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Overview

This work:

e Using graded perspective and naming Knightian choices we
give a fully compositional account of Bernoulli and Knightian
uncertainty together

e Theorem 1: This gives a refined bound on uncertainty

e Theorem 2: It is maximal among compositional accounts
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Overview

This work:

e Using graded perspective and naming Knightian choices we
give a fully compositional account of Bernoulli and Knightian
uncertainty together

e Theorem 1: This gives a refined bound on uncertainty
e Theorem 2: It is maximal among compositional accounts
Not this work:

e There is a broader interest in combining non-determinism and
probability [Dash and Staton 2021; Dash and Staton 2020;
Dahlqgvist et al. 2018; Keimel et al. 2017; Dash 2024; Kozen
et al. 2023; Varacca et al. 2006; Jacobs 2021]

e QOur focus is in the setting of imprecise probability
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@ Imprecise Probability

® Desiderata

© The Problem

@ The Solution: Named Knightian Choices
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@ Results
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@ Imprecise Probability
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Imprecise Probability

¢ Probability = point in simplex
¢ Imprecise probability = convex set of points

r r

p p

r r
g&p b g b
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A First Language

Our prototype language for imprecise probability is a first-order
functional language without recursion. We have:

e If/then/else statements;
e Sequencing with immutable variable assignment;

e Two commands returning booleans:

® bpernoulli: a fair Bernoulli choice;
® knight. a Knightian choice.
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Examples

x < knight; z < bernoulli;
if z then (if x thenreturn r else return g)
else (if x thenreturn r else return b)

z < bernoulli;
if z then return g else return b

r r

x < knight ; y < knight ; z < bernoulli;
if z then (if x then return r else return g)
else (if y thenreturn r else return b)

r

g b
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® Desiderata
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Desiderata

Desideratum (1)
The language should be commutative:

X t, Yy« u;,0v = Y Uu,x< t;o

forx ¢ fo(u) andy ¢ fo(t), and affine:

forx ¢ fo(u).
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Desiderata

Desideratum (2)
Standard equational reasoning about if/then/else should apply:

if bthen (x «+ t; u)else (x + t; v)

x + t; if bthenuelse v

forx ¢ fo(b).

Jack Liell-Cock, Sam Staton Compositional Imprecise Probability 21st June, 2024 11727



© The Problem
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The Problem: CP doesn’t work [Mio et al. 2020]

bernoulliinterpreted as { (82) } knight interpreted as { (8) , (?) }

flx,y) = if x then (if y then return r else return g)
else (if y thenreturn r else return b)
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The Problem

Theorem: Any semantic model that satisfies our desiderata cannot
distinguish the following convex sets of distributions.

r r

9 b g b

z < bernoulli;
if z then (if x < knight; x then return r else return g)
else (if x < knight; x then return r else return b)
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@ The Solution: Named Knightian Choices
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The Solution: Named Knightian choices

#

x < knight(ay); z < bernoulli;
if z then (if x then return r else return g)
else (if x then return r else return b)

x < knight(a:); y < knight(a;); z < bernoulli;
if z then (if x then return r else return g)

else (if y thenreturn r else return b)
x < knight(a;); y < knight(az); z < bernoulli ;

if z then (if x then return r else return g)
else (if y then return r else return b)

g b 9
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The Solution: Named Knightian choices

e Reader monad transformer of finite distributions monad

Toa(X) = [ = D(X)]
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The Solution: Named Knightian choices

e Reader monad transformer of finite distributions monad
Toa(X) = [2% = D(X)]

¢ Knightian choices given by reading
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The Solution: Named Knightian choices

e Reader monad transformer of finite distributions monad
Toa(X) = [2% = D(X)]

¢ Knightian choices given by reading
e Bernoulli choices given by distributions
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The Solution: Named Knightian choices

e Reader monad transformer of finite distributions monad
Toa(X) = [2% = D(X)]

¢ Knightian choices given by reading
e Bernoulli choices given by distributions
e We generalise the Knightian choices 24 to arbitrary sets B

Ta(X) = [B = D(X)]
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The Solution: Named Knightian choices

e Reader monad transformer of finite distributions monad
Toa(X) = [2% = D(X)]

¢ Knightian choices given by reading
e Bernoulli choices given by distributions
e We generalise the Knightian choices 24 to arbitrary sets B

Ta(X) = [B = D(X)]

e Convex powerset recovered by pushing forward maximal
convex distribution on B

[t]s = {p»=p t|p e D(B)} € CP(X).
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© A Graded Category
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Markov Categories

A Markov category [Fritz 2020] is a symmetric monoidal category
such that every object is equipped with a commutative comonoid
structure.

X X

copyx dely

X X

A distributive Markov category [Ackerman et al. 2024] is a
Markov category with coproducts such that
X@Z+Y®Z=(X®Y)+Zandinjections commute with copy
maps.
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The graded Markov category ImP

Definition

FinStoch is the distributive Markov category of natural numbers
and stochastic matrices.
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The graded Markov category ImP

Definition

FinStoch is the distributive Markov category of natural numbers
and stochastic matrices.

Definition

FinStochs,; is the subcategory of FinStoch with the same objects
but only surjective stochastic matrices.
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The graded Markov category ImP

Definition

FinStoch is the distributive Markov category of natural numbers
and stochastic matrices.

FinStochs,,; is the subcategory of FinStoch with the same objects
but only surjective stochastic matrices.

ImP is the FinStochs,;-graded version of FinStoch.
That is, for a € FinStochs,,; and x, y € FinStoch:

ImP4(X, Y) = FinStoch(a® X, Y)
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The graded Markov category ImP

Definition

ImP is the FinStochg,-graded version of FinStoch.
That is, for a € FinStochs,;; and x, y € FinStoch:

ImP,(X, Y) = FinStoch(a® X, Y)

ImP supports finite probability and finite non-determinism:
e bernoulliis a morphism in ImP4(1,2) given by <8g>
® knightis a morphism in ImP2(1,2) given by unit diagonal

Composition uses independent non-deterministic branches:

IMP,(X,Y) X ImPu(Y,2Z) = ImP g (X, Z)
Monoidal structure too:

IMP,(X, Y) x ImP4(X’, Y') = ImP4op(X ® X', Y ® V')
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@ Results
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Threorem 1: Improved Bounds

r- /1 0
g: 10 05  —
b: \0 05

e There is a mapping from f € ImP4(X, Y) to R(f) : m — CP(n)
e This is an ‘op-lax’ functor,

R : ImP — KI(CP)

¢ So composition in ImP gives tighter bounds on the Knightian
uncertainty than composition in KI(CP)

R(gof) C R(g) o R(f)

Jack Liell-Cock, Sam Staton Compositional Imprecise Probability 21st June, 2024 23/27



Threorem 2: Maximality

* The language gives rise to a compositional theory of equality
e This equational theory is maximal
e We can add no further equations without
® Compromising imprecise probability connection (equating
different convex subsets); or
® Compromising the compositional structure
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Conclusion

This work:

e Using graded perspective and naming Knightian choices we
give a fully compositional account of Bernoulli and Knightian
uncertainty together

e Theorem 1: This gives a refined bound on uncertainty

e Theorem 2: It is maximal among compositional accounts

Future work:

e |teration and infinite dimensional structures

e Function spaces via quasi-Borel spaces

¢ Implementation and approximation of bounds
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