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Overview

This work:
• Using graded perspective and naming Knightian choices we

give a fully compositional account of Bernoulli and Knightian
uncertainty together
• Theorem 1: This gives a refined bound on uncertainty
• Theorem 2: It is maximal among compositional accounts

Not this work:
• There is a broader interest in combining non-determinism and

probability [Dash and Staton 2021; Dash and Staton 2020;
Dahlqvist et al. 2018; Keimel et al. 2017; Dash 2024; Kozen
et al. 2023; Varacca et al. 2006; Jacobs 2021]
• Our focus is in the setting of imprecise probability
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Imprecise Probability

• Probability = point in simplex
• Imprecise probability = convex set of points
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A First Language

Our prototype language for imprecise probability is a first-order
functional language without recursion. We have:
• If/then/else statements;
• Sequencing with immutable variable assignment;
• Two commands returning booleans:

• bernoulli: a fair Bernoulli choice;
• knight: a Knightian choice.
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Examples

z ← bernoulli ;
if z then return g else return b

g b

r

x ← knight ; z ← bernoulli ;
if z then ( if x then return r else return g )

else ( if x then return r else return b )

g b

r

x ← knight ; y ← knight ; z ← bernoulli ;
if z then ( if x then return r else return g )

else ( if y then return r else return b )

g b

r
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Desiderata

Desideratum (1)
The language should be commutative:

x ← t ; y ← u ; v = y ← u ; x ← t ; v

for x /∈ fv(u) and y /∈ fv( t ); and affine:

x ← t ; u = u

for x /∈ fv(u).

u...

t...

v
x

y

... =

u...

t...

v
x

y

... =

u...

t...

v
x

y

...

Jack Liell-Cock, Sam Staton Compositional Imprecise Probability 21st June, 2024 10 / 27



Desiderata

Desideratum (2)
Standard equational reasoning about if/then/else should apply:

if b then (x ← t ; u) else (x ← t ; v)
=

x ← t ; if b then u else v

for x /∈ fv(b).
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The Problem: CP doesn’t work [Mio et al. 2020]

bernoulli interpreted as
{(

0.5
0.5

)}

kni
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g b
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knight interpreted as
{(

1
0

)
,

(
0
1

)}
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f
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g b

r

f (x ,y) = if x then ( if y then return r else return g )
else ( if y then return r else return b )
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The Problem

Theorem: Any semantic model that satisfies our desiderata cannot
distinguish the following convex sets of distributions.

g b

r

g b

r

z ← bernoulli ;
if z then ( if x ← knight ; x then return r else return g )

else ( if x ← knight ; x then return r else return b )
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The Solution: Named Knightian choices

x ← knight(a1) ; z ← bernoulli ;
if z then ( if x then return r else return g )

else ( if x then return r else return b )
=

x ← knight(a1) ; y ← knight(a1) ; z ← bernoulli ;
if z then ( if x then return r else return g )

else ( if y then return r else return b )
̸=

x ← knight(a1) ; y ← knight(a2) ; z ← bernoulli ;
if z then ( if x then return r else return g )

else ( if y then return r else return b )

g b

r

g b

r
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The Solution: Named Knightian choices

• Reader monad transformer of finite distributions monad

T2A(X ) = [2A ⇒ D(X )]

• Knightian choices given by reading
• Bernoulli choices given by distributions
• We generalise the Knightian choices 2A to arbitrary sets B

TB(X ) = [B ⇒ D(X )]

• Convex powerset recovered by pushing forward maximal
convex distribution on B

JtKB = {p >>=D t | p ∈ D (B)} ∈ CP(X ).
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Markov Categories

A Markov category [Fritz 2020] is a symmetric monoidal category
such that every object is equipped with a commutative comonoid
structure.

copyX

X X

X

delX

X

A distributive Markov category [Ackerman et al. 2024] is a
Markov category with coproducts such that
X ⊗ Z + Y ⊗ Z ∼= (X ⊗ Y ) + Z and injections commute with copy
maps.
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The graded Markov category ImP

Definition
FinStoch is the distributive Markov category of natural numbers
and stochastic matrices.

Definition
FinStochSurj is the subcategory of FinStoch with the same objects
but only surjective stochastic matrices.

Definition
ImP is the FinStochSurj-graded version of FinStoch.
That is, for a ∈ FinStochSurj and x , y ∈ FinStoch:

ImPa(X ,Y ) = FinStoch(a⊗ X ,Y )
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The graded Markov category ImP

Definition
ImP is the FinStochSurj-graded version of FinStoch.
That is, for a ∈ FinStochSurj and x , y ∈ FinStoch:

ImPa(X ,Y ) = FinStoch(a⊗ X ,Y )

ImP supports finite probability and finite non-determinism:

• bernoulli is a morphism in ImP1(1,2) given by
(

0.5
0.5

)
• knight is a morphism in ImP2(1,2) given by unit diagonal

Composition uses independent non-deterministic branches:

ImPa(X ,Y )× ImPb(Y ,Z )→ ImPa⊗b(X ,Z )

Monoidal structure too:

ImPb(X ,Y )× ImPa(X ′,Y ′)→ ImPa⊗b(X ⊗ X ′,Y ⊗ Y ′)
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Threorem 1: Improved Bounds

r :
g :
b :

1 0
0 0.5
0 0.5

 −−−−→

g b

r

• There is a mapping from f ∈ ImPa(X ,Y ) to R(f ) : m→ CP(n)
• This is an ‘op-lax’ functor,

R : ImP→ Kl(CP)

• So composition in ImP gives tighter bounds on the Knightian
uncertainty than composition in Kl(CP)

R(g ◦ f ) ⊆ R(g) ◦ R(f )
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Threorem 2: Maximality

• The language gives rise to a compositional theory of equality
• This equational theory is maximal
• We can add no further equations without

• Compromising imprecise probability connection (equating
different convex subsets); or

• Compromising the compositional structure
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Conclusion

This work:
• Using graded perspective and naming Knightian choices we

give a fully compositional account of Bernoulli and Knightian
uncertainty together
• Theorem 1: This gives a refined bound on uncertainty
• Theorem 2: It is maximal among compositional accounts

Future work:
• Iteration and infinite dimensional structures
• Function spaces via quasi-Borel spaces
• Implementation and approximation of bounds
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