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Overview

1988 : Normal functors, power series and λ-calculus - Jean-Yves Girard

Normal functors form a 2-category, cartesian closed but not 2-cartesian closed.

MFPS 2021 : A Cartesian Bicategory of Polynomial Functors in Homotopy Type Theory
(Finster, Mimram, Lucas, Seiller).

Our contribution : polynomial functors in types form a model of linear logic.

Linear logic : “(A =⇒ B) ≃ (!A ⊸ B)”
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Polynomials in sets

A polynomial in sets is an expression

P(X ) =
∑
b∈B

XEb

where B is a set and (Eb)b∈B a family of sets indexed by B.

No coefficients, but repetitions allowed :

3× X2 = X2 ⊔ X2 ⊔ X2
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Polynomials in sets

(B, (Eb)b∈B) ⇐⇒ (E → B)

so the data of a polynomial P can be encoded as a map of sets

E B
p

b ∈ B represents a monomial

Eb := p−1(b) is the exponent of the monomial b

It induces a polynomial functor

Set → Set

X 7→
∑
b∈B

XEb
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Example

E B

•
• •
• •

•

p

Induced functor:

Set → Set

X 7→ X 2 ⊔ X ⊔ 1
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Polynomials with sorts/colors

{x , y} E B {0, 1}

• •

x • •

y • • •

• •

s p t

Set{x ,y} → Set{0,1}

(X ,Y ) 7→ (XY ,X + Y )
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Composition of polynomials

Generally, a diagram of sets

I E B Js p t

induces a polynomial functor
P : SetI → SetJ

If P : SetI → SetJ and Q : SetJ → SetK are polynomial, so is Q ◦ P.
Composition can already be defined at the level of diagrams, but it’s only
associative/unital up to isomorphism.

Polynomials in sets thus form a (2,1)-category.
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Linear polynomials: spans

A polynomial P(X ) =
∑

b∈B XEb is linear when Eb is a singleton for all b.

In diagram form, this means p : E → B is an isomorphism.

Up to isomorphism of polynomials, we can take p = idB , so linear polynomials correspond
to spans

I B J ⇐⇒ I B B Js t s idB t

And they compose via pullbacks

B ×J C

B C

I J K

⌟

s t s′ t′
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A model of linear logic ?

Spans are linear polynomials. To get a model of LL, we would like

(A =⇒ B) ≃ (!A ⊸ B)

Poly(I , J) ≃ Span(!I , J)

for a suitable functor ! : Span → Span.

A polynomial functor P : Set → Set is determined by B : Set,E(−) : B → Set, so by a span

Set B 1
E(−)

This suggests !(1) ≃ Set, but there is not set of all sets.

So we restrict the size of the sets Eb.
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Finitary polynomials

A polynomial is finitary if the Eb’s in its definition are finite sets.
Notation : PolyFin(I , J)

Examples:

X 7→ X 3 + X + 1 is finitary

X 7→ N× X is finitary

(Xk)k∈N 7→ ((Xk)
k)k∈N is finitary

X 7→ XN is not finitary

a linear polynomial is always finitary
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A model of linear logic ??

A finite set E is characterized by its cardinality #E ∈ N. Do we now have

PolyFin(1,1) ≃ Span(N,1) ?

PolyFin and Span are (2, 1)-categories

So PolyFin(1,1) and Span(N,1) are groupoids.

Isomorphism classes are in bijection, but not an equivalence of groupoids :

P(X ) = X × X has a non trivial automorphism (a, b) 7→ (b, a)

the corresponding span N 1 1
2← [∗ doesn’t have any

Need to replace N by the groupoid Fin of finite sets and bijections.
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Polynomials in groupoids

Already observed by Finster et. al. that groupoids are necessary for a cartesian closure of
polynomials.
Here we reach the same observation.

However not easy to work with groupoids : not even a LCC category. . .

but it is LCC up to homotopy !

Working homotopically is essential : composition of spans of groupoids needs to be done by
homotopy pullback.

Z

X Y

I J K

⌟

≃
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Homotopy Type Theory

Working homotopically can be cumbersome in set theory, hence we work in Homotopy Type
Theory :

An extension of Martin Löf type theory,

types are thought of as spaces, in the sense of homotopy theory

e.g. sets are types, groupoids are types, higher groupoids are types. . .

all maps between types are automatically functorial

all constructions inside HoTT are automatically homotopy invariant :

quotients are homotopy quotients : they add homotopies instead of equating elements
Σ-types are Grothendieck constructions
fibers are homotopy fibers, pullbacks are homotopy pullbacks. . .
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Spans and polynomials in HoTT

Polynomials and spans in HoTT : same as before, but replace “set” with “type”.

A polynomial is finitary if the Eb’s are finite sets (seen as types).

Write Fin for the type of finite sets and bijections.

PolyFin(1,1) ≃ Span(Fin,1)

so !1 ≃ Fin.

More generally, define !I := finite sets colored by I , i.e.

!I ≃
∑
E :Fin

(E → I )

Theorem

PolyFin(I , J) ≃ Span(!I , J)
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Idea of proof

I E B Js p t

PolyFin(I , J) =
∑
E :U

∑
B:U

(E → I )× (E →Fin B)× (B → J)

≃
∑
B:U

(∑
E :U

(E →Fin B)× (E → I )
)
× (B → J)

≃
∑
B:U

( ∑
F :B→Fin

(
(Σb:BF (b)) → I

))
× (B → J)

≃
∑
B:U

(
B →

∑
F :Fin

(F → I )
)
× (B → J)

≃
∑
B:U

(B →!I )× (B → J)

= Span(!I , J)
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A parenthesis : higher categorical coherences

Switching from sets to groupoids makes Poly and Span into 3-categories.

Going to arbitrary types, we get an ∞-category : associativity and unitality up to
isomorphisms, themselves satisfying coherence laws, etc.

We cannot state or prove those infinite homotopy coherence laws in HoTT, so we work
with wild categories.

Wild categories have the standard definition of categories, but with sets replaced by types.

No pentagon or triangle isomorphisms required of the associators and unitors.

Remark

Not all coherences can be stated in HoTT, but some can be proven meta-theoretically. For
instance, we can prove a wild category has cartesian products, and know meta-theoretically
that the induced monoidal structure is homotopy coherent.
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A full model of classical linear logic

Proposition

! defines a comonad on the wild category of spans of types.

Theorem

The Kleisli category Span! is equivalent to PolyFin.

Theorem

(Span, !) has a compatible symmetric monoidal structure, making it a Seely category (model
of intuitionistic linear logic).
It is moreover compact closed, hence ⋆-autonomous, i.e. a model of full classical linear logic.

Corollary

Since (Span, !) is monoidal closed, PolyFin is cartesian closed.
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Variations on size

We had to restrict to finitary polynomials.
Actually, any suitable notion of “small” gives smallary polynomials, with results analogous to
everything before.
Given a universe of “big types” U and V : U a universe of “small types” closed under suitable
constructions :

a polynomial is V-ary if the Eb’s are equivalent to types in V
define !V I :=

∑
E :V(E → I )

Theorem

PolyV(I , J) ≃ Span(!V I , J)

and we get a model of classical linear logic.

V = Fin, U = groupoids

V = Set, U = large groupoids

V = groupoids, U = all types
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Examples of higher polynomials - 1

Fin∗ Fin

(E , e) E

p

Given E : Fin, p−1(E ) ≃ E

Induced polynomial : F (X ) =
∑

E :Fin X
E

This exactly the definition !Fin : the comonad is itself a polynomial functor.
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Examples of higher polynomials - 2

N
∑

n:N B(Z/nZ)

n (n, ⋆)

p

B(Z/nZ) is the groupoid with one point and Z/nZ as automorphisms

p−1((n, ⋆)) ≃ Z/nZ
Induced polynomial : F (X ) =

∑
n:N X n//(Z/nZ)

The type of cyclic lists over X

Generally, summing over groupoids amounts to quotienting the summand
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Examples of higher polynomials - The Hopf Fibration

S3 S2H

∥∥H−1(x) ≃ S1
∥∥
−1 but (

∑
x :S2 H−1(x)) ≃ S3 ̸≃ S2 × S1

F (X ) =
∑

x :S2 XH−1(x).

This locally looks like S2×X S1
, but in a globally twisted way.

If you have any idea what this represents, please reach out !
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Conclusion/future work

We arranged the usual notions of spans and polynomials into a model of linear logic, using
ideas from homotopy type theory. What next?

Differential structure?

Exploring other potential homotopically-flavoured models of linear logic:
spectra? stable ∞-categories?

Comparison with other span-based models of linear logic by Mellies, Clairambault, Forest

Comparison with generalized species of structure (Fiore, Gambino, Galal, Hyland, Paquet,
Winskel)
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