Toposes of Finitely Supported M-sets

Andrew Pitts

ACT-MFPS, Oxford, June 2024

Toposes, computer science and me

Oxford 1978 (sheaves and logic)

Toposes, computer science and me

Oxford 1978 (sheaves and logic)

Later...

- the mathematics of syntax involving binders
- semantics of univalent type theories

Toposes of finitely supported *M*-sets for various monoids *M* played an unexpected role.

What is a Topos?

Category \mathcal{E} with finite limits [and a natural number object] for which every object *X* has $\operatorname{Sub}_{\mathcal{E}}(X \times -) : \mathcal{E}^{\operatorname{op}} \to \operatorname{Set}$ representable

What is a Topos?

Category \mathcal{E} with finite limits [and a natural number object] for which every object X has a power object $\varepsilon_X \rightarrow X \times PX$ for all $R \rightarrow X \times Y$, there is a unique $\chi_R : Y \rightarrow PX$ such that $\begin{array}{cccc} R & - & - & - & - & - & > & \varepsilon_X \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$ $X \times Y = - \frac{1}{\operatorname{id} \times v_{P}} \rightarrow X \times \mathrm{P}X$

Simple to state. Hard to satisfy!

Need a bit more for some applications, namely <u>universes</u> – which we are still learning about (see e.g. Gratzer, Shulmann & Sterling, *Strict Universes for Grothendieck Topoi* [arXiv:2202.12012]).

Four blind men

That definition of topos is number 2 of André Joyal's 7 answers to the question "What is a topos?"

What is a Topos?

Logical aspect: semantics of intuitionistic HOL / set theory / type theory

topos morphism = "logical functor" (functor preserving finite limits, NNO and powerobjects)

Geometric aspect:

toposes as generalised spaces

topos morphism = "geometric morphism" (functor with left exact left adjoint)

The category **Set**^M

for a given monoid M (write operations multiplicatively). Objects of **Set**^M are sets X equipped with (left-)action

$$m \in \mathbf{M}, x \in X \mapsto m \cdot x \in X$$

 $m'm \cdot x = m' \cdot (m \cdot x)$
 $1 \cdot x = x$

Morphisms are functions $f : X \rightarrow Y$ preserving action

 $f(m \cdot x) = m \cdot (f x)$

Composition and identities as in Set.

[Special case of topos $\mathbf{Set}^{C^{op}}$ of presheaves on a small category **C**, when **C** has one object.]

► Finite limits are created by $\mathbf{Set}^{\mathsf{M}} \xrightarrow{\text{forget}} \mathbf{Set}$

[Special case of topos $\mathbf{Set}^{C^{op}}$ of presheaves on a small category **C**, when **C** has one object.]

- Finite limits are created by $\mathbf{Set}^{\mathsf{M}} \xrightarrow{\text{forget}} \mathbf{Set}$
- ► Powerobject PX of X ∈ Set^M consists of all subsets S ⊆ M × X satisfying

[Special case of topos **Set**^{C^{op}} of presheaves on a small category **C**, when **C** has one object.]

- Finite limits are created by $\mathbf{Set}^{\mathsf{M}} \xrightarrow{\text{forget}} \mathbf{Set}$
- ▶ Powerobject PX of $X \in Set^M$ consists of all subsets $S \subseteq M \times X$ satisfying

$$m \Vdash x \in S \Rightarrow \forall m' (m'm \Vdash m' \cdot x \in S)$$

Action $m, S \mapsto m \cdot S$ is given by:

 $m' \Vdash x \in m \cdot S \Leftrightarrow m'm \Vdash x \in S$

[Special case of topos **Set**^{C^{op}} of presheaves on a small category **C**, when **C** has one object.]

- Finite limits are created by $\mathbf{Set}^{\mathsf{M}} \xrightarrow{\text{forget}} \mathbf{Set}$
- ▶ Powerobject PX of $X \in Set^M$ consists of all subsets $S \subseteq M \times X$ satisfying

$$m \Vdash x \in S \Rightarrow \forall m' (m'm \Vdash m' \cdot x \in S)$$

Universal relation $\varepsilon_X \rightarrow X \times \mathbf{P}X$ is

 $\varepsilon_X = \{(x, S) \in X \times \mathrm{P}X \mid 1 \Vdash x \in S\}$

Full transformation monoid, TA

Given a set A

 T_A = all functions $A \rightarrow A$, with monoid structure given by function composition and identity function

Support

Given submonoid $\mathbf{M} \subseteq \mathbf{T}_{\mathbb{A}}$ and given an \mathbf{M} -set X, define: $x \in X$ is supported by $S \subseteq \mathbb{A}$ if $\forall m, m' \ (m|_S = m'|_S \Rightarrow m \cdot x = m' \cdot x)$

Support

Given submonoid $\mathbf{M} \subseteq \mathbf{T}_{A}$ and given an \mathbf{M} -set X, define: $x \in X$ is supported by $S \subseteq A$ if $\forall m, m' \ (m|_S = m'|_S \Rightarrow m \cdot x = m' \cdot x)$

- ▶ In A (M-set via function application), $a \in A$ is supported by $\{a\}$.
- ▶ If *S* supports $x \in X$ and *S'* supports $x' \in X'$, then $S \cup S'$ supports (x, x') in the product **M**-set $X \times X'$.
- Support in a powerobject in general has no simpler explanation than the definition.

The topos $\mathbf{Set}_{\mathrm{fs}}^{\mathbf{M}}$

Given submonoid $M \subseteq T_A$

Set^M_{fs} is the full subcategory of **Set**^M whose objects are the **M**-sets X for which every $x \in X$ is supported by some finite subset $S \subseteq A$

The topos **Set**^M_{fs}

Given submonoid $M \subseteq T_A$

Set^M_{fs} is the full subcategory of **Set**^M whose objects are the **M**-sets X for which every $x \in X$ is supported by some finite subset $S \subseteq A$

A more honest notation would be $(\mathbf{Set}^{\mathsf{M}\subseteq\mathsf{T}_{\mathsf{A}}})_{\mathrm{fs}}$

N.B. by the monoid version of Cayley's Theorem every monoid M is a submonoid of T_A for some A, namely A = M, but that might not give a useful notion of support.

The topos $\mathbf{Set}_{\mathrm{fs}}^{\mathbf{M}}$

Given submonoid $M \subseteq T_A$

Set^M_{fs} is the full subcategory of **Set**^M whose objects are the **M**-sets X for which every $x \in X$ is supported by some finite subset $S \subseteq A$

Inclusion $\mathbf{Set}_{\mathrm{fs}}^{\mathsf{M}} \hookrightarrow \mathbf{Set}^{\mathsf{M}}$ creates finite limits, reflects isos and has right adjoint (_)_{fs} : $\mathbf{Set}^{\mathsf{M}} \to \mathbf{Set}_{\mathrm{fs}}^{\mathsf{M}}$ given by $X_{\mathrm{fs}} \triangleq \{x \in X \mid x \text{ has a finite support}\}$.

The topos $\mathbf{Set}_{\mathrm{fs}}^{\mathbf{M}}$

Given submonoid $M \subseteq T_A$

Set^M_{fs} is the full subcategory of **Set**^M whose objects are the **M**-sets X for which every $x \in X$ is supported by some finite subset $S \subseteq A$

Inclusion $\operatorname{Set}_{\mathrm{fs}}^{\mathsf{M}} \hookrightarrow \operatorname{Set}^{\mathsf{M}}$ creates finite limits, reflects isos and has right adjoint (_)_{fs} : $\operatorname{Set}^{\mathsf{M}} \to \operatorname{Set}_{\mathrm{fs}}^{\mathsf{M}}$ given by $X_{\mathrm{fs}} \triangleq \{x \in X \mid x \text{ has a finite support}\}$.

By a (co)monadicity theorem, $\mathbf{Set}_{fs}^{\mathsf{M}}$ is equivalent to the category of coalgebras for the left exact comonad induced by the adjunction; and so by an old theorem of Lawvere & Tierney, it is a topos (with a geometric surjection from $\mathbf{Set}^{\mathsf{M}}$ to $\mathbf{Set}_{fs}^{\mathsf{M}}$).

Finite limits as in **Set**^M; powerobject of $X \in$ **Set**^M_{fs} is (PX)_{fs}.

If A = IN and

 $M \subseteq T_{\mathbb{N}}$ is the symmetric group $S_{\mathbb{N}}$ (or the subgroup of finite permutations, it makes no difference), then $\mathbf{Set}_{\mathrm{fs}}^{M}$ is the Gabbay-AMP topos of nominal sets, equivalent to Schanuel's atomic topos classifying the geometric theory of an infinite decidable set.

Because elements of this **M** are invertible, $(\mathbf{P}X)_{\mathrm{fs}}$ simplifies to a subset of the usual powerset $\mathcal{P}X$ and $\mathbf{Set}_{\mathrm{fs}}^{\mathrm{M}}$ is a Boolean topos. It provides a rich and easily accessible and syntax-independent foundation for fresh names, name-binding, recursion and induction mod- α . Read the book.

Nominal

lymmetry in Inmeetry in

Algorithms on slightly infinite data

The $M = S_{\mathbb{N}}$ case of Set_{fs}^{M} (and the associated Fraenkel-Mostowski cumulative hierarchy of sets) provides an instance of the notion of *slightly infinite* (orbit-finite) sets—data that is finite modulo symmetry with an interesting algorithmics.

Read the book: Mikołaj Bojańczyk, *Slightly Infinite Sets* (2019) mimuw.edu.pl/~bojan/paper/atom-book

Categorical foundations for name-for-name substitution:

Sam Staton, *Name-Passing Process Calculi*, PhD thesis, Cambridge 2007. Made use of a certain sheaf subcategory of presheaves on finite sets and functions.

Jamie Gabbay & Martin Hofmann, *Nominal Renaming Sets*, LPAR 2008. Finitely supported M-sets for $M = \{m \in T_N | m(a) = a \text{ for all but finitely many } a \in \mathbb{N}\}$

Andrei Popescu, *Rensets and Renaming-Based Recursion for Syntax with Bindings*, IJCAR 2022. Category of finitely supported "renaming sets" = sets X equipped with ternary operation $(_:=_)_: \mathbb{N} \times \mathbb{N} \times X \to X$ satisfying

$$(a := a)x = x$$
$$a \neq c \Rightarrow (a := b)(a := c)x = (a := c)x$$
$$(b := c)(a := b)x = (a := c)(b := c)x$$
$$b \neq a' \neq a \neq b' \Rightarrow (a := b)(a' := b')x = (a' := b')(a := b)x$$

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, IJCAR 2022.

Theorem. All three categories introduced above are equivalent to $\mathbf{Set}_{fs}^{\mathsf{T}_{\mathbb{N}}}$.

Proof is a corollary of work on "locally nameless sets" (AMP, POPL 2023), using some classic semigroup theory about full transformation monoids on finite sets to capture Popescu's notion of "renaming set".

Categorical foundations for name-for-name substitution:

Sam Staton, Name-Passing Process Calculi, PhD thesis, Cambridge 2007.

Jamie Gabbay & Martin Hofmann, Nominal Renaming Sets, LPAR 2008.

Andrei Popescu, Rensets and Renaming-Based Recursion for Syntax with Bindings, IJCAR 2022.

Theorem. All three categories introduced above are equivalent to $\mathbf{Set}_{fs}^{\mathsf{T}_{\mathbb{N}}}$.

 $S_{\mathbb{N}} \hookrightarrow T_{\mathbb{N}}$ induces a geometric morphism that makes $Set_{fs}^{T_{\mathbb{N}}}$ a topos defined over the topos of nominal sets. The *internal modal type theory of this relative topos* (whatever that means!) bears further investigation for applications to the mathematics of syntax.

Semantics of univalent type theories

The pursuit of models of Homotopy Type Theory (Martin-Löf Type Theory + univalence, higher inductive types, etc), especially ones with computational content, has involved [Quillen model structures on] pre-sheaf toposes.

Some of those pre-sheaf toposes turn out to be equivalent ${\bf Set}^M_{\rm fs}$ for various A and $M\subseteq T_A.$

Thesis: developing the relevant structures and calculations may be easier "nominally" (e.g. the elements of A are named cartesian axes), compared with the usual possible-world Kripke-Joyal semantics for presheaves.

(Anti-thesis: working in the internal [modal] type theory of the topos proved to be even easier. See publications by AMP & Ian Orton.)

Semantics of univalent type theories

The pursuit of models of Homotopy Type Theory (Martin-Löf Type Theory + univalence, higher inductive types, etc), especially ones with computational content, has involved [Quillen model structures on] pre-sheaf toposes.

Some of those pre-sheaf toposes turn out to be equivalent ${\bf Set}^M_{\rm fs}$ for various A and $M\subseteq T_A.$

Thesis: developing the relevant structures and calculations may be easier "nominally" (e.g. the elements of A are named cartesian axes), compared with the usual possible-world Kripke-Joyal semantics for presheaves.

(Anti-thesis: working in the internal [modal] type theory of the topos proved to be even easier. See publications by AMP & Ian Orton.)

Cartesian cubical sets

Theorem. (AMP, TYPES 2014) **Set**^{C°P} for $\mathbf{C} = (\text{non-trivial bipointed finite sets})^{op}$ (= Grothendieck's "smallest test category") is equivalent to $\mathbf{Set}_{fs}^{\mathbf{M}}$ where \mathbf{M} is the monoid of all endofunctions on $\{0\} \uplus \mathbb{N} \uplus \{1\}$ that preserve 0 and 1. From the **Set**^M_{fs} viewpoint, cartesian cubical sets *X* are sets whose elements depend implicitly (via support) on finitely many named dimensions $i, j, k, \ldots \in \mathbb{N}$

From the **Set**^M_{fs} viewpoint, cartesian cubical sets *X* are sets whose elements depend implicitly (via support) on finitely many named dimensions $i, j, k, \ldots \in \mathbb{N}$

From the **Set**^M_{fs} viewpoint, cartesian cubical sets *X* are sets whose elements depend implicitly (via support) on finitely many named dimensions $i, j, k, ... \in \mathbb{N}$, with the dependency described by the **M**-action on *X*

From the **Set**^M_{fs} viewpoint, cartesian cubical sets *X* are sets whose elements depend implicitly (via support) on finitely many named dimensions $i, j, k, ... \in \mathbb{N}$, with the dependency described by the **M**-action on *X*

in the version using **Set**^{C^{op}} the dependency is explicit, leading to "weakening hell"

Other flavours of cubical set

Theorem. (AMP, TYPES 2014)

Set^{C^{op}} for $\mathbf{C} = (\text{non-trivial bipointed finite sets})^{op}$ (= Grothendieck's "smallest test category") is equivalent to **Set**^M_{fs} where M is the monoid of all endofunctions on $\{0\} \uplus \mathbb{N} \uplus \{1\}$ that preserve 0 and 1.

M for other versions of cubical sets:

- Bezem, Coquand & Huber, A model of type theory in cubical sets (TYPES 2013).
 M = the monoid of all endofunctions m on {0} ⊎ IN ⊎ {1} that preserve 0 and 1 and that are injective on IN m⁻¹{0, 1}
- Cohen, Coquand, Huber & Mörtberg, Cubical type theory: A constructive interpretation of the univalence axiom (TYPES 2015).

M = the monoid of all endomorphisms of the free de Morgan algebra on \mathbb{N}

Simplicial sets

Theorem. (Eric Faber, thesis, 2019) The pre-sheaf topos $\mathbf{Set}^{\Delta^{op}}$ of simplicial sets is equivalent to $\mathbf{Set}_{fs}^{\mathbf{M}}$ where M is the monoid of order-preserving endofunctions on $\{-\infty \leq \cdots - 2 \leq -1 \leq 0 \leq 1 \leq 2 \leq \cdots \leq +\infty\}$ that preserve $-\infty$ and $+\infty$.

Reflexive globular sets

are diagrams in **Set** of shape $C_0 \xrightarrow[s_0]{t_0} C_1 \xrightarrow[s_1]{t_1} C_2 \xrightarrow[s_2]{t_2} C_3 \xrightarrow[s_3]{t_3} C_4 \cdots$ satisfying

 $s_n \circ i_n = \mathrm{id} = t_n \circ i_n$ $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ $t_n \circ s_{n+1} = t_n \circ t_{n+1}$

 $(C_n = n$ -cells, s_n = source, t_n = target, i_n = identity). They are the objects of an evident pre-sheaf category.

Reflexive globular sets

are diagrams in Set of shape $C_0 \xrightarrow[s_0]{i_0 \rightarrow c_1} C_1 \xrightarrow[s_1]{i_1 \rightarrow c_2} C_2 \xrightarrow[s_2]{i_2 \rightarrow c_3} C_3 \xrightarrow[s_3]{i_3 \rightarrow c_4} \cdots$ satisfying $s_n \circ i_n = \mathrm{id} = t_n \circ i_n \quad s_n \circ s_{n+1} = s_n \circ t_{n+1} \quad t_n \circ s_{n+1} = t_n \circ t_{n+1}$

 $(C_n = n$ -cells, s_n = source, t_n = target, i_n = identity). They are the objects of an evident pre-sheaf category.

Theorem. The pre-sheaf category of reflexive globular sets is equivalent to $\mathbf{Set}_{fs}^{\mathbf{M}}$ for the monoid \mathbf{M} whose non-identity elements

$$d_n^b$$
 (for $n \in \mathbb{N}$, $b \in \{s, t\}$) satisfy $d_n^b d_{n'}^{b'} = \begin{cases} d_n^b & \text{if } n < n' \\ d_{n'}^{b'} & \text{if } n' \le n \end{cases}$

and where we regard M as a submonoid of T_M via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283–335.]

Reflexive globular sets

 $d_n^0 \cdot x = \text{take the } n\text{-dimensional source of } x$ $d_n^1 \cdot x = \text{take the } n\text{-dimensional target of } x$ For this monoid x is finitely supported iff $d_n^0 \cdot x = x \text{ holds for some } n$

$$C_{2} \xrightarrow{t_{2}} C_{3} \xrightarrow{t_{3}} C_{4} \cdots \text{ satisfying}$$

$$\underset{s_{2}}{\overset{s_{2}}{\longrightarrow}} C_{n+1} = t_{n} \circ t_{n+1}$$

. They are the objects of an evident pre-sheaf category.

Theorem. The pre-sheaf category of reflexive globular sets is equivalent to $\mathbf{Set}_{fs}^{\mathsf{M}}$ for the monoid M whose non-identity elements

$$d_n^b \text{ (for } n \in \mathbb{N}, b \in \{s, t\}\text{) satisfy } d_n^b d_{n'}^{b'} = \begin{cases} d_n^b & \text{if } n < n' \\ d_{n'}^{b'} & \text{if } n' \le n \end{cases}$$

and where we regard M as a submonoid of T_M via Cayley.

[Cf. Ross Street, The Algebra of Oriented Simplexes, JPAA 49(1987)283-335.]

Why bother?

We have seen that various (pre)sheaf toposes are equivalent to toposes of finitely supported M-sets. So what?

- + Can avoid weakening hell: possible-worlds (stages) become implicit sub-worlds of just one world (via support sets).
- Still have world-morphisms, i.e. elements of the monoid (unless the monoid is a group); and naturality conditions (but those can sometimes be avoided using (co)free functors on indexed families).
- + Some constructs look much nicer in **Set**^M_{fs} (e.g. path types in the cubical models are given by nominal name-abstraction).

Cartesian cubical sets

Theorem. (AMP, TYPES 2014) **Set**^{C°P} for **C** = (non-trivial bipointed finite sets)^{op} (= Grothendieck's "smallest test category") is equivalent to **Set**^M_{fs} where **M** is the monoid of all endofunctions on $\{0\} \uplus \mathbb{N} \uplus \{1\}$ that preserve 0 and 1.

► Interval $1 \xrightarrow[1]{0} I$ in Set^M_{fs} is $I = \{0\} \uplus \mathbb{N} \uplus \{1\}$ with M-action given by function application.

- ► Exponential X^{I} has a simple description as an object of *paths* [i]x given by a named dimension $i \in \mathbb{N}$ and an element $x \in X$, quotiented by the equivalence relation that identifies [i]x with [j]y iff $(i = k) \cdot x = (j := k) \cdot y$ for some/any k not in the support of (i, x, j, y) (cf. α -equivalence!).
- ► The interval is tiny and the right adjoint to X → X^I has a simple description (omitted)—used to construct univalent universes of Coquand-fibrations.

Fully develop the cartesian cubical set model of HoTT using finitely supported M-sets, e.g. by translating Steve Awodey's recent extensive pre-sheaf based account.

["Cartesian Cubical Model Categories", arXiv:2305.00893]

Fully develop the cartesian cubical set model of HoTT using finitely supported M-sets, e.g. by translating Steve Awodey's recent extensive pre-sheaf based account.

["Cartesian Cubical Model Categories", arXiv:2305.00893]

► Take the forcing notation ($m \Vdash x \in S$) seriously. Adapt Dana Scott's pre-sheaf model of IZF

THE PRESHEAF MODEL FOR SET THEORY

Dava Scott

UNFORD

February 1980

The whole discussion is just the pitting together of two-plus-two from known facts in topos theory, but it is a useful exercise for me to get randous things straight.

§1. The construction. Let \mathbb{C} be a fixed small category, called the <u>site</u>. It has <u>domains</u> (objects, types) A, B, C and <u>maps</u> $f: B \rightarrow A$, $g: C \rightarrow B$, etc. Composition fog: $C \rightarrow A$ is written in the indicated order. The <u>identity</u> map on a domain A is written as I_A . The usual axioms are satisfied about composition and identities. That C is small means the number of domains in \mathbb{C} is limited and, for domains A, B, the collection $(F/f:B \rightarrow A]$ is always a set.

In making the model, we will often have need of a notation for functions (sets of ordered pairs). Thus;

 $(x_i)_{i \in I} = \{(i, x_i) \mid i \in I \},\$

where an ordered pair has $(a,b) = \{(a\}, (a,b)\}$. Note $(a,b) \neq \emptyset$. Therefore, if we also use the notation:

 $\langle y_j \rangle_{j \in J} = \{ \phi \} \cup (y_j)_{j \in J}$

then always $(\pi_i)_{i\in I} \neq \langle g_j \rangle_{j\in J}$. That is to say, we have functions (vectors, systems, families) in two "totours".

DEFINITION 1.1. Let A be a domain of C. An <u>individual</u> (at stage A) is a system $a = (a_f)_{f:B \to A}$

of arbitrary things indexed by EFIF: B>A3. Restriction along a map f: B>A of C is given by :

 $a1f = (a_{f \circ g})_{g:C \to B}$

If we let \mathbb{I}_A be the class of all individuals at stage A , then alf \in \mathbb{I}_B .

The notion of a set-valued pre-sheaf is assumed known; it is a functor \neq from \mathbb{C}^{q_1} into sets. If A is in \mathbb{C} , then $\Im(A)$ is a ret; and if $f: B \to A$ in \mathbb{C} , then $\Im(f): \Im(A) \to \Im(B)$ is a function, We can define for a $\in \Im(A)$, the family;

Fully develop the cartesian cubical set model of HoTT using finitely supported M-sets, e.g. by translating Steve Awodey's recent extensive pre-sheaf based account.

["Cartesian Cubical Model Categories", arXiv:2305.00893]

► Take the forcing notation (*m* | → *x* ∈ *S*) seriously. Adapt Dana Scott's pre-sheaf model of IZF to finitely supported M-sets.

Fully develop the cartesian cubical set model of HoTT using finitely supported M-sets, e.g. by translating Steve Awodey's recent extensive pre-sheaf based account.

["Cartesian Cubical Model Categories", arXiv:2305.00893]

- ► Take the forcing notation (*m* |⊢ *x* ∈ *S*) seriously. Adapt Dana Scott's pre-sheaf model of IZF to finitely supported M-sets.
- Is there a (useful) abstract characterisation of this class of toposes? (Hence give an example of a topos <u>not</u> equivalent to one of the form Set^M_{fs}.)

Fully develop the cartesian cubical set model of HoTT using finitely supported M-sets, e.g. by translating Steve Awodey's recent extensive pre-sheaf based account.

["Cartesian Cubical Model Categories", arXiv:2305.00893]

- ► Take the forcing notation (*m* |⊢ *x* ∈ *S*) seriously. Adapt Dana Scott's pre-sheaf model of IZF to finitely supported M-sets.
- Is there a (useful) abstract characterisation of this class of toposes? (Hence give an example of a topos <u>not</u> equivalent to one of the form Set^M_{fs}.)

END