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Aldous–Hoover theorem, 1
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Markov categories



Definition of a Markov category

Markov category

Symmetric

monoidal
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(C,⊗, I )
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copyX
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Copy and delete

copyX : X → X ⊗ X delX : X → I

X X

X X

copyX copies the information of X without introducing randomness!

p : I → X are probabilities on X .
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Toy example

Q. For finite sets, what is a probabilistic morphism?

A. It’s a Markov kernel:
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Standard Borel spaces

BorelStoch: Standard Borel spaces with Markov kernels.

Kuratowski’s theorem

Any standard Borel space is measurable isomorphic to R, Z, or a finite

set.
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Conditional independence

Fix a probability p : I → X ⊗W ⊗ Y .

Then X is conditionally independent of Y given W , in symbols

X ⊥ Y |W , if

=

p

f g

X YW

p

X YW

for some f , g .

X and Y are identically distributed given W if f = g .

Similarly, one can define ⊥i Xi |W .
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Aldous–Hoover theorem



De Finetti theorem

Countable tensor product: XN, and we get Xσ : XN → XN for each finite

permutation σ.

Exchangeable probability: p : I → XN such that Xσ p = p for all σ.

De Finetti theorem

Let p be an exchangeable probability I → XN. For any n ∈ N,

⊥i≤nXi | X {>n}. Even more, they are identically distributed given the

tail:

p

f

=

. . .f
XN

X1 Xn X {>n}

p
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What do we need?

Synthetic proof of the de Finetti theorem under the following

assumptions:

1. Countable tensor products (Kolmogorov products);

2. Conditionals;

T. Fritz, T. Gonda, and P. Perrone. de Finetti’s theorem in categorical

probability. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.

3. New information flow axiom: the Cauchy–Schwarz axiom.

BorelStoch satisfies these assumptions.

Under the same hypotheses we can prove the Aldous–Hoover theorem!
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The Cauchy–Schwarz axiom

=
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=⇒

Last equation: f is p-a.s. equal to g .

This axiom controls almost sure equality!
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Plate notation

To write the Aldous–Hoover theorem, we use the plate notation:

=f

i ≤ n

A

X {≤n}

f f f f· · ·

A

X X X X

De Finetti theorem:

p =

fXN

X {≤n} X {>n}

p

i ≤ n
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Main theorem

Aldous–Hoover theorem

Let p : I → XN×N be row-and-column-exchangeable (for all finite

permutations σ, Xσ×id p = p = X id×σ p).

Then, for any n ∈ N,

=

p

p

f g
i ≤ n

j ≤ n

h

X {≤n}×{>n}X {>n}×{≤n}

XN×N

X {≤n}×{≤n} X {>n}×{>n}

rows
columns

tail
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Idea of the proof
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T. Fritz and A. Klinger. The d-separation criterion in categorical probability. J. Mach.

Learn. Res., 24(46):1–49, 2023. arXiv:2207.05740.
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