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Toposes, computer science and me

Oxford 1978 (sheaves and logic)
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Toposes, computer science and me

Oxford 1978 (sheaves and logic)

Later. . .

◮ the mathematics of syntax involving binders

◮ semantics of univalent type theories

Toposes of finitely supportedM-sets for various monoids M
played an unexpected role.
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What is a Topos?
Category E with finite limits [and a natural number object]

for which every object X has SubE(X ×−) : Eop → Set representable
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What is a Topos?
Category E with finite limits [and a natural number object]

for which every object X has a

power object εX  X × PX

for all R  X × Y , there is a unique χR : Y → PX such that

R εX

X × Y
id×χR

X × PX

Simple to state. Hard to satisfy!

Need a bit more for some applications, namely universes – which we are still learning about
(see e.g. Gratzer, Shulmann & Sterling, Strict Universes for Grothendieck Topoi [arXiv:2202.12012]).
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Four blind men

That definition of topos is number 2
of André Joyal’s 7 answers to the question

“What is a topos?”
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What is a Topos?

Logical aspect:
semantics of intuitionistic HOL / set theory / type theory

topos morphism = “logical functor” (functor preserving finite limits, NNO

and powerobjects)

Geometric aspect:
toposes as generalised spaces

topos morphism = “geometric morphism” (functor with le� exact le�

adjoint)
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The category Set
M

for a given monoidM (write operations multiplicatively).

Objects of SetM are sets X equipped with (le�-)action

m ∈ M, x ∈ X 7→ m · x ∈ X

m′m · x = m′ · (m · x)

1 · x = x

Morphisms are functions f : X → Y preserving action

f (m · x) = m · (f x)

Composition and identities as in Set.
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The topos SetM

[Special case of topos SetC
op

of presheaves on a small category C, when C has one object.]

◮ Finite limits are created by Set
M

forget
−−−→ Set
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The topos SetM

[Special case of topos SetC
op

of presheaves on a small category C, when C has one object.]

◮ Finite limits are created by Set
M

forget
−−−→ Set

◮ Powerobject PX of X ∈ Set
M consists of all subsets S ⊆ M× X

satisfying

m  x ∈ S ⇒ ∀m′ (m′m  m′ · x ∈ S)

stands for (m, x) ∈ S

read as “m forces x to be in S”
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The topos SetM

[Special case of topos SetC
op

of presheaves on a small category C, when C has one object.]

◮ Finite limits are created by Set
M forget
−−−→ Set

◮ Powerobject PX of X ∈ Set
M consists of all subsets S ⊆ M× X

satisfying

m  x ∈ S ⇒ ∀m′ (m′m  m′ · x ∈ S)

Action m, S 7→ m · S is given by:

m′  x ∈ m · S ⇔ m′m  x ∈ S
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The topos SetM

[Special case of topos SetC
op

of presheaves on a small category C, when C has one object.]

◮ Finite limits are created by Set
M forget
−−−→ Set

◮ Powerobject PX of X ∈ Set
M consists of all subsets S ⊆ M× X

satisfying

m  x ∈ S ⇒ ∀m′ (m′m  m′ · x ∈ S)

Universal relation εX  X × PX is

εX = {(x, S) ∈ X × PX | 1  x ∈ S}
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Full transformation monoid, TA

Given a set A

TA = all functions A → A, with monoid structure given by function
composition and identity function
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Support

Given submonoid M ⊆ TA and given anM-set X , define:

x ∈ X is supported by S ⊆ A if

∀m,m′ (m|S = m′|S ⇒ m · x = m′ · x)
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Support

Given submonoid M ⊆ TA and given anM-set X , define:

x ∈ X is supported by S ⊆ A if

∀m,m′ (m|S = m′|S ⇒ m · x = m′ · x)

◮ In A (M-set via function application), a ∈ A is supported by {a}.

◮ If S supports x ∈ X and S′ supports x ′ ∈ X ′, then S ∪ S′ supports (x, x ′) in the
product M-set X × X ′.

◮ Support in a powerobject in general has no simpler explanation than the
definition.
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The topos SetMfs

Given submonoid M ⊆ TA

Set
M

fs is the full subcategory of SetM whose objects are theM-sets X

for which every x ∈ X is supported by some finite subset S ⊆ A
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The topos SetMfs

Given submonoid M ⊆ TA

Set
M

fs is the full subcategory of SetM whose objects are theM-sets X

for which every x ∈ X is supported by some finite subset S ⊆ A

A more honest notation would be (SetM⊆TA)fs .

N.B. by the monoid version of Cayley’s Theorem
every monoidM is a submonoid of TA for some A,
namely A = M, but that might not give a useful
notion of support.
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The topos SetMfs

Given submonoid M ⊆ TA

Set
M

fs is the full subcategory of SetM whose objects are theM-sets X

for which every x ∈ X is supported by some finite subset S ⊆ A

Inclusion Set
M

fs →֒ Set
M creates finite limits, reflects isos and

has right adjoint (_)fs : Set
M → Set

M

fs given by Xfs , {x ∈ X | x has a finite support}.
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The topos SetMfs

Given submonoid M ⊆ TA

Set
M

fs is the full subcategory of SetM whose objects are theM-sets X

for which every x ∈ X is supported by some finite subset S ⊆ A

Inclusion Set
M

fs →֒ Set
M creates finite limits, reflects isos and

has right adjoint (_)fs : Set
M → Set

M

fs given by Xfs , {x ∈ X | x has a finite support}.

By a (co)monadicity theorem, SetMfs is equivalent to the category of coalgebras for the
le� exact comonad induced by the adjunction; and so by an old theorem of Lawvere &
Tierney, it is a topos (with a geometric surjection from Set

M to Set
M

fs ).

Finite limits as in Set
M; powerobject of X ∈ Set

M

fs is (PX)fs.
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Mathematics of syntax involving binders

If A = N and

M ⊆ TN is the symmetric group SN (or the subgroup of finite
permutations, it makes no difference), then Set

M

fs is the Gabbay-AMP
topos of nominal sets, equivalent to Schanuel’s atomic topos classifying
the geometric theory of an infinite decidable set.

Because elements of thisM are invertible, (PX)fs simplifies to a subset of
the usual powerset PX and Set

M

fs is a Boolean topos. It provides a rich
and easily accessible and syntax-independent foundation for fresh
names, name-binding, recursion and induction mod-α. Read the book.
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Algorithms on slightly infinite data

TheM = SN case of SetMfs (and the associated Fraenkel-Mostowski
cumulative hierarchy of sets) provides an instance of the notion of
slightly infinite (orbit-finite) sets—data that is finite modulo symmetry
with an interesting algorithmics.

Read the book: Mikołaj Bojańczyk, Slightly Infinite Sets (2019)
mimuw.edu.pl/~bojan/paper/atom-book
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Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.
Made use of a certain sheaf subcategory of presheaves on finite sets and functions.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.
Finitely supportedM-sets forM = {m ∈ TN|m(a) = a for all but finitely many a ∈ N}

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, IJCAR 2022.
Category of finitely supported “renaming sets” = sets X equipped with ternary operation
(_ := _)_ : N×N× X → X satisfying

(a := a)x = x

a 6= c ⇒ (a := b)(a := c)x = (a := c)x

(b := c)(a := b)x = (a := c)(b := c)x

b 6= a′ 6= a 6= b′ ⇒ (a := b)(a′ := b′)x = (a′ := b′)(a := b)x
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Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, IJCAR 2022.

Theorem. All three categories introduced above are equivalent to SetTN

fs .

Proof is a corollary of work on “locally nameless sets” (AMP, POPL 2023), using some classic semigroup
theory about full transformation monoids on finite sets to capture Popescu’s notion of “renaming set”.

13/24



Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, IJCAR 2022.

Theorem. All three categories introduced above are equivalent to SetTN

fs .

SN →֒ TN induces a geometric morphism that makes SetTN

fs a topos defined over the
topos of nominal sets. The internal modal type theory of this relative topos (whatever
that means!) bears further investigation for applications to the mathematics of syntax.

13/24



Semantics of univalent type theories

The pursuit of models of Homotopy Type Theory (Martin-Löf Type Theory +
univalence, higher inductive types, etc), especially ones with computational content,
has involved [�illen model structures on] pre-sheaf toposes.

Some of those pre-sheaf toposes turn out to be equivalent SetMfs for various A and
M ⊆ TA.

Thesis: developing the relevant structures and calculations may be easier “nominally”
(e.g. the elements of A are named cartesian axes), compared with the usual
possible-world Kripke-Joyal semantics for presheaves.

(Anti-thesis: working in the internal [modal] type theory of the topos proved to be
even easier. See publications by AMP & Ian Orton.)
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Cartesian cubical sets
Theorem. (AMP, TYPES 2014)

Set
C

op

for C = (non-trivial bipointed finite sets)op (= Grothendieck’s
“smallest test category”) is equivalent to SetMfs whereM is the monoid
of all endofunctions on {0} ⊎N ⊎ {1} that preserve 0 and 1.
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From the SetMfs viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many
named dimensions i, j, k, . . . ∈ N

k

j

i
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From the SetMfs viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many
named dimensions i, j, k, . . . ∈ N

k

x j

i

x ∈ X supported by
{i, j, k}
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From the SetMfs viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many
named dimensions i, j, k, . . . ∈ N, with the dependency described by
theM-action on X

k

j

i

(i := 1) · (j := 0) · (k := 0) · x

(i := 0) · (j := 0) · x

(i := 1) · x
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From the SetMfs viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many
named dimensions i, j, k, . . . ∈ N, with the dependency described by
theM-action on X

in the version using SetC
op

the dependency is explicit,
leading to “weakening hell”
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Other flavours of cubical set
Theorem. (AMP, TYPES 2014)
Set

C
op

for C = (non-trivial bipointed finite sets)op (= Grothendieck’s “smallest test category”) is
equivalent to Set

M

fs whereM is the monoid of all endofunctions on {0} ⊎N ⊎ {1} that preserve 0 and 1.

M for other versions of cubical sets:

◮ Bezem, Coquand & Huber, A model of type theory in cubical sets (TYPES 2013).

M = the monoid of all endofunctions m on {0} ⊎N ⊎ {1} that preserve 0 and 1
and that are injective on N−m−1{0, 1}

◮ Cohen, Coquand, Huber & Mörtberg, Cubical type theory: A constructive
interpretation of the univalence axiom (TYPES 2015).

M = the monoid of all endomorphisms of the free de Morgan algebra on N
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Simplicial sets

Theorem. (Eric Faber, thesis, 2019) The pre-sheaf topos Set∆
op

of simplicial
sets is equivalent to Set

M

fs where M is the monoid of order-preserving
endofunctions on {−∞ ≤ · · · − 2 ≤ −1 ≤ 0 ≤ 1 ≤ 2 ≤ · · · ≤ +∞}
that preserve −∞ and +∞.
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Reflexive globular sets

are diagrams in Set of shape C0 i0 C1 i1

s0

t0

C2 i2

s1

t1

C3 i3

s2

t2

C4 ···

s3

t3

satisfying

sn ◦ in = id = tn ◦ in sn ◦ sn+1 = sn ◦ tn+1 tn ◦ sn+1 = tn ◦ tn+1

(Cn = n-cells, sn = source, tn = target, in = identity). They are the objects of an evident pre-sheaf category.
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Reflexive globular sets

are diagrams in Set of shape C0 i0 C1 i1

s0

t0

C2 i2

s1

t1

C3 i3

s2

t2

C4 ···

s3

t3

satisfying

sn ◦ in = id = tn ◦ in sn ◦ sn+1 = sn ◦ tn+1 tn ◦ sn+1 = tn ◦ tn+1

(Cn = n-cells, sn = source, tn = target, in = identity). They are the objects of an evident pre-sheaf category.

Theorem. The pre-sheaf category of reflexive globular sets is equivalent to Set
M

fs for
the monoidM whose non-identity elements

db
n (for n ∈ N, b ∈ {s, t}) satisfy db

nd
b′

n′ =

{

db
n if n < n′

db′

n′ if n′ ≤ n

and where we regard M as a submonoid of TM via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283–335.]
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Reflexive globular sets

are diagrams in Set of shape C0 i0 C1 i1

s0

t0

C2 i2

s1

t1

C3 i3

s2

t2

C4 ···

s3

t3

satisfying

sn ◦ in = id = tn ◦ in sn ◦ sn+1 = sn ◦ tn+1 tn ◦ sn+1 = tn ◦ tn+1

(Cn = n-cells, sn = source, tn = target, in = identity). They are the objects of an evident pre-sheaf category.

Theorem. The pre-sheaf category of reflexive globular sets is equivalent to Set
M

fs for
the monoidM whose non-identity elements

db
n (for n ∈ N, b ∈ {s, t}) satisfy db

nd
b′

n′ =

{

db
n if n < n′

db′

n′ if n′ ≤ n

and where we regard M as a submonoid of TM via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283–335.]

d0
n · x = take the n-dimensional source of x
d1
n · x = take the n-dimensional target of x

For this monoid
x is finitely supported iff

d0
n · x = x holds for some n
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Why bother?

We have seen that various (pre)sheaf toposes are equivalent to toposes
of finitely supportedM-sets. So what?

+ Can avoid weakening hell: possible-worlds (stages) become implicit sub-worlds
of just one world (via support sets).

- Still have world-morphisms, i.e. elements of the monoid (unless the monoid is a
group); and naturality conditions (but those can sometimes be avoided using
(co)free functors on indexed families).

+ Some constructs look much nicer in Set
M

fs (e.g. path types in the cubical models
are given by nominal name-abstraction).
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Cartesian cubical sets
Theorem. (AMP, TYPES 2014)

Set
C

op

for C = (non-trivial bipointed finite sets)op (= Grothendieck’s
“smallest test category”) is equivalent to SetMfs whereM is the monoid
of all endofunctions on {0} ⊎N ⊎ {1} that preserve 0 and 1.

◮ Interval 1
0

1
I in Set

M

fs is I = {0} ⊎N ⊎ {1} withM-action given by function application.

◮ Exponential X I has a simple description as an object of paths [ i ]x given by a named

dimension i ∈ N and an element x ∈ X , quotiented by the equivalence relation that identifies
[ i ]x with [ j ]y iff (i = k) · x = (j := k) · y for some/any k not in the support of (i, x , j, y)
(cf. α-equivalence!).

◮ The interval is tiny and the right adjoint to X 7→ X I has a simple description (omi�ed)—used to
construct univalent universes of Coquand-fibrations.
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Some to-dos

◮ Fully develop the cartesian cubical set model of HoTT using finitely
supportedM-sets, e.g. by translating Steve Awodey’s recent
extensive pre-sheaf based account.
[“Cartesian Cubical Model Categories”, arXiv:2305.00893]
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END
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