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Introduction

Lenses, optics, and morphisms in Dialectica categories describe ‘dialogues’, bidirectional

transformations between two sides sending back and forth messages.

Hence the question we started to ask is: how are they related?

This talk will attempt to answer that question.
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Fun with fibrations



Lenses

Let C be cartesian monoidal.

Definition

The category of simple lenses Lens×(C) has

• as objects, pairs (X,U) of objects of C,

• as morphisms (X,U) � (Y, V ), pairs

f : U ! V,

f ] : U × Y ! X

A lens represents a back and forth dialogue: it answers to question coming from its left boundaries by

asking questions to its right boundary.
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Lenses

U ×X U × Y V × Y

U U V
f

πV

f×Y

y
πUπU

f]
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Dependent lenses

Let C be finitely complete

Definition

The category of (dependent) lenses Lens(C) has

• as objects, bundles
X

U

(i.e. morphisms) in C,

• as morphisms
X

U

�
Y

V

, pairs

f : U ! V,

f ] : (u : U)× Y (f(u))! X(u)

A dependent lens represents a back and forth dialogue with strict rules on which type of answers we

are allowed to give for a question.
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Dependent lenses

X U ×V Y Y

U U V
f

fY

y

f]
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p-lenses

Let p : E! C be a fibration/let p−1 : Cop ! Cat be an indexed category.1

Definition

The category of p-lenses has

• as objects, p-bundles
(
X:p−1U
U :C

)
(i.e. objects of E)

• as morphisms
(
X
U

)
�
(
Y
V

)
, morphisms:

f : U ! V : C

f ] : f∗Y ! X : p−1U

1To me every fibration is effectively cloven.
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All lenses are p-lenses

data

lenses s : S(C) −! C

dependent lenses cod : C# −! C

p-lenses p : E −! C
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Fibrations & vertical-cartesian factorization system

Definition

Any Grothendieck fibration p : E! C induces a factorization systems on E where the left morphisms

are vertical morphisms (p(f) = 1) and the right morphisms are cartesian.

(
p(ϕ)∗Y
U

) (
Y
V

)

(
X
U

)
cart

vert ϕ

Idea: a fibred category is made of morphisms from the fibers (vertical morphisms) composed with

morphisms from the base (cartesian).
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p-lenses from dual fibrations

Definition

Given a Grothendieck fibration p : E! C, we can form its dual or (fiberwise) opposite

p∨ : E∨ −! C

obtained by replacing each fiber with its opposite: p∨ =
∫
(p−1 # (−)op).

E∨ has the same objects but now morphisms are constructed from a cartesian and vertical part

pointing in opposite directions:

This is a p-lens!
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Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?

14



Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?

14



Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?

14



Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?

14



Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?

14



Dialectica

Let C be cartesian monoidal.

Definition

The Dialectica category Dial×(C) has

• as objects, triples

(U : C, X : C, α : Sub(U ×X))

• as morphisms (U,X, α)! (V, Y, β), triples

f : U ! V,

f ] : U × Y ! X,

∀u : U, y : Y, α(u, f ](u, y)) ⊆ β(f(u), y)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

(1) Can Dial×(C) be constructed in a similar way to Lens×(C)?

(2) Can its shape be abstracted, like we did for p-lenses?
14



Dialectica, fibrationally

Suppose we replace the lens part with a p-lens, where do we get the predicates?

We need a second fibration of predicates!

P ‘α ⊆ β′

E f ] : f∗Y ! X

C f : U ! V

p

q
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Dialectica, fibrationally

What happens to q when we use p to produce p∨ , the fibration of lenses?

First, notice:

P E

C

p

q

q#p
p # q q

−! p : Fib(C)

which means the triangle commutes & that q respects cartesian arrows.

Then we notice (−)∨ is a functorial construction Fib(C)! Fib(C), hence can be applied to the

whole triangle:

P∨ E∨

C

p∨

q∨

q#p∨

Is this what we look for? Let’s unpack.
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Dialectica, fibrationally

Remember E has a factorization system which E∨ inherits as (verticalop, cartesian).

On P we had a more refined factorization system, since we have three kinds of arrows:

• q-cartesian arrows, which are cartesian lifts of E-arrows, and come in two subcategories:

• p-cartesian arrows, which are cartesian lifts of C-arrows, hence cartesian E-arrows,

• p-vertical arrows, which are cartesian lifts of vertical E-arrows,

• q-vertical arrows, which are in the fibers of q.

This forms a ternary factorization system (q-vertical, p-vertical, p-cartesian):

• •

•

•

q-vert

p-vert

p-cart

q-cart
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Dialectica, fibrationally

When we turn around the fibers of E, we swap q-vertical and p-vertical arrows:

• •

•

•
q-vertop

p-vertop

p-cart

q-cart

Hence on P∨ we end up with a ternary factorization system where p- and q-vertical arrows are

swapped:

(p-verticalop, q-verticalop, p-cartesian)

18



Dialectica, fibrationally

We can understand this factorization system as arising from an ambifibration structure on q∨ :

Definition

Let (L,R) be a factorization system on D. An ambifibration a : F! D is a functor such that

• every arrow in L has an cocartesian lift (a is an opfibration on L)

• every arrow in R has a cartesian lift (a is a fibration on R)

This induces the ternary factorization system (cocartesian, vertical, cartesian) on F:

F A′ `∗A
′ r∗C′ C′

D A B B C∈R∈L

opcart cartvert

a

19



Dialectica, fibrationally

Then, recall the situation
P∨ E∨

C
p∨

q∨

q#p∨

• E∨ has the factorization system (p-verticalop, p-cartesian)

• q∨ is a fibration on the cartesian maps of E, given by q, and became an opfibration on the

vertical maps because it acts like qop there:

P∨
(
α
X
U

) (
(f])∗α
X
U

) (
f∗β
X
U

) (
β
Y
V

)

E∨
(
X
U

) (
f∗Y
U

) (
f∗Y
U

) (
Y
V

)
ff]

fβf]α f
5

q∨

This is very close! We have f , f ] and the correct boundaries for f
5
.
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The iterated dual construction

Let p = En
pn−−! · · · p2−! E1

p1−! E0 be a sequence of n fibrations.

Definition

The iterated dual construction is defined inductively as follows:

• n = 1

(E1
p1−! E0)

∨1
= E1

∨E0
p1
∨E0

−−−−! E0

• n = k + 1

(Ek+1

pk+1
−−−! · · · p2−! E1

p1−! E0)
∨k+1

= (Ek+1

pk+1
−−−! · · ·E1)

∨E0
∨k p1

∨E0
−−−−! E0

Example (E2
p2−! E1

p1−! E0)
∨2

= (E2
∨E0 )

∨E1
(p2
∨E0 )

∨E1

−−−−−−−−! E1
∨E0

p1
∨E0

−−−−! E0

Definition

A morphism in En
∨n is called a p-dialens of height n.
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Dialens

Let’s unpack the construction of a dialens of height 2:

E0 U V
f
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E0 U U U V
f

fYf]

p1
∨E0

p2
∨E0

fβf]α f
5
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E2
∨E0

∨E1 α (f ])∗α f∗β β
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E0 U U U V
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fYf]

p1
∨E0

p2
∨E0

∨E1
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All things are p-dialenses

As expected, lenses are dialenses of height 1:

p-lenses

E

C

p

U f∗V V

X X Y
f

fVf]
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All things are p-dialenses

As expected, Dialectica morphisms are dialenses of height 2:

vanilla

Sub(C)×C S(C) Sub(C)

S(C) C

C

sub

×

cod=p1

p2
y

α (f ])∗α f∗β β

U ×X V ×X V ×X V × Y

X X X Y
f

fV

y

f]

fβf]α ⊆
yy

dependent

Sub(C)×C S(C) Sub(C)

C# C

C

sub

dom

cod=p1

p2
y

α (f ])∗α f∗β β

U f∗V f∗V V

X X X Y
f

fV

y

f]

fβf]α ⊆
yy
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All things are p-dialenses

Optics are p-dialenses of height 2 (but using opfibrations instead of fibrations!):

(op)tics

Para(◦)×BM Para(•) Para(◦)

Para(•) BM

BM

∫
◦∫

•

∫
•=p1

p2

y
U m ◦ U V V

X m •X m •X Y

∗ ∗ ∗ ∗m

mX f

1VmU f]
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Comparison with Hofstra’s Dial monad

Hofstra defined a monad on fibrations that builds Dialectica-like categories by simple sum-product

completion:

Dial(p) = Fam(Cofam(p)) = Fam(Fam(p∨)
∨
)

where p : P! C is a fibration on C cartesian monoidal.

In Dial(p), objects are triples (I,X,U : C, α : P(I ×X × U)) and morphisms have four parts

f0 : I ! J

f : I ×X ! Y

f ] : I ×X × V ! U

given i : I, x : X, v : V , f
5
: α(i, x, f ](i, x, v))! β(f0(i), f(i, x), v)
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Comparison with Hofstra’s Dial monad

If we ignore the duals for a moment (they can be put back later), we see this is actually given by a

sequence of three fibrations over C:

Fam(Fam(p)) Fam(p) P

S(C)×C S(C) S(C) C

S(C) C

C

p

×

cod

×

q1=cod

q3

q2

yy

y

One can see Dial(p) is obtained by dualizing the top two:

Dial(p) = (Fam(Fam(p))
q3−! S(C)×C S(C)

q2−! S(C))
∨2 q1−! C
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Conclusions



Conclusions

In this talk we’ve seen

• how lenses can be constructed by dualizing fibrations

• how Dialectica categories are augmented categories of lenses

• how Dialectica categories can be constructed as iterated duals of towers of fibrations
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Thanks for your
attention!
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