

The Aldous-Hoover theorem in Categorical Probability

Joint work with Leihao Chen, Tobias Fritz, Tomáš Gonda and Andreas Klinger

Antonio Lorenzin, University of Innsbruck

ACT conference 2024, Oxford

Contents

Rough idea

Markov categories

Definition of a Markov category

Definition of a Markov category

Definition of a Markov category

Copy and delete

Copy and delete

 copy_X copies the information of X without introducing randomness!

Copy and delete

 $copy_X$ copies the information of X without introducing randomness!

 $p: I \to X$ are probabilities on X.

Toy example

Q. For finite sets, what is a probabilistic morphism?

Toy example

- **Q.** For finite sets, what is a probabilistic morphism?
- A. It's a Markov kernel:

Standard Borel spaces

BorelStoch: Standard Borel spaces with Markov kernels.

Standard Borel spaces

BorelStoch: Standard Borel spaces with Markov kernels.

Kuratowski's theorem

Any standard Borel space is measurable isomorphic to \mathbb{R} , \mathbb{Z} , or a finite set.

Conditional independence

Fix a probability $p: I \to X \otimes W \otimes Y$.

Then X is conditionally independent of Y given W, in symbols $X \perp Y \mid W$, if

for some f, g.

Conditional independence

Fix a probability $p: I \to X \otimes W \otimes Y$.

Then X is conditionally independent of Y given W, in symbols $X \perp Y \mid W$, if

for some f, g. X and Y are identically distributed given W if f = g.

Conditional independence

Fix a probability $p: I \to X \otimes W \otimes Y$.

Then X is conditionally independent of Y given W, in symbols $X \perp Y \mid W$, if

for some f, g. X and Y are identically distributed given W if f = g. Similarly, one can define $\perp_i X_i \mid W$.

Countable tensor product: $X^{\mathbb{N}}$, and we get $X^{\sigma} \colon X^{\mathbb{N}} \to X^{\mathbb{N}}$ for each finite permutation σ .

Countable tensor product: $X^{\mathbb{N}}$, and we get $X^{\sigma} \colon X^{\mathbb{N}} \to X^{\mathbb{N}}$ for each finite permutation σ .

Exchangeable probability: $p: I \to X^{\mathbb{N}}$ such that $X^{\sigma} p = p$ for all σ .

Countable tensor product: $X^{\mathbb{N}}$, and we get $X^{\sigma} \colon X^{\mathbb{N}} \to X^{\mathbb{N}}$ for each finite permutation σ .

Exchangeable probability: $p: I \to X^{\mathbb{N}}$ such that $X^{\sigma} p = p$ for all σ .

De Finetti theorem

Let p be an exchangeable probability $I \to X^{\mathbb{N}}$. For any $n \in \mathbb{N}$, $\bot_{i \leq n} X_i \mid X^{\{>n\}}$.

Countable tensor product: $X^{\mathbb{N}}$, and we get $X^{\sigma} : X^{\mathbb{N}} \to X^{\mathbb{N}}$ for each finite permutation σ .

Exchangeable probability: $p: I \to X^{\mathbb{N}}$ such that $X^{\sigma} p = p$ for all σ .

De Finetti theorem

Let p be an exchangeable probability $I \to X^{\mathbb{N}}$. For any $n \in \mathbb{N}$, $\bot_{i \leq n} X_i \mid X^{\{>n\}}$. Even more, they are identically distributed given the tail:

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

1. Countable tensor products (Kolmogorov products);

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

- 1. Countable tensor products (Kolmogorov products);
- 2. Conditionals;

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

- 1. Countable tensor products (Kolmogorov products);
- 2. Conditionals;
 - T. Fritz, T. Gonda, and P. Perrone. *de Finetti's theorem in categorical probability*. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

- 1. Countable tensor products (Kolmogorov products);
- 2. Conditionals;
 - T. Fritz, T. Gonda, and P. Perrone. *de Finetti's theorem in categorical probability*. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.
- 3. New information flow axiom: the Cauchy-Schwarz axiom.

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

- 1. Countable tensor products (Kolmogorov products);
- 2. Conditionals;
 - T. Fritz, T. Gonda, and P. Perrone. *de Finetti's theorem in categorical probability*. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.
- 3. New information flow axiom: the Cauchy-Schwarz axiom.

BorelStoch satisfies these assumptions.

What do we need?

Synthetic proof of the de Finetti theorem under the following assumptions:

- 1. Countable tensor products (Kolmogorov products);
- 2. Conditionals;
 - T. Fritz, T. Gonda, and P. Perrone. *de Finetti's theorem in categorical probability*. J. Stoch. Anal., 2(4), 2021. arXiv:2105.02639.
- 3. New information flow axiom: the Cauchy-Schwarz axiom.

BorelStoch satisfies these assumptions.

Under the same hypotheses we can prove the Aldous-Hoover theorem!

The Cauchy-Schwarz axiom

The Cauchy-Schwarz axiom

Last equation: f is p-a.s. equal to g.

The Cauchy-Schwarz axiom

Last equation: f is p-a.s. equal to g.

This axiom controls almost sure equality!

Plate notation

To write the Aldous–Hoover theorem, we use the plate notation:

Plate notation

To write the Aldous–Hoover theorem, we use the plate notation:

De Finetti theorem:

Main theorem

Aldous-Hoover theorem

Let $p: I \to X^{\mathbb{N} \times \mathbb{N}}$ be row-and-column-exchangeable (for all finite permutations σ , $X^{\sigma \times \mathrm{id}} p = p = X^{\mathrm{id} \times \sigma} p$).

Main theorem

Aldous-Hoover theorem

Let $p: I \to X^{\mathbb{N} \times \mathbb{N}}$ be row-and-column-exchangeable (for all finite permutations σ , $X^{\sigma \times \mathrm{id}} p = p = X^{\mathrm{id} \times \sigma} p$). Then, for any $n \in \mathbb{N}$,

T. Fritz and A. Klinger. *The d-separation criterion in categorical probability*. J. Mach. Learn. Res., 24(46):1–49, 2023. arXiv:2207.05740.

