On a fibrational construction for optics, lenses, and Dialectica categories

Matteo Capucci¹ Jonathan Weinberger² Bruno Gavranović³ Francisco Rios⁴ Abdullah Malik⁵

- (1) University of Strathclyde
- (2) Johns Hopkins University
- (3) Symbolica AI
- (4) Quantum Information Science SectionOak Ridge National Laboratory
- (5) Florida State University

MFPS 2024

Oxford — June 20th, 2024

Acknowledgments

This work was kickstarted by the **AMS MRC week on ACT** in 2022. We have been mentored and encourage by **Valeria de Paiva**.

Introduction

Lenses, optics, and morphisms in Dialectica categories describe 'dialogues', bidirectional transformations between two sides sending back and forth messages.

Introduction

Lenses, optics, and morphisms in Dialectica categories describe 'dialogues', bidirectional transformations between two sides sending back and forth messages.

Hence the question we started to ask is: how are they related?

Introduction

Lenses, optics, and morphisms in Dialectica categories describe 'dialogues', bidirectional transformations between two sides sending back and forth messages.

Hence the question we started to ask is: how are they related?

This talk will attempt to answer that question.

References

- P. Hofstra, "The dialectica monad and its cousins", *Models, logics, and higherdimensional categories: A tribute to the work of Mihály Makkai*, vol. 53, pp. 107–139, 2011.
- S. K. Moss and T. von Glehn, "Dialectica models of type theory", in *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science*, arXiv:2105.00283 [cs, math], Jul. 2018, pp. 739–748. DOI: 10.1145/3209108.3209207. [Online]. Available: http://arxiv.org/abs/2105.00283 (visited on 01/04/2023).
- D. J. Myers, Cartesian Factorization Systems and Grothendieck Fibrations, en, arXiv:2006.14022 [math], Jan. 2021. [Online]. Available: http://arxiv.org/abs/2006.14022 (visited on 01/01/2023).
- V. de Paiva and J. Gray, "The dialectica categories", *Categories in Computer Science and Logic*, vol. 92, pp. 47–62, 1989, Publisher: Contemp. Math.
- D. I. Spivak, "Generalized lens categories", arXiv preprint available at https://arxiv.org/1908.02202, 2019.

Fun with fibrations

Lenses

Let \mathbf{C} be cartesian monoidal.

Definition

The category of simple lenses $\mathbf{Lens}_{\times}(\mathbf{C})$ has

- as objects, pairs (X, U) of objects of \mathbf{C} ,
- as morphisms $(X, U) \leftrightarrows (Y, V)$, pairs

 $\begin{aligned} f: U \to V, \\ f^{\sharp}: U \times Y \to X \end{aligned}$

Lenses

Let \mathbf{C} be cartesian monoidal.

Definition

The category of simple lenses $\mathbf{Lens}_{\times}(\mathbf{C})$ has

- as objects, pairs (X, U) of objects of \mathbf{C} ,
- as morphisms $(X, U) \leftrightarrows (Y, V)$, pairs

 $\begin{aligned} f: U &\to V, \\ f^{\sharp}: U \times Y \to X \end{aligned}$

A lens represents a back and forth dialogue: it answers to question coming from its left boundaries by asking questions to its right boundary.

Lenses

Dependent lenses

Let ${\bf C}$ be finitely complete

Definition

The category of (dependent) lenses Lens(C) has

• as objects, bundles $\begin{array}{c} X\\ \downarrow\\ U \end{array}$ (i.e. morphisms) in C, • as morphisms $\begin{array}{c} X\\ \downarrow\\ \downarrow\\ U \end{array} \leftrightarrows \begin{array}{c} Y\\ \downarrow\\ V \end{array}$, pairs $\begin{array}{c} U\\ V \end{array}$

$$\begin{split} f &: U \to V, \\ f^{\sharp} &: (u : U) \times Y(f(u)) \to X(u) \end{split}$$

Dependent lenses

Let ${\bf C}$ be finitely complete

Definition

The category of (dependent) lenses Lens(C) has

• as objects, bundles $\begin{array}{c} X\\ \downarrow\\ U \end{array}$ (i.e. morphisms) in C, • as morphisms $\begin{array}{c} X\\ \downarrow\\ \downarrow\\ U \end{array} \xleftarrow{Y}\\ V \end{array}$, pairs $\begin{array}{c} f:U \to V,\\ f^{\sharp}: (u:U) \times Y(f(u)) \to X(u) \end{array}$

A dependent lens represents a back and forth dialogue with strict rules on which type of answers we are allowed to give for a question.

Dependent lenses

p-lenses

Let $p: \mathbf{E} \to \mathbf{C}$ be a fibration/let $p^{-1}: \mathbf{C}^{\mathsf{op}} \to \mathbf{Cat}$ be an indexed category.¹

Definition

The category of p-lenses has

- as objects, $p\text{-bundles}\left(\begin{smallmatrix}X:p^{-1}U\\U:\mathbf{C}\end{smallmatrix}\right)$ (i.e. objects of $\mathbf{E})$
- as morphisms $\begin{pmatrix} X \\ U \end{pmatrix} \rightleftharpoons \begin{pmatrix} Y \\ V \end{pmatrix}$, morphisms:

$$f: U \to V \qquad : \mathbf{C}$$
$$f^{\sharp}: f^*Y \to X \qquad : p^{-1}U$$

¹To me every fibration is effectively cloven.

All lenses are *p*-lenses

data

lenses $s: \mathbf{S}(\mathbf{C}) \longrightarrow \mathbf{C}$

dependent lenses $\operatorname{cod}: \mathbf{C}^{\downarrow} \longrightarrow \mathbf{C}$

p-lenses $p: \mathbf{E} \longrightarrow \mathbf{C}$

Fibrations & vertical-cartesian factorization system

Definition

Any Grothendieck fibration $p : \mathbf{E} \to \mathbf{C}$ induces a factorization systems on \mathbf{E} where the left morphisms are vertical morphisms (p(f) = 1) and the right morphisms are cartesian.

Fibrations & vertical-cartesian factorization system

Definition

Any Grothendieck fibration $p : \mathbf{E} \to \mathbf{C}$ induces a factorization systems on \mathbf{E} where the left morphisms are vertical morphisms (p(f) = 1) and the right morphisms are cartesian.

Idea: a fibred category is made of morphisms from the fibers (vertical morphisms) composed with morphisms from the base (cartesian).

p-lenses from dual fibrations

Definition

Given a Grothendieck fibration $p: \mathbf{E} \to \mathbf{C}$, we can form its dual or (fiberwise) opposite

$$p^{\vee}: \mathbf{E}^{\vee} \longrightarrow \mathbf{C}$$

obtained by replacing each fiber with its opposite: $p^{\vee}=\int (p^{-1}\, \mathrm{\mathring{s}}\, (-)^{\mathrm{op}}).$

p-lenses from dual fibrations

Definition

Given a Grothendieck fibration $p: \mathbf{E} \to \mathbf{C}$, we can form its dual or (fiberwise) opposite

$$p^{\vee}: \mathbf{E}^{\vee} \longrightarrow \mathbf{C}$$

obtained by replacing each fiber with its opposite: $p^{\vee}=\int (p^{-1}\ \mathrm{\mathring{s}}\ (-)^{\mathrm{op}}).$

 \mathbf{E}^{\vee} has the same objects but now morphisms are constructed from a cartesian and vertical part pointing in opposite directions:

p-lenses from dual fibrations

Definition

Given a Grothendieck fibration $p: \mathbf{E} \to \mathbf{C}$, we can form its dual or (fiberwise) opposite

$$p^{\vee}: \mathbf{E}^{\vee} \longrightarrow \mathbf{C}$$

obtained by replacing each fiber with its opposite: $p^{\vee} = \int (p^{-1} \circ (-)^{op}).$

 \mathbf{E}^{\vee} has the same objects but now morphisms are constructed from a cartesian and vertical part *pointing in opposite directions*:

This is a *p*-lens!

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

• as objects, triples

 $(U: \mathbf{C}, X: \mathbf{C}, \alpha: \mathrm{Sub}(U \times X))$

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

• as objects, triples

$$(U:\mathbf{C},X:\mathbf{C},\alpha:\mathrm{Sub}(U\times X))$$

• as morphisms $(U, X, \alpha) \rightarrow (V, Y, \beta)$, triples

$$\begin{split} &f:U\to V,\\ &f^{\sharp}:U\times Y\to X,\\ &\forall u:U,y:Y,\quad \alpha(u,f^{\sharp}(u,y))\subseteq\beta(f(u),y) \end{split}$$

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

• as objects, triples

$$(U: \mathbf{C}, X: \mathbf{C}, \alpha: \mathrm{Sub}(U \times X))$$

• as morphisms
$$(U, X, \alpha) \rightarrow (V, Y, \beta)$$
, triples

$$\begin{split} f &: U \to V, \\ f^{\sharp} &: U \times Y \to X, \\ \forall u &: U, y : Y, \quad \alpha(u, f^{\sharp}(u, y)) \subseteq \beta(f(u), y) \end{split}$$

Hence $\mathbf{Dial}_{\times}(\mathbf{C})$ is a category of lenses 'augmented with predicates'.

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

• as objects, triples

$$(U: \mathbf{C}, X: \mathbf{C}, \alpha: \mathrm{Sub}(U \times X))$$

• as morphisms
$$(U, X, \alpha) \rightarrow (V, Y, \beta)$$
, triples

$$egin{aligned} f &: U o V, \ f^{\sharp} &: U imes Y o X, \ orall u &: U, y : Y, \quad lpha(u, f^{\sharp}(u, y)) \subseteq eta(f(u), y) \end{aligned}$$

Hence $\mathbf{Dial}_{\times}(\mathbf{C})$ is a category of lenses 'augmented with predicates'. (1) Can $\mathbf{Dial}_{\times}(\mathbf{C})$ be constructed in a similar way to $\mathbf{Lens}_{\times}(\mathbf{C})$?

Let ${\bf C}$ be cartesian monoidal.

Definition

The Dialectica category $\mathbf{Dial}_{\times}(\mathbf{C})$ has

• as objects, triples

$$(U:\mathbf{C},X:\mathbf{C},\alpha:\mathrm{Sub}(U\times X))$$

• as morphisms
$$(U, X, \alpha) \rightarrow (V, Y, \beta)$$
, triples

$$\begin{split} f &: U \to V, \\ f^{\sharp} &: U \times Y \to X, \\ \forall u &: U, y : Y, \quad \alpha(u, f^{\sharp}(u, y)) \subseteq \beta(f(u), y) \end{split}$$

Hence $\mathbf{Dial}_{\times}(\mathbf{C})$ is a category of lenses 'augmented with predicates'.

(1) Can $\mathbf{Dial}_{\times}(\mathbf{C})$ be constructed in a similar way to $\mathbf{Lens}_{\times}(\mathbf{C})?$

(2) Can its shape be abstracted, like we did for *p*-lenses?

Suppose we replace the lens part with a *p*-lens, where do we get the predicates?

Suppose we replace the lens part with a *p*-lens, where do we get the predicates?

We need a second fibration of predicates!

$$\begin{array}{ccc} \mathbf{P} & `\alpha \subseteq \beta' \\ q \\ \downarrow & \\ \mathbf{E} & f^{\sharp} : f^*Y \to X \\ p \\ \downarrow & \\ \mathbf{C} & f : U \to V \end{array}$$

What happens to q when we use p to produce $p^{\vee},$ the fibration of lenses?

What happens to q when we use p to produce p^{\vee} , the fibration of lenses?

First, notice:

which means the triangle commutes & that q respects cartesian arrows.

What happens to q when we use p to produce p^{\vee} , the fibration of lenses?

First, notice:

which means the triangle commutes & that q respects cartesian arrows.

Then we notice $(-)^{\vee}$ is a functorial construction $\mathbf{Fib}(\mathbf{C}) \to \mathbf{Fib}(\mathbf{C})$, hence can be applied to the whole triangle:

Is this what we look for? Let's unpack.

Remember E has a factorization system which \mathbf{E}^{\vee} inherits as (vertical^{op}, cartesian).

Remember \mathbf{E} has a factorization system which \mathbf{E}^{\vee} inherits as (vertical^{op}, cartesian).

On ${\bf P}$ we had a more refined factorization system, since we have three kinds of arrows:

- q-cartesian arrows, which are cartesian lifts of E-arrows, and come in two subcategories:
 - p-cartesian arrows, which are cartesian lifts of C-arrows, hence cartesian E-arrows,
 - p-vertical arrows, which are cartesian lifts of vertical E-arrows,
- q-vertical arrows, which are in the fibers of q.

Remember \mathbf{E} has a factorization system which \mathbf{E}^{\vee} inherits as (vertical^{op}, cartesian).

On ${\bf P}$ we had a more refined factorization system, since we have three kinds of arrows:

- q-cartesian arrows, which are cartesian lifts of E-arrows, and come in two subcategories:
 - p-cartesian arrows, which are cartesian lifts of C-arrows, hence cartesian E-arrows,
 - p-vertical arrows, which are cartesian lifts of vertical E-arrows,
- q-vertical arrows, which are in the fibers of q.

This forms a ternary factorization system (*q*-vertical, *p*-vertical, *p*-cartesian):

When we turn around the fibers of \mathbf{E} , we swap *q*-vertical and *p*-vertical arrows:

Hence on \mathbf{P}^{\vee} we end up with a ternary factorization system where p- and q-vertical arrows are swapped:

(*p*-vertical^{op}, *q*-vertical^{op}, *p*-cartesian)

We can understand this factorization system as arising from an **ambifibration** structure on q^{\vee} :

Definition

Let (L,R) be a factorization system on \mathbf{D} . An ambifibration $a: \mathbf{F} \to \mathbf{D}$ is a functor such that

- every arrow in L has an cocartesian lift (a is an opfibration on L)
- every arrow in R has a cartesian lift (a is a fibration on R)

This induces the ternary factorization system (cocartesian, vertical, cartesian) on \mathbf{F} :

$$\begin{array}{cccc} \mathbf{F} & & & A' \xrightarrow[]{\text{opcart}} \ell_*A' \xrightarrow[]{\text{vert}} r^*C' \xrightarrow[]{\text{cart}} C' \\ a \\ \downarrow & & \\ \mathbf{D} & & & A \xrightarrow[]{\in L} B \xrightarrow[]{\text{cart}} B \xrightarrow[]{\in R} C \end{array}$$

Then, recall the situation

 $\mathbf{P}^{\vee} \xrightarrow{q^{\vee}} \mathbf{E}^{\vee} \xrightarrow{q^{\vee}} \mathbf{C}^{\vee} \xrightarrow{p^{\vee}} \mathbf{C}^{\vee}$

Then, recall the situation

• \mathbf{E}^{\vee} has the factorization system (*p*-vertical^{op}, *p*-cartesian)

Then, recall the situation

- \mathbf{E}^{\vee} has the factorization system (*p*-vertical^{op}, *p*-cartesian)
- q[∨] is a fibration on the cartesian maps of E, given by q, and became an opfibration on the vertical maps because it acts like q^{op} there:

$$\begin{array}{ccc} \mathbf{P}^{\vee} & & \begin{pmatrix} \alpha \\ X \\ U \end{pmatrix} \xleftarrow{f_{\alpha}^{\sharp}} & \begin{pmatrix} (f^{\sharp})^{\ast} \alpha \\ X \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} \beta \\ X \\ U \end{pmatrix} \xrightarrow{f_{\beta}} & \begin{pmatrix} \beta \\ Y \\ V \end{pmatrix} \\ \\ q^{\vee} \\ \downarrow \\ \mathbf{E}^{\vee} & & \begin{pmatrix} X \\ U \end{pmatrix} \xleftarrow{f^{\sharp}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} Y \\ V \end{pmatrix} \end{array}$$

Then, recall the situation

- \mathbf{E}^{\vee} has the factorization system (*p*-vertical^{op}, *p*-cartesian)
- q[∨] is a fibration on the cartesian maps of E, given by q, and became an opfibration on the vertical maps because it acts like q^{op} there:

$$\begin{array}{ccc} \mathbf{P}^{\vee} & & \begin{pmatrix} \alpha \\ X \\ U \end{pmatrix} \xleftarrow{f_{\alpha}^{\sharp}} & \begin{pmatrix} (f^{\sharp})^{\ast} \alpha \\ X \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} \beta \\ X \\ U \end{pmatrix} \xrightarrow{f_{\beta}} & \begin{pmatrix} \beta \\ Y \\ V \end{pmatrix} \\ \\ q^{\vee} \\ \downarrow \\ \mathbf{E}^{\vee} & & \begin{pmatrix} X \\ U \end{pmatrix} \xleftarrow{f^{\sharp}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} Y \\ V \end{pmatrix} \end{array}$$

- \mathbf{E}^{\vee} has the factorization system (*p*-vertical^{op}, *p*-cartesian)
- q^{\vee} is a fibration on the cartesian maps of E, given by q, and became an opfibration on the **vertical maps** because it acts like q^{op} there:

$$\begin{array}{ccc} \mathbf{P}^{\vee} & & \begin{pmatrix} \alpha \\ X \\ U \end{pmatrix} \xleftarrow{f_{\alpha}^{\sharp}} & \begin{pmatrix} (f^{\sharp})^{\ast} \alpha \\ X \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} \beta \\ X \\ U \end{pmatrix} \xrightarrow{f_{\beta}} & \begin{pmatrix} \beta \\ Y \\ V \end{pmatrix} \\ \\ q^{\vee} \\ \downarrow \\ \mathbf{E}^{\vee} & & \begin{pmatrix} X \\ U \end{pmatrix} \xleftarrow{f^{\sharp}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f^{\ast}} & \begin{pmatrix} f^{\ast} Y \\ U \end{pmatrix} \xrightarrow{f} & \begin{pmatrix} Y \\ V \end{pmatrix} \end{array}$$

This is very close! We have f, f^{\sharp} and the correct boundaries for f^{\star} .

The iterated dual construction

Let $p = \mathbf{E}_n \xrightarrow{p_n} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0$ be a sequence of n fibrations.

Definition

The iterated dual construction is defined inductively as follows:

•
$$n = 1$$

 $(\mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_1} = \mathbf{E}_1^{\vee_{\mathbf{E}_0}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$
• $n = k + 1$

$$\left(\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0\right)^{\vee_{k+1}} = \left(\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \mathbf{E}_1\right)^{\vee_{\mathbf{E}_0} \vee_k} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$$

The iterated dual construction

Let $p = \mathbf{E}_n \xrightarrow{p_n} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0$ be a sequence of n fibrations.

Definition

The iterated dual construction is defined inductively as follows:

•
$$n = 1$$

 $(\mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_1} = \mathbf{E}_1^{\vee_{\mathbf{E}_0}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$
• $n = k + 1$
 $(\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_{k+1}} = (\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \mathbf{E}_1)^{\vee_{\mathbf{E}_0}^{\vee_k}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$
Example $(\mathbf{E}_2 \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_2} = (\mathbf{E}_2^{\vee_{\mathbf{E}_0}})^{\vee_{\mathbf{E}_1}} \xrightarrow{(p_2^{\vee_{\mathbf{E}_0}})^{\vee_{\mathbf{E}_1}}} \mathbf{E}_1^{\vee_{\mathbf{E}_0}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$

The iterated dual construction

Let $p = \mathbf{E}_n \xrightarrow{p_n} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0$ be a sequence of n fibrations.

Definition

The iterated dual construction is defined inductively as follows:

•
$$n = 1$$

 $(\mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_1} = \mathbf{E}_1^{\vee_{\mathbf{E}_0}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$
• $n = k + 1$
 $(\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_{k+1}} = (\mathbf{E}_{k+1} \xrightarrow{p_{k+1}} \cdots \mathbf{E}_1)^{\vee_{\mathbf{E}_0}^{\vee_k}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$
Example $(\mathbf{E}_2 \xrightarrow{p_2} \mathbf{E}_1 \xrightarrow{p_1} \mathbf{E}_0)^{\vee_2} = (\mathbf{E}_2^{\vee_{\mathbf{E}_0}})^{\vee_{\mathbf{E}_1}} \xrightarrow{(p_2^{\vee_{\mathbf{E}_0}})^{\vee_{\mathbf{E}_1}}} \mathbf{E}_1^{\vee_{\mathbf{E}_0}} \xrightarrow{p_1^{\vee_{\mathbf{E}_0}}} \mathbf{E}_0$

Definition

A morphism in $\mathbf{E}_n^{\vee_n}$ is called a *p*-dialens of height *n*.

As expected, lenses are dialenses of height 1:

$$\begin{array}{cccc} \mathbf{E} & & U \xleftarrow{f^{\sharp}} f^{\ast}V \xrightarrow{f_{V}} V \\ p\text{-lenses} & & p \\ & \downarrow & \\ \mathbf{C} & & X \xrightarrow{} f & Y \end{array}$$

All things are *p*-dialenses

As expected, Dialectica morphisms are dialenses of height 2:

All things are *p*-dialenses

As expected, Dialectica morphisms are dialenses of height 2:

All things are *p*-dialenses

Optics are p-dialenses of height 2 (but using opfibrations instead of fibrations!):

$$\begin{array}{cccc} \mathbf{Para}(\circ) \times_{\mathbf{B}M} \mathbf{Para}(\bullet) \longrightarrow \mathbf{Para}(\circ) & U \xrightarrow{m_U} m \circ U \xrightarrow{f^{\sharp}} V \xrightarrow{1_V} V \\ & & & \downarrow^{f \circ} \\ \mathbf{p}_2 \downarrow & & \downarrow^{f \circ} \\ \mathbf{p}_2 \downarrow & & \downarrow^{f \circ} \\ \mathbf{Para}(\bullet) \xrightarrow{f \bullet} \mathbf{B}M & X \xrightarrow{m_X} m \bullet X \xleftarrow{f} Y \\ & & & \downarrow^{f \bullet = p_1} \downarrow \\ & & & \mathbf{B}M & & * \xrightarrow{m} * = & * \end{array}$$

Hofstra defined a monad on fibrations that builds Dialectica-like categories by simple sum-product completion:

$$\mathbf{Dial}(p) = \mathbf{Fam}(\mathbf{Cofam}(p)) = \mathbf{Fam}(\mathbf{Fam}(p^{\vee})^{\vee})$$

where $p: \mathbf{P} \to \mathbf{C}$ is a fibration on \mathbf{C} cartesian monoidal.

Hofstra defined a monad on fibrations that builds Dialectica-like categories by simple sum-product completion:

$$\mathbf{Dial}(p) = \mathbf{Fam}(\mathbf{Cofam}(p)) = \mathbf{Fam}(\mathbf{Fam}(p^{\vee})^{\vee})$$

where $p : \mathbf{P} \to \mathbf{C}$ is a fibration on \mathbf{C} cartesian monoidal.

In Dial(p), objects are triples $(I, X, U : \mathbf{C}, \alpha : \mathbf{P}(I \times X \times U))$ and morphisms have four parts

$$\begin{array}{c} f_0: I \to J \\ f: I \times X \to Y \\ f^{\sharp}: I \times X \times V \to U \end{array}$$
given $i: I, \, x: X, \, v: V, \, f^{\star}: \alpha(i, x, f^{\sharp}(i, x, v)) \to \beta(f_0(i), f(i, x), v) \end{array}$

If we ignore the duals for a moment (they can be put back later), we see this is actually given by a sequence of **three** fibrations over C:

If we ignore the duals for a moment (they can be put back later), we see this is actually given by a sequence of **three** fibrations over C:

One can see Dial(p) is obtained by dualizing the top two:

$$\mathbf{Dial}(p) = \left(\mathbf{Fam}(\mathbf{Fam}(p)) \xrightarrow{q_3} \mathbf{S}(\mathbf{C}) \times_{\mathbf{C}} \mathbf{S}(\mathbf{C}) \xrightarrow{q_2} \mathbf{S}(\mathbf{C})\right)^{\vee_2} \xrightarrow{q_1} \mathbf{C}$$

Conclusions

In this talk we've seen

• how lenses can be constructed by dualizing fibrations

In this talk we've seen

- how lenses can be constructed by dualizing fibrations
- how Dialectica categories are augmented categories of lenses

In this talk we've seen

- how lenses can be constructed by dualizing fibrations
- how Dialectica categories are augmented categories of lenses
- how Dialectica categories can be constructed as iterated duals of towers of fibrations

Thanks for your attention!