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Learners

For a category C with finite products,

Definition (Fong, Spivak, and Tuyéras 2019)

A learner A → B is an object of parameters P and maps
▶ I : P ×A → B (implementation)
▶ U : P ×A×B → P (update)
▶ r : P ×A×B → A (request)

up to isomorphism of P .

Why these maps? (Besides that it works!)

Why that quotient? (Fong and Johnson 2019)

Learn(C) is almost Para(Lens(C)), per (Capucci, Gavranović,
et al. 2022; Capucci, Ghani, et al. 2022)
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Munging Learners

∫ P :Core(C)
C(P ×A,B)× C(P ×A×B,P )× C(P ×A×B,A)

∼=
∫ P :Core(C)

C(P ×A,B)× C(P ×A×B,P ×A)

∼=
∫ P :Core(C) ∫ Q:C

C(P ×A,Q)× C(P ×A,B)× C(Q×B,P ×A)

∼=
∫ P :Core(C) ∫ Q:C

C(P ×A,Q×B)× C(Q×B,P ×A)
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Munging Learners

∫ P :C ∫ Q:C
C(P ⊗A,Q⊗B)× C(Q⊗B,P ⊗A)
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Munging Learners

∫ P :C ∫ Q:C
C(P ⊗A,Q⊗B)× C(Q⊗B′, P ⊗A′)
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Learners Reloaded

For a symmetric monoidal category C,

Definition
A learner (A,A′) → (B,B′) is an element of

LearnC((A,A
′), (B,B′))

:=

∫ P,Q:C
C(P ⊗A,Q⊗B)× C(Q⊗B′, P ⊗A′)

When ⊗ = ×, this is almost the original definition.
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Learners Reloaded

Before: (P1, I1, U1, r1) = (P2, I2, U2, r2) when there exists
f : P1 → P2 an isomorphism such that

P1 ×A P2 ×A

B

f×A

I1 I2

P1 ×A×B′ P2 ×A×B′

A′

f×A×B′

r1 r2

P1 ×A×B′ P1

P2 ×A×B′ P2

U1

f×A×B′ f

U2
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Learners Reloaded

After: (P1, I1, U1, r1) = (P2, I2, U2, r2) when there exists
f : P1 → P2 any map such that

P1 ×A P2 ×A

B

f×A

I1 I2

P1 ×A×B′ P2 ×A×B′

A′

f×A×B′

r1 r2

P1 ×A×B′ P1

P2 ×A×B′ P2

U1

f×A×B′ f

U2

Û
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Diagrams for Learners

∫ P,Q:C
C(P ⊗A,Q⊗B)× C(Q⊗B′, P ⊗A′)

A learner (l | r) : (A,A′) → (B,B′) is a formal diagram

A

A′

l

r
B′

B

P Q

considered up to sliding.
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Diagrams for Learners

ι : C → LearnC is given on f : A → B by:

A

I

f

I

B

I I

ι′ : OpticC → LearnC is given on (l | r) : (A,A′) → (B,B′) by:

A

A′

l

r
B′

B

I Q
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Diagrams for Learners

Proposition
Learners form a symmetric monoidal category LearnC.

Composition is roughly:

A

A′

l1

r1

l2

r2
C ′

C
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Diagrams for Learners

Proposition
Learners form a symmetric monoidal category LearnC.

Composition is really:

A C

l1 l2

C ′A′

r2r1
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Diagrams for Learners

A concrete learner (P, I, U, r) is represented as:

A

A′

I

B′

B

r

U

P
P ×A
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Duality

∫ P,Q:C
C(P ⊗A,Q⊗B)× C(Q⊗B′, P ⊗A′)

Proposition

There is a (strict!) symmetric monoidal involution (−)∗ with

(A,A′)∗ := (A′, A) and (l | r)∗ := (r | l)

B′

B

r

l

A

A′

Q P
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Duality

For concrete learners:

P

I : P ×A → B

U : P ×A×B′ → P

r : P ×A×B′ → A′

P ∗ := P ×A

I∗((p, pa), b
′) := r(p, pa, b

′) : P ∗ ×B′ → A′

U∗((p, pa), b
′, a) := (U(p, pa, b

′), a) : P ∗ ×B′ ×A → P ∗

r∗((p, pa), b
′, a) := I(U(p, pa, b

′), a) : P ∗ ×B′ ×A → B

P ∗∗ := P ×A×B′

I∗∗((p, pa, pb′), a) := I(U(p, pa, pb′), a) : P ∗∗ ×A → B

U∗∗((p, pa, pb′), a, b
′) := (U(p, pa, pb′), a, b

′) : P ∗∗ ×A×B′ → P ∗∗

r∗∗((p, pa, pb′), a, b
′) := r(U(p, pa, pb′), a, b

′) : P ∗∗ ×A×B′ → A′
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Duality

Definition
For an object (A, I), define

η(A,I) : (I, I) → (A, I)⊗ (A, I)∗ = (A⊗ I, A⊗ I)

as

I

I A

A

and similarly for the cap ε(A,I).

So is LearnC compact closed?
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Duality

Composing the cup and the cap on (A, I) to form the snake
yields:

A

I I

A

A A

No reason for this to be the identity!

P := A

I(p, a) := p : P ×A → A

U(p, a, b′) := a : P ×A× 1 → P

r(p, a, b′) := ⋆ : P ×A× 1 → 1
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Free Compact Closure

Definition
The category AtempC of atemporal learners is the quotient of
LearnC that equates each snake with the identity.

Proposition
AtempC is compact closed.

Proof (Idea).

All that remains is extranaturality of η and ε. For morphisms
coming from C this is easy, the snake equations are enough to
extend this to every morphism in AtempC .
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Free Compact Closure

For the 2-categories
▶ SymMong := symmetric monoidal categories, monoidal

functors and monoidal natural isomorphisms,
▶ Comp := compact closed categories, monoidal functors and

monoidal natural transformations.

Theorem
AtempC is the free compact closed category on a symmetric
monoidal category C. That is, Atemp : SymMong → Comp
assembles into a 2-functor that is left biadjoint to the inclusion
Comp → SymMong.
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Free Compact Closure

Proof (Idea).

Our strategy is to show that precomposition by ι : C → AtempC
gives an equivalence of categories

Comp(AtempC ,D) → SymMong(C,D).

For this, every learner is equal to its formal diagram, when that
diagram is interpreted in AtempC . Then once you decide where
the morphisms from C go, everything is fixed.

A

A′

l

r
B′

B

P Q
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Free Compact Closure

The free compact closed category has previously appeared:

SymMong Comp

Fbk Tr

SymMon → Tr from (Katis, Sabadini, and Walters 2002) and
Tr → Comp from (Joyal, Street, and Verity 1996)
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What’s Next?

▶ If we don’t quotient the coend relation, does the resulting
(bi/double)-category have a universal property?

▶ Does every feedback category embed faithfully in an
“almost compact closed” category?

▶ Is there a “profunctor-style” formulation of learners?
▶ How can we decide equality of (atemporal) learners?
▶ Is remembering delay useful in practice?
▶ Can we mash learners into a Quipper/CHAD-style

specification language?

Thanks!
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