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Copy and delete

copyy: X = X@X delx: X — 1
X X
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Copy and delete

copyy: X > X®X delx: X — 1
X X

X X
copyx copies the information of X without introducing randomness!

p: | — X are probabilities on X.
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Toy example

Q. For finite sets, what is a probabilistic morphism?
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Toy example

Q. For finite sets, what is a probabilistic morphism?

A. It's a Markov kernel:
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Standard Borel spaces

BorelStoch: Standard Borel spaces with Markov kernels.
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Standard Borel spaces

BorelStoch: Standard Borel spaces with Markov kernels.

Kuratowski’s theorem

Any standard Borel space is measurable isomorphic to R, 7Z, or a finite
set.
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Conditional independence

Fix a probability p: | = X W ® Y.

Then X is conditionally independent of Y given W, in symbols
X LY |W,if

X w Y

XWY

for some f, g.
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Conditional independence

Fix a probability p: | = X W ® Y.

Then X is conditionally independent of Y given W, in symbols
X LY |W,if

X w Y

XWY

for some f,g. X and Y are identically distributed given W if f = g.
Similarly, one can define | ; X; | W.
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Countable tensor product: X¥, and we get X?: XN — XN for each finite
permutation o.
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De Finetti theorem

- XN and we get X7 XN — XN for each finite
permutation o.

. p: | — XY such that X p = p for all o.

Let p be an exchangeable probability / — X~. For any n € N,
LicnXi | X{> Even more, they are identically distributed given the

tail:
X1 X, x{>n}
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What do we need?

Synthetic proof of the de Finetti theorem under the following
assumptions:

1. Countable tensor products (Kolmogorov products);
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What do we need?

Synthetic proof of the de Finetti theorem under the following
assumptions:
1. Countable tensor products (Kolmogorov products);

2. Conditionals;
T. Fritz, T. Gonda, and P. Perrone. de Finetti’'s theorem in categorical

probability. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.

3. New information flow axiom: the Cauchy-Schwarz axiom.

BorelStoch satisfies these assumptions.

Under the same hypotheses we can prove the Aldous—Hoover theorem!
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The Cauchy—Schwarz axiom
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The Cauchy—Schwarz axiom

Ty

Last equation: f is p-a.s. equal to g.
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The Cauchy—Schwarz axiom

Ty

Last equation: f is p-a.s. equal to g.

This axiom controls almost sure equality!
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Plate notation

To write the Aldous—Hoover theorem, we use the plate notation:

S X X X X
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=
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Let p: | — XNXN pe (for all finite
permutations o, X?*4 p = p = X14x7 p).
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Let p: | — X"*N be (for all finite
permutations o, X?*4 p = p = X4 X9 p). Then, for any n € N,

XA<n}x{<n} X{>npx{>n}

X {>n}x{<n} X{<n}x{>n}

XNXN
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Idea of the proof

1 =

T. Fritz and A. Klinger. The d-separation criterion in categorical probability. J. Mach.
Learn. Res., 24(46):1-49, 2023. arXiv:2207.05740.
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