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Toposes, computer science and me

Oxford 1978 (sheaves and logic)
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Toposes, computer science and me

Oxford 1978 (sheaves and logic)

Later...

» the mathematics of syntax involving binders

» semantics of univalent type theories

Toposes of finitely supported M-sets for various monoids M
played an unexpected role.
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What is a Topos?

Category € with finite limits [and a natural number object]
for which every object X has Subg(X x —) : £°? — Set representable
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What is a Topos?

Category € with finite limits [and a natural number object]
for which every object X has a

power object ex — X X PX
for all R — X x Y, there is a unique x& : Y — PX such that

Simple to state. Hard to satisfy!

Need a bit more for some applications, namely universes — which we are still learning about
(see e.g. Gratzer, Shulmann & Sterling, Strict Universes for Grothendieck Topoi [arXiv:2202.12012]).



Four blind men

That definition of topos is number 2
of André Joyal’s 7 answers to the question
“What is a topos?”
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What is a Topos?

Logical aspect:
semantics of intuitionistic HOL / set theory / type theory

topos morphism = “logical functor” (functor preserving finite limits, NNO

and powerobjects)

Geometric aspect:
toposes as generalised spaces

topos morphism = “geometric morphism” (functor with left exact left
adjoint)
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The category Set™

for a given monoid M (write operations multiplicatively).

Objects of Set™ are sets X equipped with (left-)action

meMxeX—m-xeX
mm-x=m-(m-x)

1-x=x
Morphisms are functions f : X — Y preserving action

f(m-x) =m-(fx)

Composition and identities as in Set.
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The topos SetM

[Special case of topos Set®” of presheaves on a small category C, when C has one object.]

forget
> Finite limits are created by Set™ 2 Set
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M
The topos Set
[Special case of topos Set®” of presheaves on a small category C, when C has one object.]

f
> Finite limits are created by Set™ ~E% Set

> Powerobject PX of X € Set™ consists of all subsets S C M x X
satisfying

mlkxeS = Vm (mml-nm -x€5)

stands for (m,x) € S
read as “m forces x to be in §”
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The topos Set™

[Special case of topos Set®” of presheaves on a small category C, when C has one object.]

f
> Finite limits are created by Set™ B Set

» Powerobject PX of X € Set™ consists of all subsets S C M x X
satisfying
mlktxeS = Vm (mml-nm-x€5)

Action m, S — m- S is given by:

miFxem-S < mMmlkF-xeS
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The topos Set™

[Special case of topos Set®” of presheaves on a small category C, when C has one object.]

f
> Finite limits are created by Set™ B Set

» Powerobject PX of X € Set™ consists of all subsets S C M x X
satisfying

mlktxeS = Vm (mml-nm-x€5)

Universal relation ey — X X PX is

ex ={(x,S) e XxPX|1IFx €S}
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Full transformation monoid, Ty

Given a set A

Ta = all functions A — A\, with monoid structure given by function
composition and identity function
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Support

Given submonoid M C Ty and given an M-set X, define:

x € X is supported by S C A if

Vm,m' (m|s=m|s = m-x=m - x)
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Support

Given submonoid M C Ty and given an M-set X, define:
x € X is supported by S C A if

Vm,m (mls =nl|s = m-x=m-x)

» In A\ (M-set via function application), a € A is supported by {a}.

» If Ssupports x € X and S’ supports x’ € X', then SU S’ supports (x, x’) in the
product M-set X x X.

» Support in a powerobject in general has no simpler explanation than the
definition.
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The topos Set!!

Given submonoid M C Ty

Set!! |is the full subcategory of Set™ whose objects are the M-sets X
for which every x € X is supported by some finite subset S C A
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The topos Set!!

Given submonoid M C Ty

Set!! |is the full subcategory of Set™ whose objects are the M-sets X

forlwhich every x € X is supported by some finite subset S C A

-

notion of support.
(.

A more honest notation would be | (SetMST4)g | .

N.B. by the monoid version of Cayley’s Theorem
every monoid M is a submonoid of Tp for some A,
namely A = M, but that might not give a useful
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The topos Set}!

Given submonoid M C Ty

Set!! |is the full subcategory of Set™ whose objects are the M-sets X
for which every x € X is supported by some finite subset S C A

Inclusion Set}' — Set™ creates finite limits, reflects isos and
has right adjoint (_)g : Set™ — Set} given by Xi, £ {x € X | x has a finite support}.
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The topos Set}!

Given submonoid M C Ty

Set!! |is the full subcategory of Set™ whose objects are the M-sets X
for which every x € X is supported by some finite subset S C A

Inclusion Set}' — Set™ creates finite limits, reflects isos and
has right adjoint (_)g : Set™ — Set} given by Xi, £ {x € X | x has a finite support}.

By a (co)monadicity theorem, Set}! is equivalent to the category of coalgebras for the
left exact comonad induced by the adjunction; and so by an old theorem of Lawvere &
Tierney, it is a topos (with a geometric surjection from Set™ to Set}).

Finite limits as in Set™; powerobject of X € Set} is (PX)s,.
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Mathematics of syntax involving binders

If A = IN and

M C Ty, is the symmetric group Sy (or the subgroup of finite
permutations, it makes no difference), then Set}! is the Gabbay-AMP
topos of nominal sets, equivalent to Schanuel’s atomic topos classifying
the geometric theory of an infinite decidable set.

Because elements of this M are invertible, (PX)g simplifies to a subset of &
the usual powerset PX and Set}! is a Boolean topos. It provides a rich -
and easily accessible and syntax-independent foundation for fresh
names, name-binding, recursion and induction mod-a. Read the book.
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Algorithms on slightly infinite data

The M = Sy case of Setg‘ (and the associated Fraenkel-Mostowski
cumulative hierarchy of sets) provides an instance of the notion of
slightly infinite (orbit-finite) sets—data that is finite modulo symmetry
with an interesting algorithmics.

Read the book: Mikotaj Bojanczyk, Slightly Infinite Sets (2019)
mimuw.edu.pl/ bojan/paper/atom-book

12/24
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Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.
Made use of a certain sheaf subcategory of presheaves on finite sets and functions.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.
Finitely supported M-sets for M = {m € Ti|m(a) = afor all but finitely many a € IN}

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, |JCAR 2022.
Category of finitely supported “renaming sets” = sets X equipped with ternary operation
(L:=_)_:INxIN x X — X satisfying

(a:=a)x=x
a#c=(a:=b)(a:=c)x=(a:=c)x
(b:=c)(a:=b)x = (a:=c)(b:= c)x
b#d #a#b = (a:=b)(d :=b)x=(d :=b)(a:=b)x
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Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:
Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.
Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, |JCAR 2022.

Theorem. All three categories introduced above are equivalent to Setgs"“.

Proof is a corollary of work on “locally nameless sets” (AMP, POPL 2023), using some classic semigroup
theory about full transformation monoids on finite sets to capture Popescu’s notion of “renaming set”.
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Mathematics of syntax involving binders

Categorical foundations for name-for-name substitution:
Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.
Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, |JCAR 2022.

Theorem. All three categories introduced above are equivalent to Setgs'”.

S < T induces a geometric morphism that makes Setgs'“‘ a topos defined over the

topos of nominal sets. The internal modal type theory of this relative topos (whatever
that means!) bears further investigation for applications to the mathematics of syntax.
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Semantics of univalent type theories

The pursuit of models of Homotopy Type Theory (Martin-Lof Type Theory +
univalence, higher inductive types, etc), especially ones with computational content,
has involved [Quillen model structures on] pre-sheaf toposes.

Some of those pre-sheaf toposes turn out to be equivalent Set' for various A and
M C Ty,

»

Thesis: developing the relevant structures and calculations may be easier “nominally
(e.g. the elements of A\ are named cartesian axes), compared with the usual
possible-world Kripke-Joyal semantics for presheaves.

(Anti-thesis: working in the internal [modal] type theory of the topos proved to be
even easier. See publications by AMP & lan Orton.)
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(e.g. the elements of A\ are named cartesian axes), compared with the usual
possible-world Kripke-Joyal semantics for presheaves.

(Anti-thesis: working in the internal [modal] type theory of the topos proved to be
even easier. See publications by AMP & lan Orton.)

14/24



Cartesian cubical sets

Theorem. (AMP, TYPES 2014)

Set®” for C = (non-trivial bipointed finite sets)°® (= Grothendieck’s
“smallest test category”) is equivalent to Set}! where M is the monoid
of all endofunctions on {0} W IN & {1} that preserve 0 and 1.



From the Set?;l viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many
named dimensions i, j, k,... € IN
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From the Set?;‘ viewpoint, cartesian cubical sets X are sets whose
elements depend implicitly (via support) on finitely many

named dimensions i, j, k,... € IN
k
A
I
X -— >
x € X supported by
{i,j, k}
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From the Set?s4 viewpoint, cartesian cubical sets X are sets whose

elements depend implicitly (via support) on finitely many
named dimensions i, j, k, ... € IN, with the dependency described by

the M-action on X
k (i:==1)-x
A
|

(i:==0)-(j:=0)-x
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From the Set?: viewpoint, cartesian cubical sets X are sets whose

elements depend implicitly (via support) on finitely many
named dimensions\i, j, k, . .. € IN, with the dependency described by

the M-action on X

in the version using Set®”
the dependency is explicit,
leading to “weakening hell”
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Other flavours of cubical set

Theorem. (AMP, TYPES 2014)
Set®” for C = (non-trivial bipointed finite sets)®® (= Grothendieck’s “smallest test category”) is
equivalent to Set}! where M is the monoid of all endofunctions on {0} & IN & {1} that preserve 0 and 1.

M for other versions of cubical sets:

» Bezem, Coquand & Huber, A model of type theory in cubical sets (TYPES 2013).
M = the monoid of all endofunctions mon {0} & IN & {1} that preserve 0 and 1
and that are injective on IN — m~'{0, 1}

» Cohen, Coquand, Huber & Mortberg, Cubical type theory: A constructive
interpretation of the univalence axiom (TYPES 2015).

M = the monoid of all endomorphisms of the free de Morgan algebra on IN
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Simplicial sets

Theorem. (Eric Faber, thesis, 2019) The pre-sheaf topos Set™” of simplicial
sets is equivalent to Set}! where M is the monoid of order-preserving
endofunctionson {—oc0 <.+ —2< -1<0<1<2< - < +oo}
that preserve —oo and +oc.
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Reflexive globular sets

to t t t3
£\ £\ £\ £\
are diagrams in Set of shape Cy —i— C; —ir—> C; —ir> C3 —ir—=> C4 - satisfying
N~ N~ N~
So S1 S 53

Spoip =id =t 0 iy Sn © Sn+1 = Sn © Ip4 th o Spr1 = th o thq

(C, = n-cells, s, = source, t, = target, i, = identity). They are the objects of an evident pre-sheaf category.
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Reflexive globular sets

to t t t3
£ N VRN VRN VRN
are diagrams in Set of shape Cy —i— C; —ir—> C; —ir> C3 —ir—=> C4 - satisfying
N~ N~ N~
So 51 S 53

Spolp=1id =ty 0 i, Sn © Sn+1 = Sn © Ip4 th o Spr1 = th o thq
(C, = n-cells, s, = source, t, = target, i, = identity). They are the objects of an evident pre-sheaf category.

Theorem. The pre-sheaf category of reflexive globular sets is equivalent to Set}' for
the monoid M whose non-identity elements

/ db if /
d® (fornc IN,b € {s,t}) satisfy d°d = dZ’,’ ;f Z,<§nn

and where we regard M as a submonoid of Ty, via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283-335.]

19/24



Reflexive globular sets

53 t3

d° - x = take the n-dimensional source of x L
d,l - x = take the n-dimensional target of x Cy —ir>C3 —is—>Cy - satisfying
. . N~ - o~
For this monoid 55 55
x is finitely supported iff nt1 = th ot

0.,
dy - x = x holds for some . They are the objects of an evident pre-sheaf category.

Theorem. The pre/sheaf category of reflexive globular sets is equivalent to Set}' for
the monoid M whose non-identity elements

) d* ifn<n
diorneMbe (s sy a0 177"

and where we regard M as a submonoid of Ty via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283-335.]
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Why bother?

We have seen that various (pre)sheaf toposes are equivalent to toposes
of finitely supported M-sets. So what?

+ Can avoid weakening hell: possible-worlds (stages) become implicit sub-worlds
of just one world (via support sets).

- Still have world-morphisms, i.e. elements of the monoid (unless the monoid is a
group); and naturality conditions (but those can sometimes be avoided using
(co)free functors on indexed families).

+ Some constructs look much nicer in Set}! (e.g. path types in the cubical models
are given by nominal name-abstraction).
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Cartesian cubical sets

Theorem. (AMP, TYPES 2014)

Set®” for C = (non-trivial bipointed finite sets)°® (= Grothendieck’s
“smallest test category”) is equivalent to Set}! where M is the monoid
of all endofunctions on {0} W IN & {1} that preserve 0 and 1.

0
» | Interval 1——=1 |in Set}! isT= {0} W IN & {1} with M-action given by function application.
1

> Exponential has a simple description as an object of | paths [ i]x | given by a named

dimension i € IN and an element x € X, quotiented by the equivalence relation that identifies
[i]x with [j]y iff (i = k) - x = (j := k) - y for some/any k not in the support of (i, x, j, y)
(cf. a-equivalence!).

» The interval is tiny and the right adjoint to X +— X! has a simple description (omitted)—used to
construct univalent universes of Coquand-fibrations.
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Some to-dos

» Fully develop the cartesian cubical set model of HoT T using finitely
supported M-sets, e.g. by translating Steve Awodey’s recent
extensive pre-sheaf based account.

[“Cartesian Cubical Model Categories”, arXiv:2305.00893]



Some to-dos

» Fully develop the cartesian cubical set model of HoT T using finitely
supported M-sets, e.g. by translating Steve Awodey’s recent
extensive pre-sheaf based account.

[“Cartesian Cubical Model Categories”, arXiv:2305.00893]

» Take the forcing notation (m I x € S) seriously. Adapt Dana

Scott’s pre-sheaf model of IZF
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Some to-dos

» Fully develop the cartesian cubical set model of HoT T using finitely
supported M-sets, e.g. by translating Steve Awodey’s recent
extensive pre-sheaf based account.

[“Cartesian Cubical Model Categories”, arXiv:2305.00893]

» Take the forcing notation (m I x € S) seriously. Adapt Dana

Scott’s pre-sheaf model of IZF to finitely supported M-sets.

24/24



» Fully develop the cartesian cubical set model of HoT T using finitely
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[“Cartesian Cubical Model Categories”, arXiv:2305.00893]

» Take the forcing notation (m I x € S) seriously. Adapt Dana
Scott’s pre-sheaf model of IZF to finitely supported M-sets.

» Is there a (useful) abstract characterisation of this class of toposes?

(Hence give an example of a topos not equivalent to one of the form Set')
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Some to-dos

» Fully develop the cartesian cubical set model of HoT T using finitely
supported M-sets, e.g. by translating Steve Awodey’s recent
extensive pre-sheaf based account.

[“Cartesian Cubical Model Categories”, arXiv:2305.00893]

» Take the forcing notation (m I x € S) seriously. Adapt Dana
Scott’s pre-sheaf model of IZF to finitely supported M-sets.

» Is there a (useful) abstract characterisation of this class of toposes?

(Hence give an example of a topos not equivalent to one of the form Set')

END
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