Learners are Almost Compact Closed

Mitchell Riley

CQTS New York University Abu Dhabi

June 21st, 2024

Definition (Fong, Spivak, and Tuyéras 2019)

A learner $A \to B$ is an object of parameters P and maps

- $\blacktriangleright I: P \times A \to B$ (implementation)
- $\blacktriangleright U: P \times A \times B \to P \qquad (update)$
- $\blacktriangleright r: P \times A \times B \to A \qquad (\text{request})$

up to isomorphism of P.

Why these maps? (Besides that it works!)

Why that quotient? (Fong and Johnson 2019)

Learn(C) is almost Para(Lens(C)), per (Capucci, Gavranović, et al. 2022; Capucci, Ghani, et al. 2022)

Definition (Fong, Spivak, and Tuyéras 2019)

A learner $A \to B$ is an object of parameters P and maps

- $\blacktriangleright I: P \times A \to B \qquad (\text{implementation})$
- $\blacktriangleright U: P \times A \times B \to P \qquad (update)$
- $\blacktriangleright r: P \times A \times B \to A \qquad (\text{request})$

up to isomorphism of P.

Why these maps? (Besides that it works!)

Why that quotient? (Fong and Johnson 2019)

Learn(C) is almost Para(Lens(C)), per (Capucci, Gavranović, et al. 2022; Capucci, Ghani, et al. 2022)

Definition (Fong, Spivak, and Tuyéras 2019)

A learner $A \to B$ is an object of parameters P and maps

- $\blacktriangleright I: P \times A \to B \qquad (\text{implementation})$
- $\blacktriangleright U: P \times A \times B \to P \qquad (update)$
- $\blacktriangleright r: P \times A \times B \to A \qquad (\text{request})$

up to isomorphism of P.

Why these maps? (Besides that it works!)

Why that quotient? (Fong and Johnson 2019)

Learn(C) is almost Para(Lens(C)), per (Capucci, Gavranović, et al. 2022; Capucci, Ghani, et al. 2022)

Definition (Fong, Spivak, and Tuyéras 2019)

A learner $A \to B$ is an object of parameters P and maps

- $\blacktriangleright I: P \times A \to B$ (implementation)
- $\blacktriangleright U: P \times A \times B \to P \qquad (update)$
- $\blacktriangleright r: P \times A \times B \to A \qquad (\text{request})$

up to isomorphism of P.

Why these maps? (Besides that it works!)

Why that quotient? (Fong and Johnson 2019)

 $Learn(\mathcal{C})$ is almost $Para(Lens(\mathcal{C}))$, per (Capucci, Gavranović, et al. 2022; Capucci, Ghani, et al. 2022)

$$\begin{split} &\int^{P:\mathsf{Core}(\mathcal{C})} \mathcal{C}(P \times A, B) \times \mathcal{C}(P \times A \times B, P) \times \mathcal{C}(P \times A \times B, A) \\ &\cong \int^{P:\mathsf{Core}(\mathcal{C})} \mathcal{C}(P \times A, B) \times \mathcal{C}(P \times A \times B, P \times A) \\ &\cong \int^{P:\mathsf{Core}(\mathcal{C})} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q) \times \mathcal{C}(P \times A, B) \times \mathcal{C}(Q \times B, P \times A) \\ &\cong \int^{P:\mathsf{Core}(\mathcal{C})} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q \times B) \times \mathcal{C}(Q \times B, P \times A) \end{split}$$

$$\begin{split} & \int^{P:\mathsf{Core}(\mathcal{C})} \mathcal{C}(P \times A, B) \times \mathcal{C}(P \times A \times B, P) \times \mathcal{C}(P \times A \times B, A) \\ & \cong \int^{P:\mathsf{Core}(\mathcal{C})} \mathcal{C}(P \times A, B) \times \mathcal{C}(P \times A \times B, P \times A) \\ & \cong \int^{P:\mathsf{Core}(\mathcal{C})} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q) \times \mathcal{C}(P \times A, B) \times \mathcal{C}(Q \times B, P \times A) \\ & \cong \int^{P:\mathsf{Core}(\mathcal{C})} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q \times B) \times \mathcal{C}(Q \times B, P \times A) \end{split}$$

$$\int^{P:\mathsf{Core}(\mathcal{C})} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q \times B) \times \mathcal{C}(Q \times B, P \times A)$$

$$\int^{P:\mathcal{C}} \int^{Q:\mathcal{C}} \mathcal{C}(P \times A, Q \times B) \times \mathcal{C}(Q \times B, P \times A)$$

$$\int^{P:\mathcal{C}} \int^{Q:\mathcal{C}} \mathcal{C}(P \otimes A, Q \otimes B) \times \mathcal{C}(Q \otimes B, P \otimes A)$$

$$\int^{P:\mathcal{C}} \int^{Q:\mathcal{C}} \mathcal{C}(P \otimes A, Q \otimes B) \times \mathcal{C}(Q \otimes B', P \otimes A')$$

For a symmetric monoidal category \mathcal{C} ,

Definition

A learner $(A,A') \to (B,B')$ is an element of

$$\mathsf{Learn}_{\mathcal{C}}((A, A'), (B, B')) \\ := \int^{P,Q:\mathcal{C}} \mathcal{C}(P \otimes A, Q \otimes B) \times \mathcal{C}(Q \otimes B', P \otimes A')$$

When $\otimes = \times$, this is almost the original definition.

Before: $(P_1, I_1, U_1, r_1) = (P_2, I_2, U_2, r_2)$ when there exists $f: P_1 \to P_2$ an isomorphism such that

After: $(P_1, I_1, U_1, r_1) = (P_2, I_2, U_2, r_2)$ when there exists $f: P_1 \to P_2$ any map such that

$$\int^{P,Q:\mathcal{C}} \mathcal{C}(P\otimes A,Q\otimes B)\times \mathcal{C}(Q\otimes B',P\otimes A')$$

A learner $(l \mid r) : (A, A') \to (B, B')$ is a formal diagram

considered up to sliding.

 $\iota: \mathcal{C} \to \mathsf{Learn}_{\mathcal{C}}$ is given on $f: A \to B$ by:

 $\iota':\mathsf{Optic}_{\mathcal{C}}\to\mathsf{Learn}_{\mathcal{C}}\text{ is given on }(l\mid r):(A,A')\to(B,B')\text{ by:}$

Proposition

Learners form a symmetric monoidal category $\mathsf{Learn}_{\mathcal{C}}$.

Composition is roughly:

Proposition

Learners form a symmetric monoidal category $\mathsf{Learn}_{\mathcal{C}}$.

Composition is really:

A concrete learner (P, I, U, r) is represented as:

$$\int^{P,Q:\mathcal{C}} \mathcal{C}(P \otimes A, Q \otimes B) \times \mathcal{C}(Q \otimes B', P \otimes A')$$

Proposition

There is a (strict!) symmetric monoidal involution $(-)^*$ with

$$(A, A')^* := (A', A) \text{ and } (l \mid r)^* := (r \mid l)$$

For concrete learners:

Ρ I $: P \times A \rightarrow B$ $: P \times A \times B' \rightarrow P$ U $\cdot P \times A \times B' \rightarrow A'$ r

For concrete learners:

P		
Ι		$: P \times A \to B$
U		$: P \times A \times B' \to P$
r		$: P \times A \times B' \to A'$
P^*	$:= P \times A$	
$I^*((p, p_a), b')$	$:= r(p, p_a, b')$	$: P^* \times B' \to A'$
$U^*((p, p_a), b', a)$	$:= (U(p, p_a, b'), a)$	$: P^* \times B' \times A \to P^*$
$r^*((p, p_a), b', a)$	$:= I(U(p, p_a, b'), a)$	$: P^* \times B' \times A \to B$
P^{**}	$:= P \times A \times B'$	
$I^{**}((p, p_a, p_{b'}), a)$	$:= I(U(p, p_a, p_{b'}), a)$	$: P^{**} \times A \to B$
$U^{**}((p, p_a, p_{b'}), a, b')$	$:= (U(p, p_a, p_{b'}), a, b')$	$: P^{**} \times A \times B' \to P^{**}$
$r^{**}((p, p_a, p_{b'}), a, b')$	$:= r(U(p, p_a, p_{b'}), a, b')$	$: P^{**} \times A \times B' \to A'$

For concrete learners:

P		
Ι		$: P \times A \to B$
U		$: P \times A \times B' \to P$
r		$: P \times A \times B' \to A'$
P^*	$:= P \times A$	
$I^*((p, p_a), b')$	$:= r(p, p_a, b')$	$: P^* \times B' \to A'$
$U^*((p, p_a), b', a)$	$:= (U(p, p_a, b'), a)$	$: P^* \times B' \times A \to P^*$
$r^*((p, p_a), b', a)$	$:= I(U(p, p_a, b'), a)$	$: P^* \times B' \times A \to B$
P^{**}	$:= P \times A \times B'$	
$I^{**}((p, p_a, p_{b'}), a)$	$:= I(U(p, p_a, p_{b'}), a)$	$: P^{**} \times A \to B$
$U^{**}((p, p_a, p_{b'}), a, b')$	$:= (U(p, p_a, p_{b'}), a, b')$	$: P^{**} \times A \times B' \to P^{**}$
$r^{**}((p, p_a, p_{b'}), a, b')$	$:= r(U(p, p_a, p_{b'}), a, b')$	$: P^{**} \times A \times B' \to A'$

Definition

For an object (A, I), define

$$\eta_{(A,I)}:(I,I)\to (A,I)\otimes (A,I)^*=(A\otimes I,A\otimes I)$$

as

and similarly for the cap $\varepsilon_{(A,I)}$.

So is Learn $_{\mathcal{C}}$ compact closed?

Definition

For an object (A, I), define

$$\eta_{(A,I)}:(I,I)\to (A,I)\otimes (A,I)^*=(A\otimes I,A\otimes I)$$

as

and similarly for the cap $\varepsilon_{(A,I)}$.

So is $\text{Learn}_{\mathcal{C}}$ compact closed?

Composing the cup and the cap on (A, I) to form the snake yields:

No reason for this to be the identity!

Composing the cup and the cap on (A, I) to form the snake yields:

No reason for this to be the identity!

Definition

The category $Atemp_{\mathcal{C}}$ of *atemporal learners* is the quotient of Learn_{\mathcal{C}} that equates each snake with the identity.

Proposition

Atemp_C is compact closed.

Proof (Idea).

All that remains is extranaturality of η and ε . For morphisms coming from C this is easy, the snake equations are enough to extend this to every morphism in Atemp_C.

Definition

The category $Atemp_{\mathcal{C}}$ of *atemporal learners* is the quotient of Learn_{\mathcal{C}} that equates each snake with the identity.

Proposition

Atemp_C is compact closed.

Proof (Idea).

All that remains is extranaturality of η and ε . For morphisms coming from C this is easy, the snake equations are enough to extend this to every morphism in Atemp_C.

Definition

The category $Atemp_{\mathcal{C}}$ of *atemporal learners* is the quotient of Learn_{\mathcal{C}} that equates each snake with the identity.

Proposition

Atemp_C is compact closed.

Proof (Idea).

All that remains is extranaturality of η and ε . For morphisms coming from C this is easy, the snake equations are enough to extend this to every morphism in Atemp_C.

For the 2-categories

- SymMon_g := symmetric monoidal categories, monoidal functors and monoidal natural *isomorphisms*,
- Comp := compact closed categories, monoidal functors and monoidal natural transformations.

Theorem

Atemp_C is the free compact closed category on a symmetric monoidal category C. That is, Atemp : $SymMon_g \rightarrow Comp$ assembles into a 2-functor that is left biadjoint to the inclusion $Comp \rightarrow SymMon_g$.

For the 2-categories

- SymMon_g := symmetric monoidal categories, monoidal functors and monoidal natural *isomorphisms*,
- Comp := compact closed categories, monoidal functors and monoidal natural transformations.

Theorem

 $Atemp_{\mathcal{C}}$ is the free compact closed category on a symmetric monoidal category \mathcal{C} . That is, $Atemp : SymMon_g \rightarrow Comp$ assembles into a 2-functor that is left biadjoint to the inclusion $Comp \rightarrow SymMon_g$.

Proof (Idea).

Our strategy is to show that precomposition by $\iota : \mathcal{C} \to \mathsf{Atemp}_{\mathcal{C}}$ gives an equivalence of categories

$$\mathsf{Comp}(\mathsf{Atemp}_{\mathcal{C}}, \mathcal{D}) \to \mathsf{SymMon}_g(\mathcal{C}, \mathcal{D}).$$

For this, every learner is equal to its formal diagram, when that diagram is interpreted in $Atemp_{\mathcal{C}}$. Then once you decide where the morphisms from \mathcal{C} go, everything is fixed.

The free compact closed category has previously appeared:

SymMon \rightarrow Tr from (Katis, Sabadini, and Walters 2002) and Tr \rightarrow Comp from (Joyal, Street, and Verity 1996)

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?

- If we don't quotient the coend relation, does the resulting (bi/double)-category have a universal property?
- Does every feedback category embed faithfully in an "almost compact closed" category?
- ▶ Is there a "profunctor-style" formulation of learners?
- ▶ How can we decide equality of (atemporal) learners?
- ▶ Is remembering delay useful in practice?
- Can we mash learners into a Quipper/CHAD-style specification language?