Categorical Decision Theory

Marcus Pivato
Centre d'Économie de la Sorbonne
Université Paris 1 Panthéon-Sorbonne

7th International Conference on Applied Category Theory University of Oxford June 2024

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty.

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
\qquad

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory Question. Ansmar Question.

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.
Question.
Answer.
Question.
Answer.
procedure that satisfies certain axioms of
Question.

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer
Question.
Answer
procedure that satisfies certain axioms of
Question.

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.
\qquad

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer. (Bernoulli, 1738) Choose actions that maximize expected utility. Question. But why?

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality? This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.
Question. But why?
Answer. (von Neumann \& Morgenstern, 1948) When choosing between lotteries (with objective, known probabilities), EU-maximization is the only procedure that satisfies certain axioms of "rationality" or "consistency".

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality? This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.
Question. But why?
Answer. (von Neumann \& Morgenstern, 1948) When choosing between lotteries (with objective, known probabilities), EU-maximization is the only procedure that satisfies certain axioms of "rationality" or "consistency".
Question. What about a situation without objective, known probabilities?

Normative Decision Theory

Decision theory studies decision-making in situations of risk or uncertainty. There are two branches: normative and descriptive.

- Normative DT: how should an "ideal rational agent" make decisions?
- Descriptive DT: how do actual human beings make decisions in reality? This talk is about normative decision theory.
Question. How should a rational agent make decisions in a risky situation?
Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.
Question. But why?
Answer. (von Neumann \& Morgenstern, 1948) When choosing between lotteries (with objective, known probabilities), EU-maximization is the only procedure that satisfies certain axioms of "rationality" or "consistency".
Question. What about a situation without objective, known probabilities?
Answer. (Savage, 1954) The agent should contrive some "subjective" probability distribution, and maximize EU with respect to this.

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".

\qquad
\qquad

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown. \mathcal{S} represents all the information that is unknown to the agent.

There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles) These are the things the agent ultimately cares about Each a'ternative deffines a function $\alpha: S \longrightarrow \because$, called an act If the agent chooses the act α, and the true state of nature turns out to be Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts. Let \succcurlyeq be a weak order (a complete, transitive relation) on \mathcal{X}
\qquad

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown.
\mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.

Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act If the agent chooses the act α, and the true state of nature turns out to be s, then she will obtain the outcome Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts. Let \succcurlyeq be a weak order (a complete, transitive relation) on \mathcal{X}
\qquad

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown.
\mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.
- Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
\qquad to be s, then she will obtain the outcome Let $v \mathcal{S}$ be the set of all logically possible acts. Let \succcurlyeq be a weak order (a complete, transitive relation) on \mathcal{X}
\qquad

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown.
\mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.
- Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
- If the agent chooses the act α, and the true state of nature turns out to be s, then she will obtain the outcome $\alpha(s)$.
be the set of all logically possible acts. Let \succcurlyeq be a weak order (a complete, transitive relation) on \mathcal{X}
\qquad

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown. \mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.
- Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
- If the agent chooses the act α, and the true state of nature turns out to be s, then she will obtain the outcome $\alpha(s)$.
- Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown. \mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.
- Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
- If the agent chooses the act α, and the true state of nature turns out to be s, then she will obtain the outcome $\alpha(s)$.
- Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
- Let \succcurlyeq be a weak order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.

The Savage Framework

Savage proposed the following model of decision-making under uncertainty.

- There is a set \mathcal{S} of possible "states of nature".
- The true state is unknown. \mathcal{S} represents all the information that is unknown to the agent.
- There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.
- Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
- If the agent chooses the act α, and the true state of nature turns out to be s, then she will obtain the outcome $\alpha(s)$.
- Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
- Let \succcurlyeq be a weak order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
- For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succcurlyeq \beta^{\prime}$ " means, "The agent prefers α over β, ex ante."

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality").

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure μ on \mathcal{S},

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure μ on \mathcal{S}, which provide a subjective expected utility (SEU) representation for \succcurlyeq.

In other words, given any acts $\alpha, \beta \in \mathcal{X}^{S}$, we have Heuristically, u describes the agent's desires concerning outcomes in \mathcal{X} Meanwhile, μ describes her beliefs about states in \mathcal{S}

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure μ on \mathcal{S},
which provide a subjective expected utility (SEU) representation for \succcurlyeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
\left.(\alpha \succcurlyeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu \geq \int_{\mathcal{S}} u \circ \beta \mathrm{~d} \mu\right)\right) .
$$

Heuristically, u describes the agent's desires concerning outcomes in \mathcal{X} Meanwhile, μ describes her beliefs about states in \mathcal{S}.

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure μ on \mathcal{S},
which provide a subjective expected utility (SEU) representation for \succcurlyeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
\left.(\alpha \succcurlyeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu \geq \int_{\mathcal{S}} u \circ \beta \mathrm{~d} \mu\right)\right) .
$$

Heuristically, u describes the agent's desires concerning outcomes in \mathcal{X}.

Savage's Theorem

Savage's Theorem. Suppose \succcurlyeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $u: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure μ on \mathcal{S},
which provide a subjective expected utility (SEU) representation for \succcurlyeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
\left.(\alpha \succcurlyeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu \geq \int_{\mathcal{S}} u \circ \beta \mathrm{~d} \mu\right)\right) .
$$

Heuristically, u describes the agent's desires concerning outcomes in \mathcal{X}.

Meanwhile, μ describes her beliefs about states in \mathcal{S}.

Desiderata I

There are several ways that we want to extend Savage's framework. Let's start with two.

Endow state space and outcome space with additional structure (e.g topology or geometry), and require acts to respect this structure. Analyse decision problems without explicitly describing the state space and outcome space.

Desiderata I

There are several ways that we want to extend Savage's framework. Let's start with two.

- Endow state space and outcome space with additional structure (e.g. topology or geometry), and require acts to respect this structure.

Analyse decision problems without explicitly describing the state space

and outcome space.

Desiderata I

There are several ways that we want to extend Savage's framework. Let's start with two.

- Endow state space and outcome space with additional structure (e.g. topology or geometry), and require acts to respect this structure.
- Analyse decision problems without explicitly describing the state space and outcome space.

Desiderata I

There are several ways that we want to extend Savage's framework. Let's start with two.

- Endow state space and outcome space with additional structure (e.g. topology or geometry), and require acts to respect this structure.
- Analyse decision problems without explicitly describing the state space and outcome space.

Idea. Reformulate Savage model using the tools of category theory, to obtain a model which satisfies these desiderata.

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects. For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}. A functor from \mathcal{C} to another category \mathcal{D} is is indicated " $\bar{F}: \mathcal{C} \models \mathcal{D}$. If $G: \mathcal{C} \models \mathcal{D}$ is another functor, then a natural transformation from F to G is indicated

For simplicity, this talk focuses on the category Set (sets \& functions) But the theory also annlies to concrete categories like Meas (measurable spaces \& measurable functions), Top (topological spaces \& continuous maps), and Diff (differentiable manifolds \& smooth maps), and also to abstract categories.

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.
For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}.

For simplicity, this talk focuses on the category Set (sets \& functions)But the theory also annlies to concrete catemories like Meac (measurab) spaces \& measurable functions), Top (topological spaces \& continuous maps), and Diff (differentiable manifolds \& smooth maps), and also to abstract categories.

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.
For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}.
A functor from \mathcal{C} to another category \mathcal{D} is is indicated " $F: \mathcal{C} \Longleftrightarrow \mathcal{D}$."

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.
For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}.
A functor from \mathcal{C} to another category \mathcal{D} is is indicated " $F: \mathcal{C} \Longleftrightarrow \mathcal{D}$."
If $G: \mathcal{C} \models \mathcal{D}$ is another functor, then a natural transformation from F to G is indicated " $\Phi: F \Longrightarrow G$."

For simplicity, this talk focuses on the category Set (sets \& functions)
But the theory also annlies to concrete categories like Meas (measurable spaces \& measurable functions), Top (topological spaces \& continuous maps), and Diff (differentiable manifolds \& smooth maps), and also to

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.
For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}.
A functor from \mathcal{C} to another category \mathcal{D} is is indicated " $F: \mathcal{C} \Longleftrightarrow \mathcal{D}$."
If $G: \mathcal{C} \models \mathcal{D}$ is another functor, then a natural transformation from F to G is indicated " $\Phi: F \Longrightarrow G$."

For simplicity, this talk focuses on the category Set (sets \& functions).
\square
\qquad

Notation

We will use the following notational conventions.
If \mathcal{C} is a category, then \mathcal{C}° denotes its set of objects.
For any objects $\mathcal{A}, \mathcal{B} \in \mathcal{C}^{\circ}, \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is the set of \mathcal{C}-morphisms from \mathcal{A} to \mathcal{B}.
A functor from \mathcal{C} to another category \mathcal{D} is is indicated " $F: \mathcal{C} \Longleftrightarrow \mathcal{D}$."
If $G: \mathcal{C} \models \mathcal{D}$ is another functor, then a natural transformation from F to G is indicated " $\Phi: F \Longrightarrow G$."

For simplicity, this talk focuses on the category Set (sets \& functions).
But the theory also applies to concrete categories like Meas (measurable spaces \& measurable functions), Top (topological spaces \& continuous maps), and Diff (differentiable manifolds \& smooth maps), and also to abstract categories.

Part I

Local SEU representations

Goal

Let \mathcal{C} be a category.
Interpretation:

- $\mathcal{S}=$ abstract "state space";
- X - ahstract "outcome snace"
$\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts"
Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \ni
Problem. In an abstract category \mathcal{C}, what would this even mean?
Objects in \mathcal{C}° do not necessarily have underlying sets. So we cannot represent beliefs by probability measures.
Likewise, elements of $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.
Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}°
So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects.

Interpretation:

- $\mathcal{S}=$ abstract "state space"; - $\mathcal{V}=$ abstract "outcome space" $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts" Let i be a preference order on $\vec{C}(\mathcal{S}, \mathcal{N})$ Goal. Find a "subjective expected utility representation" for \succcurlyeq. Droblam. In an abstract category C, what would this aven mean? Objects in \mathcal{C}° do not necessarily have underlying sets. So we cannot represent beliefs by probability measures. Likewise, elements of $\vec{C}(\mathcal{S}, \mathcal{X})$ are not necessarily functions. Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}° So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ with in \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.Goal. Find a "subiective expected utility representation" for $ऋ$ Problem. In an abstract category \mathcal{C}, what would this even mean?
\square
Objects in C^{0} do not necessarily have underlying sets
So we cannot represent beliefs by probability measures.
\square
Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}
So we can't define a "utilitv function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within C

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects.
Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Goal. Find a "subjective expected utility representation" for
nuoblems. In an abstract category C, what would this even mean?
Objects in \mathcal{C}° do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.
Likewise, elements of $\mathcal{C}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.
Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}°
Sn we can't define a "utility function" $": \mathcal{X} \longrightarrow \mathbb{R}$ within C.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for
Problem. In an abstract category \mathcal{C}, what would this even mean?
Objects in ${ }^{\circ}$ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.
Likewise, elements of $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.
Fven if they are \mathbb{R} is not necessarily an obiect in \mathcal{C}
So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \succcurlyeq.
Problem. In an abstract category \mathcal{C}, what would this ever
\Rightarrow Objects in \mathcal{C}° do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.
Likewise, elements of $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.
Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}°
So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \succcurlyeq.
Problem. In an abstract category \mathcal{C}, what would this even mean?
Objects in \mathcal{C}° do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.
I ikewise elements of $\vec{C}(S \mathcal{X})$ are not necessarily functions.
Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}°
So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects. Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \succcurlyeq.
Problem. In an abstract category \mathcal{C}, what would this even mean?

- Objects in \mathcal{C}° do not necessarily have underlying sets. So we cannot represent beliefs by probability measures.
\qquad
\qquad So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects.

Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \succcurlyeq.
Problem. In an abstract category \mathcal{C}, what would this even mean?

- Objects in \mathcal{C}° do not necessarily have underlying sets.

So we cannot represent beliefs by probability measures.

- Likewise, elements of $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.

Goal

Let \mathcal{C} be a category. Let $\mathcal{S}, \mathcal{X} \in \mathcal{C}^{\circ}$ be two objects.

Interpretation:

- $\mathcal{S}=$ abstract "state space";
- $\mathcal{X}=$ abstract "outcome space";
- $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})=$ set of abstract "acts".

Let \succcurlyeq be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
Goal. Find a "subjective expected utility representation" for \succcurlyeq.
Problem. In an abstract category \mathcal{C}, what would this even mean?

- Objects in \mathcal{C}° do not necessarily have underlying sets. So we cannot represent beliefs by probability measures.
- Likewise, elements of $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ are not necessarily functions.
- Even if they are, \mathbb{R} is not necessarily an object in \mathcal{C}°. So we can't define a "utility function" $u: \mathcal{X} \longrightarrow \mathbb{R}$ within \mathcal{C}.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.
(b) Let \mathcal{S} be a set. The vector space $\mathbb{R}^{\mathcal{S}}$ of real-valued functions on \mathcal{S} is a POVS with the pointwise dominance order.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.
(b) Let \mathcal{S} be a set. The vector space $\mathbb{R}^{\mathcal{S}}$ of real-valued functions on \mathcal{S} is a POVS with the pointwise dominance order.

An order unit for a POVS \mathcal{V} is an element $u \in \mathcal{V}$ with $u>0$, such that for any $v>0$ there is some $r \in \mathbb{R}_{+}$with $r u \geq v$.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.
(b) Let \mathcal{S} be a set. The vector space $\mathbb{R}^{\mathcal{S}}$ of real-valued functions on \mathcal{S} is a POVS with the pointwise dominance order.

An order unit for a POVS \mathcal{V} is an element $u \in \mathcal{V}$ with $u>0$, such that for any $v>0$ there is some $r \in \mathbb{R}_{+}$with $r u \geq v$.

A unitary partially ordered vector space (UPOVS) is a POVS equipped with an order unit.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.
(b) Let \mathcal{S} be a set. The vector space $\mathbb{R}^{\mathcal{S}}$ of real-valued functions on \mathcal{S} is a POVS with the pointwise dominance order.

An order unit for a POVS \mathcal{V} is an element $u \in \mathcal{V}$ with $u>0$, such that for any $v>0$ there is some $r \in \mathbb{R}_{+}$with $r u \geq v$.

A unitary partially ordered vector space (UPOVS) is a POVS equipped with an order unit.

Examples. (a) 1 is an order unit for \mathbb{R}, making \mathbb{R} a unitary POVS.

Partially ordered vector spaces

A partially ordered vector space (POVS) is a (real) vector space \mathcal{V} equipped with a partial order that is compatible with addition and scalar multiplication in the obvious way.

Examples. (a) \mathbb{R} is a POVS with the obvious linear order.
(b) Let \mathcal{S} be a set. The vector space $\mathbb{R}^{\mathcal{S}}$ of real-valued functions on \mathcal{S} is a POVS with the pointwise dominance order.

An order unit for a POVS \mathcal{V} is an element $u \in \mathcal{V}$ with $u>0$, such that for any $v>0$ there is some $r \in \mathbb{R}_{+}$with $r u \geq v$.

A unitary partially ordered vector space (UPOVS) is a POVS equipped with an order unit.

Examples. (a) 1 is an order unit for \mathbb{R}, making \mathbb{R} a unitary POVS.
(b) Let \mathcal{S} be a set. Let $\ell^{\infty}(\mathcal{S})$ be the POVS of all bounded elements of $\mathbb{R}^{\mathcal{S}}$. This is a UPOVS: the constant function $\mathbf{1}_{\mathcal{S}}$ is an order unit for $\ell^{\infty}(\mathcal{S})$.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Let \mathcal{C} be another category.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Let \mathcal{C} be another category.
A utility frame on \mathcal{C} is a contravariant functor $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Let \mathcal{C} be another category.
A utility frame on \mathcal{C} is a contravariant functor $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS.

Example. Suppose $\mathcal{C}=$ Set.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Let \mathcal{C} be another category.
A utility frame on \mathcal{C} is a contravariant functor $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS.

Example. Suppose $\mathcal{C}=$ Set.
For any $\mathcal{S} \in \operatorname{Set}^{\circ}$, let $L(\mathcal{S}):=\ell^{\infty}(\mathcal{S})$ with order unit $\mathbf{1}_{\mathcal{S}}$.

Utility frames

An order-preserving linear transformation from a UPOVS \mathcal{V}_{1} to a UPOVS \mathcal{V}_{2} is uniferent if it sends the order unit of \mathcal{V}_{1} to the order unit of \mathcal{V}_{2}.

Let UPOVS be the category of all unitary partially ordered vector spaces and all uniferent, order-preserving, linear transformations.

Let \mathcal{C} be another category.
A utility frame on \mathcal{C} is a contravariant functor $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS.

Example. Suppose $\mathcal{C}=$ Set.
For any $\mathcal{S} \in \operatorname{Set}^{\circ}$, let $L(\mathcal{S}):=\ell^{\infty}(\mathcal{S})$ with order unit $\mathbf{1}_{\mathcal{S}}$.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathbf{S e t}^{\circ}$ and $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$, define $L(\phi): \ell^{\infty}\left(\mathcal{S}_{2}\right) \longrightarrow \ell^{\infty}\left(\mathcal{S}_{1}\right)$ by setting $L(\phi)[v]:=v \circ \phi$ for all bounded functions $v: \mathcal{S}_{2} \longrightarrow \mathbb{R}$.

Then L is a utility frame.

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ p} \models$ UPOVS. Let $F:$ UPOVS \models Set be the forgetful functor.

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS. Let F : UPOVS \models Set be the forgetful functor.

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS.
Let F : UPOVS \models Set be the forgetful functor.
Let $\underline{L}:=F \circ L: \mathcal{C}^{\mathrm{op}} \models$ Set. (This is a presheaf.)

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS.
Let F : UPOVS \models Set be the forgetful functor.
Let $\underline{L}:=F \circ L: \mathcal{C}^{\mathrm{op}} \models$ Set. (This is a presheaf.)
Let $\mathcal{X} \in \mathcal{C}^{\circ}$. Let $\overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}): \mathcal{C}^{\mathrm{op}} \models$ Set be the contravariant hom functor.

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS.
Let F : UPOVS \models Set be the forgetful functor.
Let $\underline{L}:=F \circ L: \mathcal{C}^{\mathrm{op}} \models$ Set. (This is a presheaf.)
Let $\mathcal{X} \in \mathcal{C}^{\circ}$. Let $\overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}): \mathcal{C}^{\mathrm{op}} \models$ Set be the contravariant hom functor.
For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, let $\overleftarrow{\phi}:=\overrightarrow{\mathcal{C}}(\phi, \mathcal{X})$.
(i.e. $\overleftarrow{\phi}: \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right) \longrightarrow \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{X}\right)$ is defined: $\overleftarrow{\phi}(\alpha):=\alpha \circ \phi, \quad \forall \alpha \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$.)

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS.
Let F : UPOVS \models Set be the forgetful functor.
Let $\underline{L}:=F \circ L: \mathcal{C}^{\mathrm{op}} \models$ Set. (This is a presheaf.)
Let $\mathcal{X} \in \mathcal{C}^{\circ}$. Let $\overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}): \mathcal{C}^{\mathrm{op}} \models$ Set be the contravariant hom functor.
For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, let $\overleftarrow{\phi}:=\overrightarrow{\mathcal{C}}(\phi, \mathcal{X})$.
(i.e. $\overleftarrow{\phi}: \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right) \longrightarrow \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{X}\right)$ is defined: $\overleftarrow{\phi}(\alpha):=\alpha \circ \phi, \forall \alpha \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$.)

A utility functional for \mathcal{X} is a natural transformation $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$.

Utility functionals: definition

Let \mathcal{C} be a category, and fix a utility frame $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS.
Let F : UPOVS \models Set be the forgetful functor.
Let $\underline{L}:=F \circ L: \mathcal{C}^{\text {op }} \models$ Set. (This is a presheaf.)
Let $\mathcal{X} \in \mathcal{C}^{\circ}$. Let $\overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}): \mathcal{C}^{\mathrm{op}} \models$ Set be the contravariant hom functor.
For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, let $\overleftarrow{\phi}:=\overrightarrow{\mathcal{C}}(\phi, \mathcal{X})$.
(i.e. $\overleftarrow{\phi}: \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right) \longrightarrow \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{X}\right)$ is defined: $\overleftarrow{\phi}(\alpha):=\alpha \circ \phi, \forall \alpha \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$.)

A utility functional for \mathcal{X} is a natural transformation $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$. In other words, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \mathcal{C}^{\circ}}$, where for any object $\mathcal{C} \in \mathcal{C}^{\circ}$, $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$ is a function such that, for any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$, the following diagram commutes:

$$
\begin{array}{cl}
\overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) & \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\phi}}{\longleftarrow} \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
\| & U_{\mathcal{X}}^{\mathcal{C}_{1}} \downarrow \\
\underline{L} & \underline{L}\left(\mathcal{C}_{1}\right) \longleftarrow \\
& \underline{L}(\phi)
\end{array} \underline{L\left(\mathcal{C}_{2}\right)}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$

Thus, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \text { Set }^{\circ}}$ is a utility functional.
indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.
Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$. Thus, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{C} \in \operatorname{Set}^{\circ}}$ is a utility functional. Indeed, by an application of the Yoneda Lemma, every utility functional can be seen as a generalization of this example.

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.
Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in \mathbf{S e t}^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.

Thus, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \text { Set }^{\circ}}$ is a utility functional
Indeed, hy an anplication of the Voneda Iemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}$: Set ${ }^{\text {op }} \models$ UPOVS as above.
Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define $U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$. This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\phi}}{\leftrightarrows} \overrightarrow{\boldsymbol{C}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& U_{\mathcal{X}}^{\mathcal{C}_{1}} \downarrow \\
& \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{U_{\mathcal{X}}^{\mathcal{C}_{2}}}{\stackrel{L(\phi)}{L\left(\mathcal{C}_{2}\right)}}
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{ }}{\underset{~}{~}} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& U_{\mathcal{X}}^{\mathcal{c}_{1}} \downarrow \quad \downarrow_{U_{\mathcal{X}}^{\mathcal{c}_{2}}} \\
& \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{L}{\underline{L}(\phi)} \underline{L}\left(\mathcal{C}_{2}\right)
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \alpha \circ \phi \\
& \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{ }}{\underset{\leftrightarrows}{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right)} \\
& U_{\mathcal{X}}^{\mathcal{c}_{1}} \downarrow \quad \downarrow_{\mathcal{X}}^{\mathcal{c}_{2}} \\
& \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{L_{\underline{L}(\phi)}}{ } \underline{L}\left(\mathcal{C}_{2}\right)
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{array}{ll}
\alpha \circ \phi & \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\phi}}{\leftrightarrows} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& U_{\mathcal{X}}^{\mathcal{C}_{1}} \downarrow \\
u \circ \alpha \circ \phi & \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{U_{\mathcal{X}}^{\mathcal{C}_{2}}}{\boxed{L}(\phi)} \underline{L}\left(\mathcal{C}_{2}\right)
\end{array}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{ }}{\underset{~}{~}} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& U_{\mathcal{X}}^{\mathcal{c}_{1}} \downarrow \quad \downarrow_{U_{\mathcal{X}}^{\mathcal{c}_{2}}} \\
& \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{L}{\underline{L}(\phi)} \underline{L}\left(\mathcal{C}_{2}\right)
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \underset{\Phi}{\overleftarrow{\boldsymbol{\top}}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \quad \alpha \\
& U_{\mathcal{X}}^{\mathcal{c}_{1}} \downarrow \downarrow \cup_{\mathcal{X}}^{\mathcal{c}_{2}} \\
& \underline{L}\left(\mathcal{C}_{1}\right) \underset{\underline{L}(\phi)}{ } \underline{L}\left(\mathcal{C}_{2}\right) \quad u \circ \alpha
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\phi}}{\rightleftarrows} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \quad \alpha \\
& U_{\mathcal{X}}^{\mathcal{c}_{1}} \downarrow \downarrow U_{\mathcal{X}}^{\mathcal{c}_{2}} \\
& u \circ \alpha \circ \phi \quad \underline{L}\left(\mathcal{C}_{1}\right) \longleftarrow \overleftarrow{L(\phi)}^{L}\left(\mathcal{C}_{2}\right) \quad u \circ \alpha
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in$ Set $^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define
$U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$.
This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \alpha \circ \phi \quad \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\phi}}{\leftrightarrows} \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& u \circ \alpha \circ \phi \quad \underline{L}\left(\mathcal{C}_{1}\right) \overleftarrow{\underline{L}(\phi)} \underline{L}\left(\mathcal{C}_{2}\right) \quad u \circ \alpha
\end{aligned}
$$

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\text {op }} \models$ UPOVS as above.

Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in \mathbf{S e t}^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define $U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$. This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{aligned}
& \alpha \circ \phi \quad \overrightarrow{\mathcal{C}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{\Phi}}{\leftrightarrows} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) \\
& U_{\mathcal{X}}^{c_{1}} \downarrow \quad \downarrow_{\mathcal{X}}^{c_{2}} \\
& u \circ \alpha \circ \phi \quad \underline{L}\left(\mathcal{C}_{1}\right) \overleftarrow{\underline{L}(\phi)} \underline{L}\left(\mathcal{C}_{2}\right) \quad u \circ \alpha
\end{aligned}
$$

Thus, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \text { Set }^{\circ}}$ is a utility functional.

Utility functionals: example

Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}$: Set ${ }^{\text {op }} \models$ UPOVS as above.
Let \mathcal{X} be a set. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
For any $\mathcal{C} \in \operatorname{Set}^{\circ}$ and any function $\alpha: \mathcal{C} \longrightarrow \mathcal{X}$, define $U_{\mathcal{X}}^{\mathcal{C}}(\alpha):=u \circ \alpha: \mathcal{C} \longrightarrow \mathbb{R}$. Then $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \ell^{\infty}(\mathcal{C})$-i.e. $U_{\mathcal{X}}^{\mathcal{C}}(\alpha) \in \underline{L}(\mathcal{C})$. This defines a function $U_{\mathcal{X}}^{\mathcal{C}}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \underline{L}(\mathcal{C})$.
For any $\mathcal{C}_{1}, \mathcal{C}_{2} \in \operatorname{Set}^{\circ}$ and $\phi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$, the following diagram commutes:

$$
\begin{array}{clc}
\alpha \circ \phi & \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{1}, \mathcal{X}\right) \stackrel{\overleftarrow{ }}{\leftrightarrows} \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{C}_{2}, \mathcal{X}\right) & \alpha \\
& U_{\mathcal{X}}^{\mathcal{C}_{1}} \downarrow & \downarrow U_{\mathcal{X}}^{\mathcal{c}_{2}} \\
u \circ \alpha \circ \phi & \underline{L}\left(\mathcal{C}_{1}\right) \stackrel{L(\phi)}{\overleftarrow{L}\left(\mathcal{C}_{2}\right)} & u \circ \alpha
\end{array}
$$

Thus, $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \text { Set }^{\circ}}$ is a utility functional. Indeed, by an application of the Yoneda Lemma, every utility functional can be seen as a generalization of this example.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\text {op }} \models$ UPOVS be a utility frame.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.
For any $\mathcal{C} \in \mathcal{C}^{\circ}$, a belief about \mathcal{C} is a UPOVS-morphism $\rho: L(\mathcal{C}) \longrightarrow \mathbb{R}$.
(i.e. ρ is an order-preserving linear function from $L(\mathcal{C})$ to \mathbb{R} with $\rho(\mathbf{1})=1$.)

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.
For any $\mathcal{C} \in \mathcal{C}^{\circ}$, a belief about \mathcal{C} is a UPOVS-morphism $\rho: L(\mathcal{C}) \longrightarrow \mathbb{R}$.
(i.e. ρ is an order-preserving linear function from $L(\mathcal{C})$ to \mathbb{R} with $\rho(\mathbf{1})=1$.)

Example. Let $\mathcal{C}=$ Set and let $L=\ell^{\infty}:$ Set $^{\mathrm{pp}} \Longleftrightarrow$ UPOVS.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.
For any $\mathcal{C} \in \mathcal{C}^{\circ}$, a belief about \mathcal{C} is a UPOVS-morphism $\rho: L(\mathcal{C}) \longrightarrow \mathbb{R}$.
(i.e. ρ is an order-preserving linear function from $L(\mathcal{C})$ to \mathbb{R} with $\rho(\mathbf{1})=1$.)

Example. Let $\mathcal{C}=$ Set and let $L=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longleftrightarrow$ UPOVS.
Let \mathcal{S} be a set and let μ be a probability measure the power set of \mathcal{S}.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.
For any $\mathcal{C} \in \mathcal{C}^{\circ}$, a belief about \mathcal{C} is a UPOVS-morphism $\rho: L(\mathcal{C}) \longrightarrow \mathbb{R}$.
(i.e. ρ is an order-preserving linear function from $L(\mathcal{C})$ to \mathbb{R} with $\rho(\mathbf{1})=1$.)

Example. Let $\mathcal{C}=$ Set and let $L=\ell^{\infty}:$ Set $^{\mathrm{pp}} \Longleftrightarrow$ UPOVS.
Let \mathcal{S} be a set and let μ be a probability measure the power set of \mathcal{S}.
Define $\rho: \ell^{\infty}(\mathcal{S}) \longrightarrow \mathbb{R}$ by setting $\rho(v):=\int_{\mathcal{S}} v \mathrm{~d} \mu$ for all $v \in \ell^{\infty}(\mathcal{S})$.

Beliefs

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Regard \mathbb{R} as a unitary POVS with order unit 1.
For any $\mathcal{C} \in \mathcal{C}^{\circ}$, a belief about \mathcal{C} is a UPOVS-morphism $\rho: L(\mathcal{C}) \longrightarrow \mathbb{R}$.
(i.e. ρ is an order-preserving linear function from $L(\mathcal{C})$ to \mathbb{R} with $\rho(\mathbf{1})=1$.)

Example. Let $\mathcal{C}=$ Set and let $L=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longleftrightarrow$ UPOVS.
Let \mathcal{S} be a set and let μ be a probability measure the power set of \mathcal{S}.
Define $\rho: \ell^{\infty}(\mathcal{S}) \longrightarrow \mathbb{R}$ by setting $\rho(v):=\int_{\mathcal{S}} v \mathrm{~d} \mu$ for all $v \in \ell^{\infty}(\mathcal{S})$.
Then ρ is order-preserving, linear, and $\rho(\mathbf{1})=1$. So it is a belief about \mathcal{S}.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°.

A local subjective expected utility representation for

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\text {op }} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Example. Suppose $\mathcal{C}=$ Set and let $L=\ell^{\infty}$: Set ${ }^{\text {op }} \Longleftrightarrow$ UPOVS.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\circ \mathrm{p}} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Example. Suppose $\mathcal{C}=$ Set and let $L=\ell^{\infty}$: Set $^{\text {op }} \Longleftrightarrow$ UPOVS.
Let \mathcal{S} and \mathcal{X} be sets. Let ρ be a belief on \mathcal{S} defined by a prob. measure μ.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\text {op }} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Example. Suppose $\mathcal{C}=$ Set and let $L=\ell^{\infty}$: Set ${ }^{\text {op }} \models$ UPOVS.
Let \mathcal{S} and \mathcal{X} be sets. Let ρ be a belief on \mathcal{S} defined by a prob. measure μ. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be bounded. Let $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ be the utility functional such that, for any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we have $\mathcal{U}_{\mathcal{X}}^{\mathcal{S}}(\alpha)=u \circ \alpha$.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\text {op }} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Example. Suppose $\mathcal{C}=$ Set and let $L=\ell^{\infty}$: Set ${ }^{\text {op }} \models$ UPOVS.
Let \mathcal{S} and \mathcal{X} be sets. Let ρ be a belief on \mathcal{S} defined by a prob. measure μ. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be bounded. Let $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ be the utility functional such that, for any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we have $U_{\mathcal{X}}^{\mathcal{S}}(\alpha)=u \circ \alpha$.
Thus, $\rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right]=\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu$.

Local SEU representations

Let \mathcal{S} and \mathcal{X} be objects in \mathcal{C}°. Let \succcurlyeq be a weak order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Let $L: \mathcal{C}^{\text {op }} \Longleftrightarrow$ UPOVS be a utility frame.

A local subjective expected utility representation for \succcurlyeq is a pair $\left(\rho, U_{\mathcal{X}}\right)$, where ρ is a belief about \mathcal{S} and $U_{\mathcal{X}}$ is a utility functional on \mathcal{X}, such that: for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \beta \Longleftrightarrow \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]$.

Example. Suppose $\mathcal{C}=$ Set and let $L=\ell^{\infty}$: Set ${ }^{\text {op }} \models$ UPOVS.
Let \mathcal{S} and \mathcal{X} be sets. Let ρ be a belief on \mathcal{S} defined by a prob. measure μ. Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be bounded. Let $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ be the utility functional such that, for any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we have $\mathcal{U}_{\mathcal{X}}^{\mathcal{S}}(\alpha)=u \circ \alpha$.
Thus, $\rho\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right]=\int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu$. So for all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, formula $(*)$
says: $\alpha \succcurlyeq \beta \Longleftrightarrow \int_{\mathcal{S}} u \circ \alpha \mathrm{~d} \mu \geq \int_{\mathcal{S}} u \circ \beta \mathrm{~d} \mu$ (a classic SEU repr.).

Desiderata II

There are three more ways that we want to extend Savage's framework.

> Obtain a single SEU representation that applies to many different decision problems, with different state spaces and/or outcome spaces.

Represent the same decision problem with different levels of "awareness", or access to different information sources. Represent "analogies" between different decision problems, or "internal symmetries" within a decision problem.

Wanted:

A generalization of the Savage framework that satisfies these desiderata

Desiderata II

There are three more ways that we want to extend Savage's framework.

- Obtain a single SEU representation that applies to many different decision problems, with different state spaces and/or outcome spaces.

Represent the same decision problem with different levels of "awareness", or access to different information sources. Represent "analogies" between different decision problems, or "internal symmetries" within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata

Desiderata II

There are three more ways that we want to extend Savage's framework.

- Obtain a single SEU representation that applies to many different decision problems, with different state spaces and/or outcome spaces.
- Represent the same decision problem with different levels of "awareness", or access to different information sources.

Represent "analogies" between different decision problems, or "internal symmetries" within a decision nrohlem

Wanted:
A menoralization of the Savage framework that satisfies these desiderata

Desiderata II

There are three more ways that we want to extend Savage's framework.

- Obtain a single SEU representation that applies to many different decision problems, with different state spaces and/or outcome spaces.
- Represent the same decision problem with different levels of "awareness", or access to different information sources.
- Represent "analogies" between different decision problems, or "internal symmetries" within a decision problem.

Desiderata II

There are three more ways that we want to extend Savage's framework.

- Obtain a single SEU representation that applies to many different decision problems, with different state spaces and/or outcome spaces.
- Represent the same decision problem with different levels of "awareness", or access to different information sources.
- Represent "analogies" between different decision problems, or "internal symmetries" within a decision problem.

Wanted:

A generalization of the Savage framework that satisfies these desiderata.

Part II.

Decision environments

and

ex ante preferences

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in S° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

For any \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S}°, each ϕ in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} Objects in \mathcal{X}° are "abstract outcome spaces". (But they might not be spaces.) Let's call them outcome places.

For any χ_{1} and χ_{2} in χ°, each ϕ in $\vec{\chi}\left(\chi_{1}, \chi_{2}\right)$ is a C-morphism from χ_{1} to \mathcal{X}_{2} that is "compatible" with the agent's desires over \mathcal{X}_{1} and \mathcal{X}_{2} For any state place \mathcal{S} in \mathcal{S}° and outcome place \mathcal{X} in \mathcal{X}°, the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ represent "abstract acts"

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

\qquad

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in \mathcal{S}° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in \mathcal{S}° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

For any \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S}°, each ϕ in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2}.

Objects in \mathcal{X}° are "abstract outcome spaces"

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in \mathcal{S}° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

For any \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S}°, each ϕ in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2}.

Objects in \mathcal{X}° are "abstract outcome spaces". (But they might not be spaces.) Let's call them outcome places.

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in \mathcal{S}° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

For any \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S}°, each ϕ in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2}.

Objects in \mathcal{X}° are "abstract outcome spaces". (But they might not be spaces.) Let's call them outcome places.

For any \mathcal{X}_{1} and \mathcal{X}_{2} in \mathcal{X}°, each ϕ in $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is "compatible" with the agent's desires over \mathcal{X}_{1} and \mathcal{X}_{2}.

Decision Environments

Let \mathcal{C} be a category.
A decision environment on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Objects in \mathcal{S}° are "abstract state spaces". (But they might not actually be spaces.) Let's call them state places.

For any \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S}°, each ϕ in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2}.

Objects in \mathcal{X}° are "abstract outcome spaces". (But they might not be spaces.) Let's call them outcome places.

For any \mathcal{X}_{1} and \mathcal{X}_{2} in \mathcal{X}°, each ϕ in $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is "compatible" with the agent's desires over \mathcal{X}_{1} and \mathcal{X}_{2}.

For any state place \mathcal{S} in \mathcal{S}° and outcome place \mathcal{X} in \mathcal{X}°, the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ represent "abstract acts".

Ex ante preference structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.

Ex ante preference structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
For every \mathcal{S} in \mathcal{S}° and \mathcal{X} in \mathcal{X}°, let $\succcurlyeq_{\mathcal{X}}^{\mathcal{X}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.

Ex ante preference structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
For every \mathcal{S} in \mathcal{S}° and \mathcal{X} in \mathcal{X}°, let $\succcurlyeq_{\mathcal{X}}^{\mathcal{S}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.
$\unrhd^{\mathrm{xa}}:=\left\{\succcurlyeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in \mathcal{S}^{\circ}\right.$ and $\left.\mathcal{X} \in \mathcal{X}^{\circ}\right\}$ is an ex ante preference structure if:
(BP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}, \quad \phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right), \quad \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$,
$\alpha \succcurlyeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta$ if and only if $\alpha \circ \phi \succcurlyeq \mathcal{S}_{\mathcal{X}} \quad \beta \circ \phi . \quad$ (Idea: ϕ is "belief-preserving".)

Ex ante preference structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
For every \mathcal{S} in \mathcal{S}° and \mathcal{X} in \mathcal{X}°, let $\succcurlyeq_{\mathcal{X}}^{\mathcal{X}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.
$\varnothing^{\text {wa }}:=\left\{\succcurlyeq \mathcal{\mathcal { X }} ; \mathcal{S} \in \mathcal{S}^{\circ}\right.$ and $\left.\mathcal{X} \in \mathcal{X}^{\circ}\right\}$ is an ex ante preference structure if:
(BP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}, \quad \phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right), \quad \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, $\alpha \succcurlyeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta$ if and only if $\alpha \circ \phi \succcurlyeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi$. (Idea: ϕ is "belief-preserving".)
(DP) For all $\mathcal{X}_{1}, \mathcal{X}_{2} \in \mathcal{X}^{\circ}, \quad \phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right), \quad \mathcal{S} \in \mathcal{S}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, $\alpha \succcurlyeq \mathcal{X}_{1} \beta$ if and only if $\phi \circ \alpha \succcurlyeq \mathcal{X}_{2} \quad \phi \circ \beta$. (Idea: ϕ is "desire-preserving".)

Objectives

Objective 1. Define "subjective expected utility representation" for ex ante preference structures over decision environments in abstract categories.

Objectives

Objective 1. Define "subjective expected utility representation" for ex ante preference structures over decision environments in abstract categories.

Objective 2. Find necessary/sufficient conditions for the existence of such SEU representations.

Objectives

Objective 1. Define "subjective expected utility representation" for ex ante preference structures over decision environments in abstract categories.

Objective 2. Find necessary/sufficient conditions for the existence of such SEU representations.

Part III.

Global SEU representations

Belief systems: definition

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.

Belief systems: definition

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\mathrm{op}} \Longleftrightarrow$ UPOVS be a utility frame.

Let \mathcal{S} be a subcategory of \mathcal{C} (e.g. state places in a decision environment).

Belief systems: definition

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\mathrm{op}} \Longleftrightarrow$ UPOVS be a utility frame.

Let \mathcal{S} be a subcategory of \mathcal{C} (e.g. state places in a decision environment).

Let $L_{\mid \mathcal{S}}: \mathcal{S}^{\text {op }} \Longleftrightarrow$ UPOVS be the restriction of L to \mathcal{S}.

Belief systems: definition

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\text {op }} \models$ UPOVS be a utility frame.

Let \mathcal{S} be a subcategory of \mathcal{C} (e.g. state places in a decision environment).

Let $L_{\mid \mathcal{S}}: \mathcal{S}^{\text {op }} \Longleftrightarrow$ UPOVS be the restriction of L to \mathcal{S}.
A belief system for \mathcal{S} is a co-cone from $L_{\left.\right|_{\mathcal{S}}}$ to \mathbb{R} in category UPOVS.

Belief systems: definition

Let \mathcal{C} be a category, and let $L: \mathcal{C}^{\text {op }} \models$ UPOVS be a utility frame.

Let \mathcal{S} be a subcategory of \mathcal{C} (e.g. state places in a decision environment).

Let $L_{\mid \mathcal{S}}: \mathcal{S}^{\text {op }} \Longleftrightarrow$ UPOVS be the restriction of L to \mathcal{S}.

A belief system for \mathcal{S} is a co-cone from $L_{\left.\right|_{\mathcal{S}}}$ to \mathbb{R} in category UPOVS.

In other words: it is a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Belief systems in concrete categories

A belief system for \mathcal{S} is a a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\boldsymbol{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Let \mathcal{S} be a subcategory of Set, and let $\{\rho \mathcal{S}\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a belief system.
For all $S \in \mathcal{S}^{\circ}$, there is a unique finitely additive probability measure μ_{S} on the power set of \mathcal{S}, such that $\rho_{S}: \ell^{\infty}(\mathcal{S}) \longrightarrow \mathbb{R}$ is defined by

Belief systems in concrete categories

A belief system for \mathcal{S} is a a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\boldsymbol{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Proposition. Let $L:=\ell^{\infty}$: Set $^{\text {op }} \Longleftrightarrow$ UPOVS.

Let \mathcal{S} be a subcategory of Set, and let $\left\{\rho_{\mathcal{S}}\right\} \mathcal{S} \in \mathcal{S}^{\circ}$ be a belief system
 the power set of \mathcal{S}, such that $\rho \mathcal{S}: \ell^{\infty}(\mathcal{S}) \rightarrow \mathbb{R}$ is defined by

Belief systems in concrete categories

A belief system for \mathcal{S} is a a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\boldsymbol{\mathcal { S }}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Proposition. Let $L:=\ell^{\infty}$: Set $^{\text {op }} \Longleftrightarrow$ UPOVS.

Let \mathcal{S} be a subcategory of Set, and let $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}}$ be a belief system.

Belief systems in concrete categories

A belief system for \mathcal{S} is a a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\boldsymbol{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Proposition. Let $L:=\ell^{\infty}$: Set $^{\text {op }} \models$ UPOVS.

Let \mathcal{S} be a subcategory of Set, and let $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}}$ 。 be a belief system.
For all $\mathcal{S} \in \mathcal{S}^{\circ}$, there is a unique finitely additive probability measure $\mu_{\mathcal{S}}$ on the power set of \mathcal{S}, such that $\rho_{\mathcal{S}}: \ell^{\infty}(\mathcal{S}) \longrightarrow \mathbb{R}$ is defined by

$$
\rho_{\mathcal{S}}(v)=\int_{\mathcal{S}} v \mathrm{~d} \mu_{\mathcal{S}}, \quad \text { for all } v \in \ell^{\infty}(\mathcal{S})
$$

Belief systems in concrete categories

A belief system for \mathcal{S} is a a collection of beliefs $\left\{\rho_{\mathcal{S}}: L(\mathcal{S}) \longrightarrow \mathbb{R}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$, such that, for any $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$ and $\phi \in \overrightarrow{\boldsymbol{\mathcal { S }}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, the next diagram commutes:

Proposition. Let $L:=\ell^{\infty}$: Set $^{\text {op }} \models$ UPOVS.

Let \mathcal{S} be a subcategory of Set, and let $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}}$ 。 be a belief system.
For all $\mathcal{S} \in \mathcal{S}^{\circ}$, there is a unique finitely additive probability measure $\mu_{\mathcal{S}}$ on the power set of \mathcal{S}, such that $\rho_{\mathcal{S}}: \ell^{\infty}(\mathcal{S}) \longrightarrow \mathbb{R}$ is defined by

$$
\rho_{\mathcal{S}}(v)=\int_{\mathcal{S}} v \mathrm{~d} \mu_{\mathcal{S}}, \quad \text { for all } v \in \ell^{\infty}(\mathcal{S}) \text {. }
$$

Also, for all $\mathcal{S}_{1}, \mathcal{S}_{2} \in \mathcal{S}^{\circ}$, we have $\phi\left(\mu_{\mathcal{S}_{1}}\right)=\mu_{\mathcal{S}_{2}}$, for all $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

\qquad

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Let \mathcal{V} be a unitary POVS with order unit $\mathbf{1}_{\mathcal{V}}$.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Let \mathcal{V} be a unitary POVS with order unit $\mathbf{1}_{\mathcal{V}}$.
A positive affine transformation of \mathcal{V} is an order-preserving bijection $\phi: \mathcal{V} \longrightarrow \mathcal{V}$ of the form $\phi(\mathbf{v})=a \mathbf{v}+b \mathbf{1}_{\mathcal{V}}$ for all $\mathbf{v} \in \mathcal{V}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Let \mathcal{V} be a unitary POVS with order unit $\mathbf{1}_{\mathcal{V}}$.
A positive affine transformation of \mathcal{V} is an order-preserving bijection $\phi: \mathcal{V} \longrightarrow \mathcal{V}$ of the form $\phi(\mathbf{v})=a \mathbf{v}+b \mathbf{1}_{\mathcal{V}}$ for all $\mathbf{v} \in \mathcal{V}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations of \mathcal{V} forms a group $\operatorname{Aff}(\mathcal{V})$ under composition.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Let \mathcal{V} be a unitary POVS with order unit $\mathbf{1}_{\mathcal{V}}$.
A positive affine transformation of \mathcal{V} is an order-preserving bijection $\phi: \mathcal{V} \longrightarrow \mathcal{V}$ of the form $\phi(\mathbf{v})=a \mathbf{v}+b \mathbf{1}_{\mathcal{V}}$ for all $\mathbf{v} \in \mathcal{V}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations of \mathcal{V} forms a group $\operatorname{Aff}(\mathcal{V})$ under composition.

There is a canonical group isomorphism $\mathbf{A f f} \simeq \operatorname{Aff}(\mathcal{V})$.

Pos. Affine Transformations \& Utility Systems

A positive affine transformation is an increasing bijection $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $\phi(r)=a r+b$ for all $r \in \mathbb{R}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations forms a group Aff under composition, which we can regard as a single-object category.

Let \mathcal{V} be a unitary POVS with order unit $\mathbf{1}_{\mathcal{V}}$.
A positive affine transformation of \mathcal{V} is an order-preserving bijection $\phi: \mathcal{V} \longrightarrow \mathcal{V}$ of the form $\phi(\mathbf{v})=a \mathbf{v}+b \mathbf{1}_{\mathcal{V}}$ for all $\mathbf{v} \in \mathcal{V}$, where $a>0$ and $b \in \mathbb{R}$ are constants.

The set of all positive affine transformations of \mathcal{V} forms a group $\operatorname{Aff}(\mathcal{V})$ under composition.

There is a canonical group isomorphism $\mathbf{A f f} \simeq \operatorname{Aff}(\mathcal{V})$.
For any $\phi \in \mathbf{A f f}$, let $\phi_{\mathcal{V}}$ denote the corresponding element of $\operatorname{Aff}(\mathcal{V})$.

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor.

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor.
For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.)

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor.
For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.) Let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor.
For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.)
Let $L: \mathcal{C}^{\circ \mathrm{p}} \models$ UPOVS be a utility frame.
Let \mathcal{X} be a subcategory of \mathcal{C} (e.g. outcome places in a decision environment).

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor. For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.) Let $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS be a utility frame.

Let \mathcal{X} be a subcategory of \mathcal{C} (e.g. outcome places in a decision environment).
An (L-valued) utility system on \mathcal{X} is an ordered pair (U, A), where

- $A: \mathcal{X} \models \mathbf{A f f}$ is a functor; and

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant hom functor.
For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.) Let $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS be a utility frame.

Let \mathcal{X} be a subcategory of \mathcal{C} (e.g. outcome places in a decision environment).
An (L-valued) utility system on \mathcal{X} is an ordered pair (U, A), where

- $A: \mathcal{X} \models \mathrm{Aff}$ is a functor; and
- $U=\left(U_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that

For any $\mathcal{C} \in \mathcal{C}^{\circ}$, let $\overrightarrow{\mathcal{C}}(\mathcal{C}, \bullet): \mathcal{C} \models$ Set be the covariant how functor.
For any $\mathcal{X}, \mathcal{Y} \in \mathcal{C}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, let $\vec{\phi}:=\overrightarrow{\mathcal{C}}(\mathcal{C}, \phi)$.
(That is: $\vec{\phi}: \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \longrightarrow \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y})$ is defined by $\vec{\phi}(\alpha):=\phi \circ \alpha$ for all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X})$.) Let $L: \mathcal{C}^{\mathrm{op}} \models$ UPOVS be a utility frame.

Let \mathcal{X} be a subcategory of \mathcal{C} (e.g. outcome places in a decision environment).
An (L-valued) utility system on \mathcal{X} is an ordered pair (U, A), where

- A: X \models If is a functor; and
- $U=\left(U_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that
for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y}) \\
& U_{\mathcal{X}}^{\mathcal{C}} \downarrow \\
& \downarrow_{\mathcal{Y}}^{\mathcal{C}} \\
& \underline{L}(\mathcal{C}) \xrightarrow[\widehat{\phi}_{L(\mathcal{C})}]{ } \underline{L}(\mathcal{C}) \\
& \binom{\text { where } \widehat{\phi}:=A(\phi) \text {, and } \widehat{\phi}_{L(\mathcal{C})} \text { is the }}{\text { automorphism of } \underline{L}(\mathcal{C}) \text { obtained from } \widehat{\phi} .}
\end{aligned}
$$

An (L-valued) utility system on $\boldsymbol{\mathcal { X }}$ is an ordered pair (U, A), where

- $A: \mathcal{X} \triangleq \mathbf{A f f}$ is a functor; and
- $U=\left(U_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\left.\begin{array}{l}
\overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y}) \\
U_{\mathcal{X}}^{\mathcal{C}} \downarrow \\
\underline{L}(\mathcal{C}) \xrightarrow[\hat{\phi}_{L(\mathcal{C})}]{U_{\mathcal{V}}^{\mathcal{C}}} \\
\underline{L}(\mathcal{C})
\end{array} \quad \begin{array}{l}
\text { where } \hat{\phi}:=A(\phi), \text { and } \widehat{\phi}_{L(\mathcal{C})} \text { is the } \\
\text { automorphism of } \underline{L}(\mathcal{C}) \text { obtained from } \widehat{\phi} .
\end{array}\right)
$$

An (L-valued) utility system on \mathcal{X} is an ordered pair (U, A), where

- $A: \mathcal{X} \models \mathbf{A f f}$ is a functor; and
- $U=\left(U_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\mathcal { C }}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\boldsymbol{\mathcal { C }}}(\mathcal{C}, \mathcal{Y}) \\
& U_{\mathcal{X}}^{\mathcal{C}} \downarrow \\
& \downarrow_{\mathcal{Y}}^{\mathcal{C}} \\
& \underline{L}(\mathcal{C}) \xrightarrow[\hat{\phi}_{L(\mathcal{C})}]{ } \underline{L}(\mathcal{C})
\end{aligned}
$$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{pp}} \models$ UPOVS.

An (L-valued) utility system on $\boldsymbol{\mathcal { X }}$ is an ordered pair (U, A), where

- $A: \mathcal{X} \triangleq \mathbf{A f f}$ is a functor; and
- $U=(U \mathcal{X})_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{Y}) \\
& U_{\mathcal{C}}^{\mathcal{C}} \downarrow \downarrow \bigcup_{\mathcal{X}}^{\mathcal{C}} \\
& \underline{L}(\mathcal{C}) \xrightarrow[\hat{\phi}_{L(\mathcal{C})}]{ } \underline{L}(\mathcal{C})
\end{aligned}
$$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \models$ UPOVS.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$, and define the utility functional $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \mathcal{C}^{\circ}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ as before.

An (L-valued) utility system on $\boldsymbol{\mathcal { X }}$ is an ordered pair (U, A), where

- $A: \mathcal{X} \triangleq \mathbf{A f f}$ is a functor; and
- $U=(U \mathcal{X})_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{Y}) \\
& U_{\mathcal{C}}^{\mathcal{C}} \downarrow \downarrow \bigcup_{\mathcal{X}}^{\mathcal{C}} \\
& \underline{L}(\mathcal{C}) \xrightarrow[\hat{\phi}_{L(\mathcal{C})}]{ } \underline{L}(\mathcal{C})
\end{aligned}
$$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{p}} \Longleftrightarrow$ UPOVS.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$, and define the utility functional $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \mathcal{C}^{\circ}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ as before.

Let $A: \mathcal{X} \longrightarrow \mathbf{A f f}$ be a functor.

An (L-valued) utility system on $\boldsymbol{\mathcal { X }}$ is an ordered pair (U, A), where

- $A: \mathcal{X} \triangleq \mathbf{A f f}$ is a functor; and
- $U=(U \mathcal{X})_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\left.\begin{array}{l}
\overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \underset{\mathcal{C}}{ }(\mathcal{C}, \mathcal{Y}) \\
U_{\mathcal{X}}^{\mathcal{C}} \downarrow \\
\underline{L}(\mathcal{C}) \xrightarrow[U_{\mathcal{V}}^{\mathcal{C}}]{ }
\end{array} \quad \begin{array}{l}
\text { where } \widehat{\phi}:=A(\phi), \text { and } \widehat{\phi}_{L(\mathcal{C})} \text { is the } \\
\text { automorphism of } \underline{L}(\mathcal{C}) \text { obtained from } \widehat{\phi} .
\end{array}\right)
$$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \models$ UPOVS.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$, and define the utility functional $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \mathcal{C}^{\circ}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ as before.

Let $A: \mathcal{X} \longrightarrow \mathbf{A f f}$ be a functor.
For all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, suppose that $u_{\mathcal{Y}} \circ \phi=\widehat{\phi} \circ u_{\mathcal{X}}$, where $\widehat{\phi}:=A(\phi)$ (an affine function from \mathbb{R} to itself).

An (L-valued) utility system on $\boldsymbol{\mathcal { X }}$ is an ordered pair (U, A), where

- $A: \mathcal{X} \triangleq \mathbf{A f f}$ is a functor; and
- $U=(U \mathcal{X})_{\mathcal{X} \in \mathcal{X}^{\circ}}$, where $U_{\mathcal{X}}: \overrightarrow{\boldsymbol{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ is a utility functional for each $\mathcal{X} \in \mathcal{X}^{\circ}$; such that for all $\mathcal{C} \in \mathcal{C}^{\circ}$, all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and all $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, this diagram commutes:

$$
\left.\begin{array}{l}
\overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{X}) \xrightarrow{\vec{\phi}} \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{Y}) \\
U_{\mathcal{C}}^{\mathcal{C}} \downarrow \\
\underline{L}(\mathcal{C}) \xrightarrow[\widehat{\phi}_{L(\mathcal{C})}]{ } \underline{L(\mathcal{C})}
\end{array} \quad \begin{array}{l}
U_{\mathcal{C}}^{\mathcal{C}}
\end{array} \quad \begin{array}{l}
\text { where } \widehat{\phi}:=A(\phi), \text { and } \widehat{\phi}_{L(\mathcal{C})} \text { is the } \\
\text { automorphism of } \underline{L}(\mathcal{C}) \text { obtained from } \widehat{\phi} .
\end{array}\right)
$$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \models$ UPOVS.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$, and define the utility functional $U_{\mathcal{X}}=\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{C} \in \mathcal{C}^{\circ}}: \overrightarrow{\mathcal{C}}(\bullet, \mathcal{X}) \Longrightarrow \underline{L}$ as before.

Let $A: \mathcal{X} \longrightarrow \mathbf{A f f}$ be a functor.
For all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}^{\circ}$ and $\phi \in \overrightarrow{\mathcal{X}}(\mathcal{X}, \mathcal{Y})$, suppose that $u_{\mathcal{Y}} \circ \phi=\widehat{\phi} \circ u_{\mathcal{X}}$, where $\widehat{\phi}:=A(\phi)$ (an affine function from \mathbb{R} to itself).
Then the collection $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$. together with A is a utility system on \mathcal{X}.

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let $D^{x a}$ be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$
A global subjective expected utility representation for $\underline{D}^{\text {xa }}$ consists of
A utity frame $I: C$ UnOUS

A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let $\mathscr{D}^{\mathrm{xa}}$ be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
A global subjective expected utility representation for $D^{x a}$ consists of

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let \unrhd^{xa} be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
A global subjective expected utility representation for $\underline{\unrhd}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\mathrm{op}} \longrightarrow$ UPOVS;

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let \unrhd^{xa} be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
A global subjective expected utility representation for $\underline{\unrhd}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\mathrm{op}} \longrightarrow$ UPOVS;
- A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let \unrhd^{xa} be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
A global subjective expected utility representation for $\underline{\unrhd}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\mathrm{op}} \longrightarrow$ UPOVS;
- A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)^{\mathcal{C} \in \mathcal{C}^{\circ} \in \mathcal{X}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$;

Global SEU Representation: definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision environment in a category \mathcal{C}.
Let $\mathscr{D}^{\mathrm{xa}}$ be an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
A global subjective expected utility representation for $\underline{D}^{\text {xa }}$ consists of:

- A utility frame $L: \mathcal{C}^{\mathrm{op}} \longrightarrow$ UPOVS;
- A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)^{\mathcal{C} \in \mathcal{X} \in \mathcal{X}^{\circ}}$ 。 and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that for all $\mathcal{S} \in \mathcal{S}^{\circ}$ and $\mathcal{X} \in \mathcal{X}^{\circ}$, and all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$

$$
\alpha \succcurlyeq \mathcal{X}_{\mathcal{X}}^{\mathcal{S}} \beta \quad \Longleftrightarrow \quad \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right]
$$

A global subjective expected utility representation for D^{xa} consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow \mathbf{U P O V S} ; ~ A$ belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\substack{\mathcal{C}}}{ }^{\circ}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{\mathcal { X }} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

A global subjective expected utility representation for $\underline{\underline{x a}}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow$ UPOVS; \quad A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X}_{\mathcal{X}}^{\mathcal{S}} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{S}\right\} S \in \mathcal{S}^{\circ}$ be a set of prob
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow$
Let $A: \mathcal{X} \longrightarrow$ Aff be a functor

A global subjective expected utility representation for $\underline{\underline{x a}}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow \mathbf{U P O V S} ; \quad$ A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq_{\mathcal{X}}^{\mathcal{S}} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.

A global subjective expected utility representation for $\underline{\underline{x a}}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow \mathbf{U P O V S ;} \quad$ A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}{ }^{\circ}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X}_{\mathcal{X}}^{\mathcal{S}} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{p} p} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.

A global subjective expected utility representation for $\underline{\underline{x a}}^{\mathrm{xa}}$ consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow \mathbf{U P O V S ;} \quad$ A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}{ }^{\circ}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X}_{\mathcal{X}}^{\mathcal{S}} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{p} p} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
Let $A: \mathcal{X} \longrightarrow \mathbf{A f f}$ be a functor.

A global subjective expected utility representation for D^{xa} consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow$ UPOVS; \quad A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{\mathcal { X }} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{p} p} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
Let $A: \mathcal{X} \longrightarrow$ Aff be a functor.
Define a utility system $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ using $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$ and A as before.

A global subjective expected utility representation for D^{xa} consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow \mathbf{U P O V S} ; ~ A ~ b e l i e f ~ s y s t e m ~\left(~ \rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \boldsymbol{\mathcal { X }}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\boldsymbol{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X} \mathcal{\mathcal { X }} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
Let $A: \mathcal{X} \longrightarrow$ Aff be a functor.
Define a utility system $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ using $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$ and A as before.

A global subjective expected utility representation for D^{xa} consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow$ UPOVS; \rightarrow A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that $\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X} \mathcal{\mathcal { X }} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{op}} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
Let $A: \mathcal{X} \longrightarrow$ Aff be a functor.
Define a utility system $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ using $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$ and A as before.
For all $\mathcal{S} \in \mathcal{S}^{\circ}$ and $\mathcal{X} \in \mathcal{X}^{\circ}$, define an order $\succcurlyeq \mathcal{X}$ on $\overrightarrow{\boldsymbol{\operatorname { S e t }}}(\mathcal{S}, \mathcal{X})$ via (*).
The system $\unrhd^{\mathrm{xa}}:=(\succcurlyeq \mathcal{S})_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{S} \in \mathcal{S}^{\circ}}$ is an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.

A global subjective expected utility representation for D^{xa} consists of:

- A utility frame $L: \mathcal{C}^{\text {op }} \longrightarrow$ UPOVS; \quad A belief system $\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$; and
- A utility system given by $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\substack{\mathcal{C}}}{ }^{\circ}$ and $A: \mathcal{X} \longrightarrow \mathbf{A f f}$; such that
$\forall \mathcal{S} \in \mathcal{S}^{\circ}, \mathcal{X} \in \mathcal{X}^{\circ}$, and $\alpha, \beta \in \overrightarrow{\boldsymbol{C}}(\mathcal{S}, \mathcal{X}), \quad \alpha \succcurlyeq \mathcal{X} \mathcal{\mathcal { X }} \beta \Leftrightarrow \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\alpha)\right] \geq \rho_{\mathcal{S}}\left[U_{\mathcal{X}}^{\mathcal{S}}(\beta)\right] .(*)$

Example. Suppose $\mathcal{C}=$ Set and $L:=\ell^{\infty}:$ Set $^{\mathrm{pp}} \Longrightarrow$ UPOVS.
Let $\left\{\mu_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$ be a set of prob. measures defining belief system $\left\{\rho_{\mathcal{S}}\right\}_{\mathcal{S} \in \mathcal{S}^{\circ}}$.
For all $\mathcal{X} \in \mathcal{X}^{\circ}$, let $u_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathbb{R}$ be a bounded function.
Let $A: \mathcal{X} \longrightarrow$ Aff be a functor.
Define a utility system $\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}^{\mathcal{C} \in \mathcal{C}^{\circ}}$ using $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}}$ and A as before.
For all $\mathcal{S} \in \mathcal{S}^{\circ}$ and $\mathcal{X} \in \mathcal{X}^{\circ}$, define an order $\succcurlyeq_{\mathcal{X}}^{\mathcal{S}}$ on $\overrightarrow{\mathbf{\operatorname { S e t }}}(\mathcal{S}, \mathcal{X})$ via $(*)$.
The system $\underline{\triangleright}^{\mathrm{xa}}:=(\succcurlyeq \mathcal{S} \mathcal{X})_{\mathcal{X} \in \mathcal{X}^{\circ}}{ }^{\circ} \in \mathcal{S}^{\circ}$ is an ex ante preference structure on $(\mathcal{S}, \mathcal{X})$.
The data $L,\left(\rho_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}^{\circ},\left(U_{\mathcal{X}}^{\mathcal{C}}\right)_{\mathcal{X} \in \mathcal{X}^{\circ}} \mathcal{C}^{\circ} \text { and } A \text { yield a global } \mathrm{SEU} \text { repr. for } \underline{\Phi}^{\mathrm{xa}} . ~ . ~ . ~}^{\text {. }}$.

A sketch of the SEU representation theorem

Question. Under what conditions does an ex ante preference structure have a global SEU representation?

Answer. Using an approach inspired by Anscombe \& Aumann (1963), we
prove a theorem giving necessary \& sufficient conditions for an ex ante preference structure to have a global SEU representation. Furthermore, in the category Top, we can ensure that the utility functions are continuous, and beliefs are represented by Borel probability measures. Due to time constraints, it is not possible to provide details here.

A sketch of the SEU representation theorem

Question. Under what conditions does an ex ante preference structure have a global SEU representation?

Answer. Using an approach inspired by Anscombe \& Aumann (1963), we prove a theorem giving necessary \& sufficient conditions for an ex ante preference structure to have a global SEU representation.

A sketch of the SEU representation theorem

Question. Under what conditions does an ex ante preference structure have a global SEU representation?

Answer. Using an approach inspired by Anscombe \& Aumann (1963), we prove a theorem giving necessary \& sufficient conditions for an ex ante preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions are continuous, and beliefs are represented by Borel probability measures.

A sketch of the SEU representation theorem

Question. Under what conditions does an ex ante preference structure have a global SEU representation?

Answer. Using an approach inspired by Anscombe \& Aumann (1963), we prove a theorem giving necessary \& sufficient conditions for an ex ante preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions are continuous, and beliefs are represented by Borel probability measures.

Due to time constraints, it is not possible to provide details here.

Thank you.

Prologue

Normative Decision Theory
The Savage Framework
Savage's Theorem
Desiderata I
Part I. Local SEU representations
Goal: SEU representations for ex ante preferences
Partially ordered vector spaces
Utility frames
Utility functionals
Beliefs
Local SEU representations
Desiderata II
Part II. Decision environments and ex ante preferences
Decision environments
Ex ante preference structures
Definition
Part III. Global subjective expected utility representations
Belief systems

Positive Affine Transformations
Utility systems
Global SEU Representation
Sketch of the SEU representation theorem

Thank you

