
Categorical Decision Theory

Marcus Pivato

Centre d’Économie de la Sorbonne
Université Paris 1 Panthéon-Sorbonne

7th International Conference on Applied Category Theory
University of Oxford

June 2024

(1/31)

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

Normative Decision Theory (2/31)

Decision theory studies decision-making in situations of risk or uncertainty.

There are two branches: normative and descriptive.

I Normative DT: how should an “ideal rational agent” make decisions?

I Descriptive DT: how do actual human beings make decisions in reality?

This talk is about normative decision theory.

Question. How should a rational agent make decisions in a risky situation?

Answer. (Bernoulli, 1738) Choose actions that maximize expected utility.

Question. But why?

Answer. (von Neumann & Morgenstern, 1948) When choosing between
lotteries (with objective, known probabilities), EU-maximization is the only
procedure that satisfies certain axioms of “rationality” or “consistency”.

Question. What about a situation without objective, known probabilities?

Answer. (Savage, 1954) The agent should contrive some “subjective”
probability distribution, and maximize EU with respect to this.

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

The Savage Framework (3/31)

Savage proposed the following model of decision-making under uncertainty.

I There is a set S of possible “states of nature”.

I The true state is unknown.
S represents all the information that is unknown to the agent.

I There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

I Each alternative defines a function α : S−→X , called an act.

I If the agent chooses the act α, and the true state of nature turns out
to be s, then she will obtain the outcome α(s).

I Let X S be the set of all logically possible acts.

I Let < be a weak order (a complete, transitive relation) on X S .

I For any acts α, β ∈ X S , the statement “α < β” means, “The agent
prefers α over β, ex ante.”

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Savage’s Theorem (4/31)

Savage’s Theorem. Suppose < satisfies six axioms (encoding various
criteria of “consistency” or “rationality”). Then there exists:

I a “cardinal utility” function u : X−→R, and

I a (finitely additive) probability measure µ on S,

which provide a subjective expected utility (SEU) representation for <.

In other words, given any acts α, β ∈ X S , we have(
α < β

)
⇐⇒

(∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ)

)
.

Heuristically, u describes the agent’s desires concerning outcomes in X .

Meanwhile, µ describes her beliefs about states in S.

Desiderata I (5/31)

There are several ways that we want to extend Savage’s framework.

Let’s start with two.

I Endow state space and outcome space with additional structure (e.g.
topology or geometry), and require acts to respect this structure.

I Analyse decision problems without explicitly describing the state space
and outcome space.

Idea. Reformulate Savage model using the tools of category theory, to
obtain a model which satisfies these desiderata.

Desiderata I (5/31)

There are several ways that we want to extend Savage’s framework.

Let’s start with two.

I Endow state space and outcome space with additional structure (e.g.
topology or geometry), and require acts to respect this structure.

I Analyse decision problems without explicitly describing the state space
and outcome space.

Idea. Reformulate Savage model using the tools of category theory, to
obtain a model which satisfies these desiderata.

Desiderata I (5/31)

There are several ways that we want to extend Savage’s framework.

Let’s start with two.

I Endow state space and outcome space with additional structure (e.g.
topology or geometry), and require acts to respect this structure.

I Analyse decision problems without explicitly describing the state space
and outcome space.

Idea. Reformulate Savage model using the tools of category theory, to
obtain a model which satisfies these desiderata.

Desiderata I (5/31)

There are several ways that we want to extend Savage’s framework.

Let’s start with two.

I Endow state space and outcome space with additional structure (e.g.
topology or geometry), and require acts to respect this structure.

I Analyse decision problems without explicitly describing the state space
and outcome space.

Idea. Reformulate Savage model using the tools of category theory, to
obtain a model which satisfies these desiderata.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Notation (6/31)

We will use the following notational conventions.

If C is a category, then C◦ denotes its set of objects.

For any objects A,B ∈ C◦, ~C(A,B) is the set of C-morphisms from A to B.

A functor from C to another category D is is indicated “F : C �⇒ D.”

If G : C �⇒ D is another functor, then a natural transformation from F to
G is indicated “Φ : F ≡V G.”

For simplicity, this talk focuses on the category Set (sets & functions).

But the theory also applies to concrete categories like Meas (measurable
spaces & measurable functions), Top (topological spaces & continuous
maps), and Diff (differentiable manifolds & smooth maps), and also to
abstract categories.

Part I

Local SEU representations

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Goal (8/31)

Let C be a category. Let S, X ∈ C◦ be two objects.

Interpretation:
I S = abstract “state space”;

I X = abstract “outcome space”;

I ~C(S,X) = set of abstract “acts”.

Let < be a preference order on
#»C (S,X).

Goal. Find a “subjective expected utility representation” for <.

Problem. In an abstract category C, what would this even mean?

I Objects in C◦ do not necessarily have underlying sets.
So we cannot represent beliefs by probability measures.

I Likewise, elements of
#»C (S,X) are not necessarily functions.

I Even if they are, R is not necessarily an object in C◦.
So we can’t define a “utility function” u : X−→R within C.

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Partially ordered vector spaces (9/31)

A partially ordered vector space (POVS) is a (real) vector space V
equipped with a partial order that is compatible with addition and scalar
multiplication in the obvious way.

Examples. (a) R is a POVS with the obvious linear order.

(b) Let S be a set. The vector space RS of real-valued functions on S is a
POVS with the pointwise dominance order.

An order unit for a POVS V is an element u ∈ V with u > 0, such that for
any v > 0 there is some r ∈ R+ with r u ≥ v.

A unitary partially ordered vector space (UPOVS) is a POVS equipped
with an order unit.

Examples. (a) 1 is an order unit for R, making R a unitary POVS.

(b) Let S be a set. Let `∞(S) be the POVS of all bounded elements of RS .
This is a UPOVS: the constant function 1S is an order unit for `∞(S).

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility frames (10/31)

An order-preserving linear transformation from a UPOVS V1 to a UPOVS
V2 is uniferent if it sends the order unit of V1 to the order unit of V2.

Let UPOVS be the category of all unitary partially ordered vector spaces
and all uniferent, order-preserving, linear transformations.

Let C be another category.

A utility frame on C is a contravariant functor L : Cop �⇒ UPOVS.

Example. Suppose C = Set.

For any S ∈ Set◦, let L(S) := `∞(S) with order unit 1S .

For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) : `∞(S2)−→`∞(S1)
by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.

Then L is a utility frame.

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: definition (11/31)

Let C be a category, and fix a utility frame L : Cop �⇒ UPOVS.

Let F : UPOVS �⇒ Set be the forgetful functor.

Let L := F ◦L : Cop �⇒ Set. (This is a presheaf.)

Let X ∈ C◦. Let ~C(•,X) : Cop �⇒ Set be the contravariant hom functor.

For all S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←
φ :=

#»C (φ,X).

(i.e.
←−
φ :

#»C (S2,X)−→ #»C (S1,X) is defined:
←
φ (α) := α ◦ φ, ∀ α ∈ #»C (S2,X).)

A utility functional for X is a natural transformation UX :
#»C (•,X) ≡V L.

In other words, UX = (UCX)C∈C◦ , where for any object C ∈ C◦,
UCX :

#»C (C,X)−→L(C) is a function such that, for any C1, C2 ∈ C◦ and

φ ∈ #»C (C1, C2), the following diagram commutes:

#»C (•,X)

≡
V

L

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X)

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X) α

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

α ◦ φ #»C (C1,X)
#»C (C2,X) α

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

α ◦ φ #»C (C1,X)
#»C (C2,X) α

u ◦ α ◦ φ L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X) α

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X) α

L(C1) L(C2) u ◦ α

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

#»C (C1,X)
#»C (C2,X) α

u ◦ α ◦ φ L(C1) L(C2) u ◦ α

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

α ◦ φ #»C (C1,X)
#»C (C2,X) α

u ◦ α ◦ φ L(C1) L(C2) u ◦ α

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

α ◦ φ #»C (C1,X)
#»C (C2,X) α

u ◦ α ◦ φ L(C1) L(C2) u ◦ α

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Utility functionals: example (12/31)

Suppose C = Set and L := `∞ : Setop �⇒ UPOVS as above.

Let X be a set. Let u : X−→R be a bounded function.

For any C ∈ Set◦ and any function α : C−→X , define
UCX (α) := u ◦ α : C−→R. Then UCX (α) ∈ `∞(C) —i.e. UCX (α) ∈ L(C).

This defines a function UCX :
#»C (C,X)−→L(C).

For any C1, C2 ∈ Set◦ and φ : C1−→C2, the following diagram commutes:

α ◦ φ #»C (C1,X)
#»C (C2,X) α

u ◦ α ◦ φ L(C1) L(C2) u ◦ α

U
C1
X

←−
φ

U
C2
X

L(φ)

Thus, UX = (UCX)C∈Set◦ is a utility functional.

Indeed, by an application of the Yoneda Lemma, every utility functional can
be seen as a generalization of this example.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Beliefs (13/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Regard R as a unitary POVS with order unit 1.

For any C ∈ C◦, a belief about C is a UPOVS-morphism ρ : L(C)−→R.

(i.e. ρ is an order-preserving linear function from L(C) to R with ρ(1) = 1.)

Example. Let C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S be a set and let µ be a probability measure the power set of S.

Define ρ : `∞(S)−→R by setting ρ(v) :=

∫
S
v dµ for all v ∈ `∞(S).

Then ρ is order-preserving, linear, and ρ(1) = 1. So it is a belief about S.

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Local SEU representations (14/31)

Let S and X be objects in C◦. Let < be a weak order on
#»C (S,X).

Let L : Cop �⇒ UPOVS be a utility frame.

A local subjective expected utility representation for < is a pair (ρ, UX),
where ρ is a belief about S and UX is a utility functional on X , such that:

for all α, β ∈ #»C (S,X), α < β ⇐⇒ ρ
[
USX (α)

]
≥ ρ

[
USX (β)

]
. (∗)

Example. Suppose C = Set and let L = `∞ : Setop �⇒ UPOVS.

Let S and X be sets. Let ρ be a belief on S defined by a prob. measure µ.

Let u : X−→R be bounded. Let UX :
#»C (•,X) ≡V L be the utility

functional such that, for any α ∈ #»C (S,X), we have USX (α) = u ◦ α.

Thus, ρ
[
USX (α)

]
=

∫
S
u ◦ α dµ. So for all α, β ∈ #»C (S,X), formula (∗)

says: α < β ⇐⇒
∫
S
u ◦ α dµ ≥

∫
S
u ◦ β dµ (a classic SEU repr.).

Desiderata II (15/31)

There are three more ways that we want to extend Savage’s framework.

I Obtain a single SEU representation that applies to many different
decision problems, with different state spaces and/or outcome spaces.

I Represent the same decision problem with different levels of
“awareness”, or access to different information sources.

I Represent “analogies” between different decision problems, or “internal
symmetries” within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata.

Desiderata II (15/31)

There are three more ways that we want to extend Savage’s framework.

I Obtain a single SEU representation that applies to many different
decision problems, with different state spaces and/or outcome spaces.

I Represent the same decision problem with different levels of
“awareness”, or access to different information sources.

I Represent “analogies” between different decision problems, or “internal
symmetries” within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata.

Desiderata II (15/31)

There are three more ways that we want to extend Savage’s framework.

I Obtain a single SEU representation that applies to many different
decision problems, with different state spaces and/or outcome spaces.

I Represent the same decision problem with different levels of
“awareness”, or access to different information sources.

I Represent “analogies” between different decision problems, or “internal
symmetries” within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata.

Desiderata II (15/31)

There are three more ways that we want to extend Savage’s framework.

I Obtain a single SEU representation that applies to many different
decision problems, with different state spaces and/or outcome spaces.

I Represent the same decision problem with different levels of
“awareness”, or access to different information sources.

I Represent “analogies” between different decision problems, or “internal
symmetries” within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata.

Desiderata II (15/31)

There are three more ways that we want to extend Savage’s framework.

I Obtain a single SEU representation that applies to many different
decision problems, with different state spaces and/or outcome spaces.

I Represent the same decision problem with different levels of
“awareness”, or access to different information sources.

I Represent “analogies” between different decision problems, or “internal
symmetries” within a decision problem.

Wanted:
A generalization of the Savage framework that satisfies these desiderata.

Part II.

Decision environments

and

ex ante preferences

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Decision Environments (17/31)

Let C be a category.

A decision environment on C is an ordered pair (S,X), where S and X are
subcategories of C.

Objects in S◦ are “abstract state spaces”. (But they might not actually be
spaces.) Let’s call them state places.

For any S1 and S2 in S◦, each φ in
#»S(S1,S2) is a C-morphism from S1 to

S2 that is “compatible” with the agent’s beliefs about S1 and S2.

Objects in X ◦ are “abstract outcome spaces”. (But they might not be
spaces.) Let’s call them outcome places.

For any X1 and X2 in X ◦, each φ in
#»X (X1,X2) is a C-morphism from X1

to X2 that is “compatible” with the agent’s desires over X1 and X2.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X) represent “abstract acts”.

Ex ante preference structures: Definition (18/31)

Let (S,X) be a decision environment in a category C.

For every S in S◦ and X in X ◦, let <SX be a preference order on
#»C (S,X),

representing the agent’s ex ante preferences over acts.

◦�xa
:= {<SX ; S ∈ S◦ and X ∈ X ◦} is an ex ante preference structure if:

(BP) For all S1,S2 ∈ S◦, φ ∈ #»S(S1,S2), X ∈ X ◦, and α, β ∈ #»C (S2,X),

α <S2X β if and only if α◦φ <S1X β◦φ. (Idea: φ is “belief-preserving”.)

(DP) For all X1,X2 ∈ X ◦, φ ∈ #»X (X1,X2), S ∈ S◦, and α, β ∈ #»C (S,X1),

α <SX1
β if and only if φ◦α <SX2

φ◦β. (Idea: φ is “desire-preserving”.)

Ex ante preference structures: Definition (18/31)

Let (S,X) be a decision environment in a category C.

For every S in S◦ and X in X ◦, let <SX be a preference order on
#»C (S,X),

representing the agent’s ex ante preferences over acts.

◦�xa
:= {<SX ; S ∈ S◦ and X ∈ X ◦} is an ex ante preference structure if:

(BP) For all S1,S2 ∈ S◦, φ ∈ #»S(S1,S2), X ∈ X ◦, and α, β ∈ #»C (S2,X),

α <S2X β if and only if α◦φ <S1X β◦φ. (Idea: φ is “belief-preserving”.)

(DP) For all X1,X2 ∈ X ◦, φ ∈ #»X (X1,X2), S ∈ S◦, and α, β ∈ #»C (S,X1),

α <SX1
β if and only if φ◦α <SX2

φ◦β. (Idea: φ is “desire-preserving”.)

Ex ante preference structures: Definition (18/31)

Let (S,X) be a decision environment in a category C.

For every S in S◦ and X in X ◦, let <SX be a preference order on
#»C (S,X),

representing the agent’s ex ante preferences over acts.

◦�xa
:= {<SX ; S ∈ S◦ and X ∈ X ◦} is an ex ante preference structure if:

(BP) For all S1,S2 ∈ S◦, φ ∈ #»S(S1,S2), X ∈ X ◦, and α, β ∈ #»C (S2,X),

α <S2X β if and only if α◦φ <S1X β◦φ. (Idea: φ is “belief-preserving”.)

(DP) For all X1,X2 ∈ X ◦, φ ∈ #»X (X1,X2), S ∈ S◦, and α, β ∈ #»C (S,X1),

α <SX1
β if and only if φ◦α <SX2

φ◦β. (Idea: φ is “desire-preserving”.)

Ex ante preference structures: Definition (18/31)

Let (S,X) be a decision environment in a category C.

For every S in S◦ and X in X ◦, let <SX be a preference order on
#»C (S,X),

representing the agent’s ex ante preferences over acts.

◦�xa
:= {<SX ; S ∈ S◦ and X ∈ X ◦} is an ex ante preference structure if:

(BP) For all S1,S2 ∈ S◦, φ ∈ #»S(S1,S2), X ∈ X ◦, and α, β ∈ #»C (S2,X),

α <S2X β if and only if α◦φ <S1X β◦φ. (Idea: φ is “belief-preserving”.)

(DP) For all X1,X2 ∈ X ◦, φ ∈ #»X (X1,X2), S ∈ S◦, and α, β ∈ #»C (S,X1),

α <SX1
β if and only if φ◦α <SX2

φ◦β. (Idea: φ is “desire-preserving”.)

Objectives (19/31)

Objective 1. Define “subjective expected utility representation” for ex ante
preference structures over decision environments in abstract categories.

Objective 2. Find necessary/sufficient conditions for the existence of such
SEU representations.

Objectives (19/31)

Objective 1. Define “subjective expected utility representation” for ex ante
preference structures over decision environments in abstract categories.

Objective 2. Find necessary/sufficient conditions for the existence of such
SEU representations.

Objectives (19/31)

Objective 1. Define “subjective expected utility representation” for ex ante
preference structures over decision environments in abstract categories.

Objective 2. Find necessary/sufficient conditions for the existence of such
SEU representations.

Part III.

Global SEU representations

Belief systems: definition (21/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Let S be a subcategory of C (e.g. state places in a decision environment).

Let L|S : Sop �⇒ UPOVS be the restriction of L to S.

A belief system for S is a co-cone from L|S to R in category UPOVS.

In other words: it is a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such
that, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Belief systems: definition (21/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Let S be a subcategory of C (e.g. state places in a decision environment).

Let L|S : Sop �⇒ UPOVS be the restriction of L to S.

A belief system for S is a co-cone from L|S to R in category UPOVS.

In other words: it is a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such
that, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Belief systems: definition (21/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Let S be a subcategory of C (e.g. state places in a decision environment).

Let L|S : Sop �⇒ UPOVS be the restriction of L to S.

A belief system for S is a co-cone from L|S to R in category UPOVS.

In other words: it is a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such
that, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Belief systems: definition (21/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Let S be a subcategory of C (e.g. state places in a decision environment).

Let L|S : Sop �⇒ UPOVS be the restriction of L to S.

A belief system for S is a co-cone from L|S to R in category UPOVS.

In other words: it is a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such
that, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Belief systems: definition (21/31)

Let C be a category, and let L : Cop �⇒ UPOVS be a utility frame.

Let S be a subcategory of C (e.g. state places in a decision environment).

Let L|S : Sop �⇒ UPOVS be the restriction of L to S.

A belief system for S is a co-cone from L|S to R in category UPOVS.

In other words: it is a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such
that, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Belief systems in concrete categories (22/31)

A belief system for S is a a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such that, for
any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Proposition. Let L := `∞ : Setop �⇒ UPOVS.

Let S be a subcategory of Set, and let {ρS}S∈S◦ be a belief system.

For all S ∈ S◦, there is a unique finitely additive probability measure µS on
the power set of S, such that ρS : `∞(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ `∞(S).

Also, for all S1,S2 ∈ S◦, we have φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).

Belief systems in concrete categories (22/31)

A belief system for S is a a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such that, for
any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Proposition. Let L := `∞ : Setop �⇒ UPOVS.

Let S be a subcategory of Set, and let {ρS}S∈S◦ be a belief system.

For all S ∈ S◦, there is a unique finitely additive probability measure µS on
the power set of S, such that ρS : `∞(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ `∞(S).

Also, for all S1,S2 ∈ S◦, we have φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).

Belief systems in concrete categories (22/31)

A belief system for S is a a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such that, for
any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Proposition. Let L := `∞ : Setop �⇒ UPOVS.

Let S be a subcategory of Set, and let {ρS}S∈S◦ be a belief system.

For all S ∈ S◦, there is a unique finitely additive probability measure µS on
the power set of S, such that ρS : `∞(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ `∞(S).

Also, for all S1,S2 ∈ S◦, we have φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).

Belief systems in concrete categories (22/31)

A belief system for S is a a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such that, for
any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Proposition. Let L := `∞ : Setop �⇒ UPOVS.

Let S be a subcategory of Set, and let {ρS}S∈S◦ be a belief system.

For all S ∈ S◦, there is a unique finitely additive probability measure µS on
the power set of S, such that ρS : `∞(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ `∞(S).

Also, for all S1,S2 ∈ S◦, we have φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).

Belief systems in concrete categories (22/31)

A belief system for S is a a collection of beliefs {ρS : L(S)−→R}S∈S◦ , such that, for
any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), the next diagram commutes:

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

Proposition. Let L := `∞ : Setop �⇒ UPOVS.

Let S be a subcategory of Set, and let {ρS}S∈S◦ be a belief system.

For all S ∈ S◦, there is a unique finitely additive probability measure µS on
the power set of S, such that ρS : `∞(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ `∞(S).

Also, for all S1,S2 ∈ S◦, we have φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

Pos. Affine Transformations & Utility Systems (23/31)

A positive affine transformation is an increasing bijection φ : R−→R of
the form φ(r) = a r+ b for all r ∈ R, where a > 0 and b ∈ R are constants.

The set of all positive affine transformations forms a group Aff under
composition, which we can regard as a single-object category.

Let V be a unitary POVS with order unit 1V .

A positive affine transformation of V is an order-preserving bijection
φ : V−→V of the form φ(v) = av + b1V for all v ∈ V, where a > 0 and
b ∈ R are constants.

The set of all positive affine transformations of V forms a group Aff(V)
under composition.

There is a canonical group isomorphism Aff −̃→ Aff(V).

For any φ ∈ Aff , let φV denote the corresponding element of Aff(V).

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

For any C ∈ C◦, let ~C(C, •) : C �⇒ Set be the covariant hom functor.

For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ).

(That is: ~φ :
#»C (C,X)−→ #»C (C,Y) is defined by ~φ(α) := φ ◦ α for all α ∈ #»C (C,X).)

Let L : Cop �⇒ UPOVS be a utility frame.

Let X be a subcategory of C (e.g. outcome places in a decision environment).

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X ◦ , where UX :
#»C (•,X) ≡V L is a utility functional for

each X ∈ X ◦; such that

for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X)
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

An (L-valued) utility system on X is an ordered pair (U,A), where

I A : X �⇒ Aff is a functor; and

I U = (UX)X∈X◦ , where UX :
#»C (•,X) ≡V L is a utility functional for each X ∈ X ◦;

such that for all C ∈ C◦, all X ,Y ∈ X ◦ and all φ ∈ #»X (X ,Y), this diagram commutes:

#»C (C,X) #»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

(
where φ̂ := A(φ), and φ̂L(C) is the

automorphism of L(C) obtained from φ̂.

)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

For all X ∈ X ◦, let uX : X−→R, and define the utility functional
UX = (UCX)C∈C◦ :

#»C (•,X) ≡V L as before.

Let A : X−→Aff be a functor.

For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where
φ̂ := A(φ) (an affine function from R to itself).

Then the collection (UCX)C∈C
◦

X∈X ◦ together with A is a utility system on X .

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

Global SEU Representation: definition (26/31)

Let (S,X) be a decision environment in a category C.

Let ◦�xa
be an ex ante preference structure on (S,X).

A global subjective expected utility representation for ◦�xa
consists of:

I A utility frame L : Cop−→UPOVS;

I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)C∈C
◦

X∈X ◦ and A : X−→Aff ;

such that for all S ∈ S◦ and X ∈ X ◦, and all α, β ∈ #»C (S,X)

α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A global subjective expected utility representation for ◦�
xa

consists of:

I A utility frame L : Cop−→UPOVS; I A belief system (ρS)S∈S◦ ; and

I A utility system given by (UCX)
C∈C◦
X∈X◦ and A : X−→Aff ; such that

∀ S ∈ S◦, X ∈ X ◦, and α, β ∈ #»C (S,X), α <SX β ⇔ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (∗)

Example. Suppose C = Set and L := `∞ : Setop �⇒ UPOVS.

Let {µS}S∈S◦ be a set of prob. measures defining belief system {ρS}S∈S◦ .

For all X ∈ X ◦, let uX : X−→R be a bounded function.

Let A : X−→Aff be a functor.

Define a utility system (UCX)C∈C
◦

X∈X ◦ using (uX)X∈X ◦ and A as before.

For all S ∈ S◦ and X ∈ X ◦, define an order <SX on
»

Set(S,X) via (∗).

The system ◦�xa
:= (<SX)S∈S

◦

X∈X ◦ is an ex ante preference structure on (S,X).

The data L, (ρS)S∈S◦ , (UCX)C∈C
◦

X∈X ◦ and A yield a global SEU repr. for ◦�xa
.

A sketch of the SEU representation theorem (28/31)

Question. Under what conditions does an ex ante preference structure
have a global SEU representation?

Answer. Using an approach inspired by Anscombe & Aumann (1963), we
prove a theorem giving necessary & sufficient conditions for an ex ante
preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions
are continuous, and beliefs are represented by Borel probability measures.

Due to time constraints, it is not possible to provide details here.

A sketch of the SEU representation theorem (28/31)

Question. Under what conditions does an ex ante preference structure
have a global SEU representation?

Answer. Using an approach inspired by Anscombe & Aumann (1963), we
prove a theorem giving necessary & sufficient conditions for an ex ante
preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions
are continuous, and beliefs are represented by Borel probability measures.

Due to time constraints, it is not possible to provide details here.

A sketch of the SEU representation theorem (28/31)

Question. Under what conditions does an ex ante preference structure
have a global SEU representation?

Answer. Using an approach inspired by Anscombe & Aumann (1963), we
prove a theorem giving necessary & sufficient conditions for an ex ante
preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions
are continuous, and beliefs are represented by Borel probability measures.

Due to time constraints, it is not possible to provide details here.

A sketch of the SEU representation theorem (28/31)

Question. Under what conditions does an ex ante preference structure
have a global SEU representation?

Answer. Using an approach inspired by Anscombe & Aumann (1963), we
prove a theorem giving necessary & sufficient conditions for an ex ante
preference structure to have a global SEU representation.

Furthermore, in the category Top, we can ensure that the utility functions
are continuous, and beliefs are represented by Borel probability measures.

Due to time constraints, it is not possible to provide details here.

Thank you.

Prologue
Normative Decision Theory
The Savage Framework
Savage’s Theorem
Desiderata I

Part I. Local SEU representations
Goal: SEU representations for ex ante preferences
Partially ordered vector spaces
Utility frames
Utility functionals
Beliefs
Local SEU representations
Desiderata II

Part II. Decision environments and ex ante preferences
Decision environments
Ex ante preference structures

Definition

Part III. Global subjective expected utility representations
Belief systems

Positive Affine Transformations
Utility systems
Global SEU Representation
Sketch of the SEU representation theorem

Thank you

	Prologue
	Normative Decision Theory
	The Savage Framework
	Savage's Theorem
	Desiderata I

	Part I. Local SEU representations
	Goal: SEU representations for ex ante preferences
	Partially ordered vector spaces
	Utility frames
	Utility functionals
	Beliefs
	Local SEU representations
	Desiderata II

	Part II. Decision environments and ex ante preferences
	Decision environments
	Ex ante preference structures

	Part III. Global subjective expected utility representations
	Belief systems
	Positive Affine Transformations
	Utility systems
	Global SEU Representation
	Sketch of the SEU representation theorem

	Thank you

