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Background: group equivariance

Often want a function f : X → Y to be equivariant with respect to the
action of a group G , so that

f (g · x) = g · f (x) for all x ∈ X and g ∈ G

Invariance is a special case: f (g · x) = f (x)
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Examples

Very important for geometric data, such as point clouds:

Taken from www.photonics.com

Other examples: 2D images, sets, graphs, and more



Parametrising equivariance

How can we parameterise an equivariant neural network f ?

Instance of a more general problem: how to ensure a neural network
satisfies some “top down” algebraic constraint?
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Intrinsic equivariance

Major strategy is intrinsic equivariance:

Constrain individual layers to obtain equivariance, then compose

Some problems with this approach:

Often quite specific to particular groups and actions

Hand engineering (e.g. nonlinear layers are often ad hoc)

Can be brittle and hard to scale
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Symmetrisation

Recent interest in symmetrisation approaches: modify an arbitrary neural
network to obtain equivariance

Example: when it makes sense, the following is invariant:

x 7→ 1

|G |
∑
g∈G

f (g−1 · x)

Various examples in the literature, including very recently, e.g. [Murphy
et al., 2019, Puny et al., 2022, Kaba et al., 2023, Kim et al., 2023]



Symmetrisation

Recent interest in symmetrisation approaches: modify an arbitrary neural
network to obtain equivariance

Example: when it makes sense, the following is invariant:

x 7→ 1

|G |
∑
g∈G

f (g−1 · x)

Various examples in the literature, including very recently, e.g. [Murphy
et al., 2019, Puny et al., 2022, Kaba et al., 2023, Kim et al., 2023]



Symmetrisation

Recent interest in symmetrisation approaches: modify an arbitrary neural
network to obtain equivariance

Example: when it makes sense, the following is invariant:

x 7→ 1

|G |
∑
g∈G

f (g−1 · x)

Various examples in the literature, including very recently, e.g. [Murphy
et al., 2019, Puny et al., 2022, Kaba et al., 2023, Kim et al., 2023]



Stochastic equivariance

More general model: f depends on some additional randomness

A natural equivariance condition is then:

f (g · x ,U)
d
= g · f (x ,U)

Idea: equivariance across repeated executions
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Markov kernels

Convenient to model (f ,U) as a single entity, a Markov kernel k : X → Y

Leads to Markov categories as a natural framework:

k

Y

X

i.e. symmetric monoidal categories with copy and deletion maps

Covers deterministic case also
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Group theory in Markov categories



Basic axioms

A group is a Markov category C is an object G together with deterministic
morphisms such that
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Determinism

Recall: a morphism f : X → Y in C is deterministic if

=
f

f f

X

Y Y Y Y

X

The deterministic morphisms in C form a cartesian monoidal subcategory
called Cdet

This lets us lift set-theoretic results (e.g. (g−1)−1 = g) to C via the
Yoneda Embedding
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Homomorphisms

Also obtain natural definitions of homomorphism φ : H → G in Cdet:

=
φ
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Actions

Similarly, action α : G ⊗ X → X in Cdet:
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Equivariance

This gives rise to a natural notion of equivariance (now in C): a morphism
k : X → Y is equivariant with respect to αX and αY if

=
k

αX

Y

G X

k

αY

Y

G X

Becomes invariance when αY is trivial.

Recovers the desired definitions:

For C = Set, k(g · x) = g · k(x)
For C = Stoch, k(dy |g · x) = (g · k)(dy |x) as desired
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Orbits

Given an action α : G ⊗ X → X , a orbit map is a deterministic coequaliser
in C as follows:

G ⊗ X X X/G
α

ε

q

that is moreover preserved by every functor (−)⊗ Y

Here ε is the trivial action
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Orbits: intuition

Key idea is that q is initial among invariant maps

=
q q

α

G X

X/G X/G

XG

Preservation condition ensures: if q is an orbit map, then q ⊗ idY is,
where G acts trivially on Y
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Existence of orbits

Theorem

The Markov category TopStoch of topological spaces and continuous
Markov kernels admits all orbit maps.

Not sure about the general case (although they seem forthcoming in
practice)



Cosets

Recall from classical theory that a subgroup H ⊆ G induces a space of
cosets:

G/H := {gH | g ∈ G}

Corresponds to orbits under action h · g = gh−1

Given a homomorphism φ : H → G , can define a φ-coset map as an orbit
map of the following action:

∗op

G

φ

H G

where ∗op does right-multiplication (by inverse)
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Recap

In a general Markov category theory, we can talk about:

Groups

Homomorphisms

Actions

Orbits

Cosets

Also semidirect and direct products



Symmetrisation



Markov category of equivariant maps

Given a group G in C, always obtain a Markov category CG as follows:

Objects are pairs (X , αX ), where αX is an action on X in C

Morphisms are equivariant morphisms in C

Monoidal product (X , αX )⊗ (Y , αY ) is equipped with

G X

αYαX

X Y

Y

Other components inherited from C

(Almost Eilenberg-Moore category of action monad)
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Restriction

Given a homomorphism φ : H → G , obtain a functor Rφ : CG → CH by
restriction

Idea: Rφ(X , α) is X equipped with the H-action
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Symmetrisation procedures

In this context, can define a symmetrisation procedure as a function

CH(RφX ,RφY ) → CG (X ,Y )

(where actions are denoted implicitly)

Key idea: sends “less equivariant” morphisms to “more equivariant” ones

E.g. consider H = I the trivial group
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Compositionality

Can compose procedures sequentially: given homomorphisms

K H G
ϕ φ

can symmetrise as follows:

CK (RϕRφX ,RϕRφY ) CH(RφX ,RφY ) CG (X ,Y ).
symϕ symφ

where here also RϕRφ = Rφ◦ϕ

Can therefore “build up” complex equivariance constraints in a structured
way
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Motivating idea

Suppose Rφ has a left adjoint E (often true classically [May et al., 1997])

Obtain directly
CH(RφX ,RφY ) ∼= CG (ERφX ,Y )

This recharacterises the problem of symmetrisation:

Before, H-equivariance 7→ G -equivariance

Now, G -equivariance 7→ G -equivariance (of another kind)
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General approach

When a left adjoint E ⊣ Rφ exists, obtain the following methodology:

CH(RφX ,RφY ) CG (ERφX ,Y ) CG (X ,Y )
∼= Precompose

In the second step, require a morphism X → ERφX in CG

This must be already G -equivariant, as for other symmetrisation
approaches

But now this can be very trivial compared with overall model
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More general idea

A full left adjoint is quite onerous to obtain, and more than we need

Classically in Set, have the following natural isomorphism:

ERφ
∼= G/H ⊗ (−)

where G/H is the coset space (with a canonical G -action)

Our idea: show directly that previous isomorphism of hom sets hold when
ERφ is replaced like this

Now G/H is the codomain of a φ-coset map
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Main result

Theorem

Suppose a φ-coset map q : G → G/H exists. Then for all X and Y in CG

there is a bijection

CH(RφX ,RφY ) CG (G/H ⊗ X ,Y )
∼=

that sends k : RφX → RφY in CH to the unique k♯ such that

k♯

q

G X

Y

=

k

αY

Y

αX

(−)−1

G X



Some comments

Theoretically, corresponds to an equivalence of categories between:

The full image of Rφ

The co-Kleisli category of the reader comonad G/H ⊗−

By earlier result, a φ-coset map always exists in TopStoch

Seems quite forthcoming in other contexts as well

Practically, can compute bijection finding a section of φ-coset map
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Resulting procedure

Overall procedure becomes as follows:

CH(RφX ,RφY ) CG (G/H ⊗ X ,Y ) CG (X ,Y )
∼= Precompose

where now precomposing by some X → G/H ⊗ X in CG

Recovers all existing deterministic symmetrisation techniques I am aware
of (in a sense inevitably) when combined with further averging step

CG (X ,Y ) CG
det(X ,Y )

Directly gives rise to a novel procedure for stochastic symmetrisation also
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Implementation



Application

The method of Kim et al. [2023] requires a stochastically equivariant
subcomponent

Kim et al. [2023] use an intrinsically equivariant neural network for this

We apply our stochastic symmetrisation approach instead

Consider learning the matrix inversion function A 7→ A−1, which is
equivariant with respect to orthogonal group:

(QA)−1 = A−1Q−1 = A−1QT

More examples needed!
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Results
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Implementation - DisCoPy

X
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X X
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Thank you!
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Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and
Siamak Ravanbakhsh. Equivariance with learned canonicalization functions. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 15546–15566. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/kaba23a.html.

https://openreview.net/forum?id=BJluy2RcFm
https://openreview.net/forum?id=zIUyj55nXR
https://proceedings.mlr.press/v202/kaba23a.html


References II

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon
Hong. Learning probabilistic symmetrization for architecture agnostic
equivariance. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems,
volume 36, pages 18582–18612. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/

3b5c7c9c5c7bd77eb73d0baec7a07165-Paper-Conference.pdf.

J.P. May, R.J. Piacenza, and M. Cole. Equivariant Homotopy and Cohomology
Theory: Dedicated to the Memory of Robert J. Piacenza. Regional conference
series in mathematics. American Mathematical Society, 1997. ISBN
9780821803197. URL
https://books.google.co.uk/books?id=KOcZYVxkQO9C.

https://proceedings.neurips.cc/paper_files/paper/2023/file/3b5c7c9c5c7bd77eb73d0baec7a07165-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b5c7c9c5c7bd77eb73d0baec7a07165-Paper-Conference.pdf
https://books.google.co.uk/books?id=KOcZYVxkQO9C

	
	Group theory in Markov categories
	Symmetrisation
	Methodology
	Implementation
	Thank you!

