to isomorphisms, themselves satisfying coherence laws, etc.
- We cannot state or prove those infinite **homotopy coherence laws** in HoTT, so we work with wild categories.

- Switching from sets to groupoids makes **Poly** and **Span** into 3-categories.
- Going to arbitrary types, we get an ∞ -category : associativity and unitality up to isomorphisms, themselves satisfying coherence laws, etc.
- We cannot state or prove those infinite **homotopy coherence laws** in HoTT, so we work with **wild categories**.
- Wild categories have the standard definition of categories, but with sets replaced by types.

- Switching from sets to groupoids makes **Poly** and **Span** into 3-categories.
- Going to arbitrary types, we get an ∞ -category : associativity and unitality up to isomorphisms, themselves satisfying coherence laws, etc.
- We cannot state or prove those infinite **homotopy coherence laws** in HoTT, so we work with **wild categories**.
- Wild categories have the standard definition of categories, but with sets replaced by types.
- No pentagon or triangle isomorphisms required of the associators and unitors.
- Switching from sets to groupoids makes **Poly** and **Span** into 3-categories.
- Going to arbitrary types, we get an ∞ -category : associativity and unitality up to isomorphisms, themselves satisfying coherence laws, etc.
- We cannot state or prove those infinite **homotopy coherence laws** in HoTT, so we work with **wild categories**.
- Wild categories have the standard definition of categories, but with sets replaced by types.
- No pentagon or triangle isomorphisms required of the associators and unitors.

Remark

Not all coherences can be stated in HoTT, but some can be proven meta-theoretically. For instance, we can prove a wild category has cartesian products, and know meta-theoretically that the induced monoidal structure is homotopy coherent.

Proposition

! defines a comonad on the wild category of spans of types.

 \leftarrow

∍

Proposition

! defines a comonad on the wild category of spans of types.

Theorem

The Kleisli category $\mathsf{Span}_!$ is equivalent to $\mathsf{Poly}_{\mathrm{Fin}}.$

 \leftarrow

Proposition

! defines a comonad on the wild category of spans of types.

Theorem

The Kleisli category $\mathsf{Span}_!$ is equivalent to $\mathsf{Poly}_{\mathrm{Fin}}.$

Theorem

(Span, !) has a compatible symmetric monoidal structure, making it a Seely category (model of intuitionistic linear logic).

It is moreover compact closed, hence *-autonomous, i.e. a model of full classical linear logic.

Proposition

! defines a comonad on the wild category of spans of types.

Theorem

The Kleisli category $\mathsf{Span}_!$ is equivalent to $\mathsf{Poly}_{\mathrm{Fin}}.$

Theorem

(Span, !) has a compatible symmetric monoidal structure, making it a Seely category (model of intuitionistic linear logic).

It is moreover compact closed, hence *-autonomous, i.e. a model of full classical linear logic.

Corollary

Since (Span, !) is monoidal closed, Poly_{Fin} is cartesian closed.

Variations on size

We had to restrict to finitary polynomials.

Actually, any suitable notion of "small" gives smallary polynomials, with results analogous to everything before.

Given a universe of "big types" U and $V: U$ a universe of "small types" closed under suitable constructions :

- a polynomial is V-ary if the E_b 's are equivalent to types in V
- define $!_{\mathcal{V}} I := \sum_{E:\mathcal{V}} (E \to I)$

GB 11 2980

Variations on size

We had to restrict to finitary polynomials.

Actually, any suitable notion of "small" gives smallary polynomials, with results analogous to everything before.

Given a universe of "big types" U and $V: U$ a universe of "small types" closed under suitable constructions :

- a polynomial is V-ary if the E_b 's are equivalent to types in V
- define $!_{\mathcal{V}} I := \sum_{E:\mathcal{V}} (E \to I)$

Theorem

 $\text{Poly}_{\mathcal{V}}(I,J)\simeq \text{Span}(\exists_{\mathcal{V}}I,J)$

and we get a model of classical linear logic.

- $\triangleright \mathcal{V} = \text{Fin}, \mathcal{U} = \text{groupoids}$
- $\bullet \mathcal{V} =$ Set, $\mathcal{U} =$ large groupoids
- \bullet $V =$ groupoids, $U =$ all types

▶ 제품 ▶ 제품 ▶ 그룹 → ⊙ Q ⊙

 $(E, e) \longmapsto E$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 9 Q @

$$
Fin_* \xrightarrow{\quad p \quad \text{Fin}
$$

$$
(E,e)\longmapsto E
$$

Given E : Fin , $\rho^{-1}(E) \simeq E$

重

 299

4日下 ∢母

$$
Fin_* \xrightarrow{\quad p \quad \text{Fin}
$$

$$
(E,e)\longmapsto E
$$

- Given E : Fin , $\rho^{-1}(E) \simeq E$
- Induced polynomial : $\mathcal{F}(X) = \sum_{E:\operatorname{Fin}} X^E$
- \bullet This exactly the definition F_{Fin} : the comonad is itself a polynomial functor.

G.

$$
\mathbb{N} \longrightarrow \sum_{n:\mathbb{N}} B(\mathbb{Z}/n\mathbb{Z})
$$

$$
n \longmapsto (n, \star)
$$

重

 299

イロメス 倒す スミメス ミメー

$$
\mathbb{N} \xrightarrow{\quad p \quad} \sum_{n:\mathbb{N}} B(\mathbb{Z}/n\mathbb{Z})
$$

$$
n \longmapsto (n,*)
$$

• $B(\mathbb{Z}/n\mathbb{Z})$ is the groupoid with one point and $\mathbb{Z}/n\mathbb{Z}$ as automorphisms

→ 4 E

 \rightarrow \rightarrow \rightarrow \rightarrow

э

 299

不自下

$$
\mathbb{N} \xrightarrow{\quad p \quad} \sum_{n:\mathbb{N}} B(\mathbb{Z}/n\mathbb{Z})
$$

$$
n \longmapsto (n,*)
$$

• $B(\mathbb{Z}/n\mathbb{Z})$ is the groupoid with one point and $\mathbb{Z}/n\mathbb{Z}$ as automorphisms $p^{-1}((n, \star)) \simeq \mathbb{Z}/n\mathbb{Z}$

G.

 299

4日下

∢母

$$
\mathbb{N} \xrightarrow{\quad p \quad} \sum_{n:\mathbb{N}} B(\mathbb{Z}/n\mathbb{Z})
$$

$$
n \longmapsto (n,*)
$$

- $B(\mathbb{Z}/n\mathbb{Z})$ is the groupoid with one point and $\mathbb{Z}/n\mathbb{Z}$ as automorphisms
- $p^{-1}((n, \star)) \simeq \mathbb{Z}/n\mathbb{Z}$
- Induced polynomial : $F(X) = \sum_{n: \mathbb{N}} X^n / \mathbb{Z}/n\mathbb{Z}$
- \bullet The type of cyclic lists over X
- Generally, summing over groupoids amounts to quotienting the summand

医尿囊下列

G.

Examples of higher polynomials - The Hopf Fibration

 $\mathbf{A} \rightarrow \mathbf{B}$

 \leftarrow

э

Examples of higher polynomials - The Hopf Fibration

$$
S^3 \xrightarrow{H} S^2
$$

•
$$
||H^{-1}(x) \simeq S^1||_{-1}
$$
 but $(\sum_{x:S^2} H^{-1}(x)) \simeq S^3 \not\approx S^2 \times S^1$

 \sim

 \rightarrow \equiv

∍

 299

 \leftarrow

Examples of higher polynomials - The Hopf Fibration

$$
S^3 \xrightarrow{H} S^2
$$

•
$$
||H^{-1}(x) \simeq S^1||_{-1}
$$
 but $(\sum_{x:S^2} H^{-1}(x)) \simeq S^3 \not\approx S^2 \times S^1$
• $F(X) = \sum_{x:S^2} X^{H^{-1}(x)}$.

 \rightarrow \equiv

 \sim

 \leftarrow

∍

- $S^3 \xrightarrow{H} S^2$
- $||H^{-1}(x) \simeq S^1||_{-1}$ but $(\sum_{x:S^2} H^{-1}(x)) \simeq S^3 \not\simeq S^2 \times S^1$
- $F(X) = \sum_{x: S^2} X^{H^{-1}(x)}$.
- This locally looks like $S^2 \times X^{S^1}$, but in a globally twisted way.

- $S^3 \xrightarrow{H} S^2$
- $||H^{-1}(x) \simeq S^1||_{-1}$ but $(\sum_{x:S^2} H^{-1}(x)) \simeq S^3 \not\simeq S^2 \times S^1$
- $F(X) = \sum_{x: S^2} X^{H^{-1}(x)}$.
- This locally looks like $S^2 \times X^{S^1}$, but in a globally twisted way.
- If you have any idea what this represents, please reach out !

 \leftarrow

∍

 298

• Differential structure?

 \leftarrow

∍

- Differential structure?
- Exploring other potential homotopically-flavoured models of linear logic: spectra? stable ∞-categories?

 298

- Differential structure?
- Exploring other potential homotopically-flavoured models of linear logic: spectra? stable ∞-categories?
- Comparison with other span-based models of linear logic by Mellies, Clairambault, Forest

- Differential structure?
- Exploring other potential homotopically-flavoured models of linear logic: spectra? stable ∞-categories?
- Comparison with other span-based models of linear logic by Mellies, Clairambault, Forest
- Comparison with generalized species of structure (Fiore, Gambino, Galal, Hyland, Paquet, Winskel)