
No-go Theorems: Polynomial Comonads That
do Not Distribute over Distribution Monads

Amin Karamlou, Nihil Shah

Preliminaries

A comonad is a triple where:

1. is an endofunctor.

2.The counit is a natural

transformation.

3.The compultiplication is a

natural transformation.

And the following equations hold:

(W, ϵ, δ)
W : C → C

η : W → idC

δ : M → M2

Wδ ∘ δ = δW ∘ δ; Wϵ ∘ δ = ϵW ∘ δ = idW

A monad is a triple where:

1. is an endofunctor.

2. The unit is a natural

transformation.

3. The multiplication is a natural

transformation.

And the following equations hold:

(M, η, μ)
M : C → C

η : idC → M

μ : M2 → M

μ ∘ Mμ = μ ∘ μM; μ ∘ Mη = μ ∘ ηM = idM

Monads and comonads

Comonads model contextual
computation e.g. list prefixes, tree nodes.

A contextual computation from to is
represented as a morphisms .

A B
WA → B

Monads model effectful computation e.g.
nondeterminism, probabilities.

An effectful computation from to is
represented as a morphism .

A B
A → MB

Monads and comonads

Comonads model contextual
computation e.g. list prefixes, tree nodes.

A contextual computation from to is
represented as a morphisms .

A B
WA → B

Monads model effectful computation e.g.
nondeterminism, probabilities.

An effectful computation from to is
represented as a morphism .

A B
A → MB

Monads and comonads

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

•

•

•

• = where:

- and

-

Obj(coKl(W)) = Obj(C)
HomcoKl(W)(A, B) = Hom(WA, B)

idx = ϵx

g ∘ f WX f* WY g Z
f : WX → Y g : WY → Z
f* = Wf ∘ δx

Monads and comonads

•

•

•

• = where:

- and

-

Obj(Kl(M)) = Obj(C)
HomKl(M)(A, B) = Hom(A, MB)

idx = ηx

g ∘ f X f MY g* MZ
f : X → MY g : Y → MZ
g* = μz ∘ Mg

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

Distributive laws

A (mixed) distributive law of a comonad over a monad is a natural
transformation satisfying four axioms:

(W, ϵ, δ) (M, η, μ)
λ : W ∘ M ⇒ M ∘ W

Distributive laws

A (mixed) distributive law of a comonad over a monad is a natural
transformation satisfying four axioms:

(W, ϵ, δ) (M, η, μ)
λ : W ∘ M ⇒ M ∘ W

Unit Multiplication

Counit Comultiplication

Distributive laws

A (mixed) distributive law of a comonad over a monad is a natural
transformation satisfying four axioms:

(W, ϵ, δ) (M, η, μ)
λ : W ∘ M ⇒ M ∘ W

Note that each axiom can be satisfied independently. In particular, we say that there exists a
pointed law between and whenever the unit axiom alone is satisfied.W M

Unit Multiplication

Counit Comultiplication

BiKleisli categories

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

BiKleisli categories

• A mixed distributive law allows us to define a biKleisli category
, whose morphisms are of the form :

λ : W ∘ M ⇒ M ∘ W
biKl(W M) WA → MB

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

BiKleisli categories

• A mixed distributive law allows us to define a biKleisli category
, whose morphisms are of the form :

λ : W ∘ M ⇒ M ∘ W
biKl(W M) WA → MB

•

•

•

• = where:

Obj(biKl(W, M)) = Obj(C)
HombiKl(W,M)(A, B) = Hom(WA, MB)

idx = ηx ∘ ϵx

g ∘ f WX f* WMY λY MWY g* MZ

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

BiKleisli categories

• A mixed distributive law allows us to define a biKleisli category
, whose morphisms are of the form :

λ : W ∘ M ⇒ M ∘ W
biKl(W M) WA → MB

•

•

•

• = where:

Obj(biKl(W, M)) = Obj(C)
HombiKl(W,M)(A, B) = Hom(WA, MB)

idx = ηx ∘ ϵx

g ∘ f WX f* WMY λY MWY g* MZ

• , can be seen as the Kleisli category of lifted to , or
equivalently as the coKleisli category of lifted to .
biKl(W M) M coKl(W)

W Kl(M)

Natural question: When can computations that are both contextual, and effectful be
modelled as morphisms in a suitable category?

No-go theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is
often difficult.

• A result attributed to Plotkin shows that the powerset monad does not distribute
over the distribution monad.

• [1] Vastly generalises this result to present several families of no-go-theorems for
when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature:

Do the game comonads distribute over the quantum monad ? Gk Qd

No-go theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is
often difficult.

• A result attributed to Plotkin shows that the powerset monad does not distribute
over the distribution monad.

• [1] Vastly generalises this result to present several families of no-go-theorems for
when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature:

Do the game comonads distribute over the quantum monad ? Gk Qd

No-go theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is
often difficult.

• A result attributed to Plotkin shows that the powerset monad does not distribute
over the distribution monad.

• [1] Vastly generalises this result to present several families of no-go-theorems for
when the existence of distributive laws between pairs of monads is impossible.

[1] Zwart, Maaike, and Dan Marsden. "No-go theorems for distributive laws." In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1-13. IEEE, 2019.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature:

Do the game comonads distribute over the quantum monad ? Gk Qd

Outline

1. Plotkin Style no-go theorem for prefix lists and powerset.

2. Generalising the comonads to almost all polynomial comonads.

3. Generalising the monads to “choice” monads.

4. Transfer theorems for generalising to (co)monads in other categories.

1. Plotkin Style Argument

First no-go result

• The powerset monad on is given by:

1. is the set of subsets of .

2. is the singleton set .

3. takes a union of sets.

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX

First no-go result

• The powerset monad on is given by:

1. is the set of subsets of .

2. is the singleton set .

3. takes a union of sets.

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX

• The prefix list comonad on is given by:

1. is the set of all non-empty lists over .

2. .

3. .

(N, ϵ, δ) SET
N(X) X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]

First no-go result

• The powerset monad on is given by:

1. is the set of subsets of .

2. is the singleton set .

3. takes a union of sets.

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX

• The prefix list comonad on is given by:

1. is the set of all non-empty lists over .

2. .

3. .

(N, ϵ, δ) SET
N(X) X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]

First no-go result

Theorem: There is no distributive law of the comonad over the monad (N, ϵ, δ) (P, η, μ)

Proof Sketch

Proof Sketch

Key lemma: There is a unique pointed endofunctor law given by:
N ∘ P ⇒ P ∘ N

λX[X1, . . . , XN] = {[x1, …, xn] ∣ xi ∈ Xi}

Proof Sketch

Key lemma: There is a unique pointed endofunctor law given by:
N ∘ P ⇒ P ∘ N

λX[X1, . . . , XN] = {[x1, …, xn] ∣ xi ∈ Xi}

≠

Proof Sketch

Key lemma: There is a unique pointed endofunctor law given by:
N ∘ P ⇒ P ∘ N

λX[X1, . . . , XN] = {[x1, …, xn] ∣ xi ∈ Xi}

≠

In fact, this shows the stronger statement that there is no natural transformation which
satisfies both the unit and comultiplication axioms.

2. Generalising the Comonad

Containers

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor as follows:

1.

2. For , is defined as

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor as follows:

1.

2. For , is defined as

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

• Over , containers are equivalent to polynomial functors.SET

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor as follows:

1.

2. For , is defined as

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

• Over , containers are equivalent to polynomial functors.SET

• Directed containers are precisely those containers which admit a comonad
structure. They come with a notion of root and sub shape at each position.

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor as follows:

1.

2. For , is defined as

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

• Over , containers are equivalent to polynomial functors.SET

• Directed containers are precisely those containers which admit a comonad
structure. They come with a notion of root and sub shape at each position.

Containers

• Containers are functors which have an associated set
of shapes and a set of positions for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor as follows:

1.

2. For , is defined as

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

• Over , containers are equivalent to polynomial functors.SET

• Directed containers are precisely those containers which admit a comonad
structure. They come with a notion of root and sub shape at each position.

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In International Conference on Foundations of
Software Science and Computation Structures, pages 23–38. Springer, 2003.

• is a container where and .

• The labelled binary suffix tree comonad on is given by:

1. is the set of all binary trees with nodes labelled by elements of .

2. returns the root node of t.

3. replaces each node of t with the subtree rooted at that node.

• The pointed list comonad on is given by:

1. is the set of all pointed lists over . A pointed list is a tuple where

 is a list and refers to an index of .

2. .

3. .

N S = Nat P(s) = {1,2,…, s}

(B, ϵB, δB) SET
B(X) X
ϵX(t)
δX(t)

(N*, ϵ*, δ*) SET
N*(X) X (L, i)
L i L
ϵ*X ([x1, . . . , xn], i) = xi

δ*X (L, i) = ([(L,1), (L,2), …, (L, n)], i)

Examples

Examples

• Given k pebbles, the pebble list comonad on is given by:

1. is the set of non-empty list of moves where .x

2. .

3. where

• For a given set S, the coreader comonad

1. is the product by S endofunctor which has a single position for each

shape .

2. .

3. .

(Nk, ϵk, δk) SET
Nk(X) (p, x) p ∈ [k], x ∈ X
ϵk

X[(p1, x1), . . . , (pn, xn)] = xn

δk
X[(p1, x1), . . . , (pn, xn)] = [(p1, L1), . . . , (pn, Ln)]

Li = [(p1, x1), …, (pi, xi)]

(S × (−), ϵ, δ)
S × (−)

s ∈ S
ϵX(s, x) = x
δX(s, x) = (s, (s, x))

Uniqueness

Uniqueness

Theorem: Every container has a unique pointed law given by:

 .

[S ◃ P] ∘ P ⇒ P ∘ [S ◃ P]

λX(s, l) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ l(p)}

Uniqueness

Theorem: Every container has a unique pointed law given by:

 .

[S ◃ P] ∘ P ⇒ P ∘ [S ◃ P]

λX(s, l) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ l(p)}

≠

Uniqueness

Theorem: Every container has a unique pointed law given by:

 .

[S ◃ P] ∘ P ⇒ P ∘ [S ◃ P]

λX(s, l) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ l(p)}

≠

By noticing that our Plotkin style argument is essentially a cardinality argument we can
generalise our no go-theorem to almost all directed containers.

Second No-Go Result

Second No-Go Result

Theorem: if it does not distribute over the monad .(W, ϵ, δ) ∈ Cw (P, η, μ)

Second No-Go Result

Theorem: if it does not distribute over the monad .(W, ϵ, δ) ∈ Cw (P, η, μ)

Theorem: Let be a directed container with . is the coreader
comonad on S if and only if it has a distributive law over .

(W, ϵ, δ) W = [S ◃ P] W
(P, η, μ)

Second No-Go Result

3. Generalising the Monad

Uniform Choice Monads

• A monad is n-uniform choice if the pointed endofunctor is n-uniform
choice.

(M, η, μ) (M, η)

Uniform Choice Monads

• A monad is n-uniform choice if the pointed endofunctor is n-uniform
choice.

(M, η, μ) (M, η)

Examples

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).

Examples

• which we have already seen.(P, η, μ)

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).

Examples

• which we have already seen.(P, η, μ)

• The distribution monad is a monad on given by:

1. satisfying .

2.

3.

(D, ηD, μD) SET
D(X) = {φ : X → [0,1] ∣ supp(φ) is finite} ∑

i

si = 1
ηX(x) = 1.x
μX(∑i siφi)(x) = ∑i si . φi(x)

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).

Examples

• which we have already seen.(P, η, μ)

• The distribution monad is a monad on given by:

1. satisfying .

2.

3.

(D, ηD, μD) SET
D(X) = {φ : X → [0,1] ∣ supp(φ) is finite} ∑

i

si = 1
ηX(x) = 1.x
μX(∑i siφi)(x) = ∑i si . φi(x)

• The filter monad on is another example. It is a bit cumbersome to
describe so I omit the details. See e.g. [1]

(F, η, μ) SET

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).

Third no-go theorem

Third no-go theorem

Theorem: If is a container, is an -uniform choice monad, and there
exists a pointed endofunctor law , then is “unique up to supports”:

F = [S ◃ P] (M, η, μ) n
λ:FM→MF λ

supp(λX(s, l)) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ supp(l(p))}

Third no-go theorem

Theorem: If is a container, is an -uniform choice monad, and there
exists a pointed endofunctor law , then is “unique up to supports”:

F = [S ◃ P] (M, η, μ) n
λ:FM→MF λ

supp(λX(s, l)) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ supp(l(p))}

Third no-go theorem

Theorem: If is a container, is an -uniform choice monad, and there
exists a pointed endofunctor law , then is “unique up to supports”:

F = [S ◃ P] (M, η, μ) n
λ:FM→MF λ

supp(λX(s, l)) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ supp(l(p))}

Theorem: If and then there is no distributive law.(W, ϵ, δ) ∈ CW (M, η, μ) ∈ CM

4. Transfer Theorems

(Co)monads on graphs

(Co)monads on graphs

• We now wish to extend our no-go results to (co)monads that are defined on the
category of graphs.

(Co)monads on graphs

• We now wish to extend our no-go results to (co)monads that are defined on the
category of graphs.

• These (co)monads are intimately linked to longstanding techniques in computer
science for studying relaxations of graph homomorphism and graph isomorphism.

(Co)monads on graphs

• We now wish to extend our no-go results to (co)monads that are defined on the
category of graphs.

• These (co)monads are intimately linked to longstanding techniques in computer
science for studying relaxations of graph homomorphism and graph isomorphism.

• The existence of suitable distributive laws between them would allow us to consider
ways of combining comonadic and monadic relaxations.

(Co)monads on graphs

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal
of Logic and Computation 31.6 (2021): 1390-1428.

[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

(Co)monads on graphs

• The Ehrenfeucht–Fraïssé comonad [1] on is given by:

1. is the set of all non-empty lists over .

2. .

3. .

4. iff

a. One list is a prefix of the other.

b. .

(E, ϵ, δ) GRAPH
EX X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]
Edge([x1, . . . , xn], [y1, . . . , ym])

Edge(xn, ym)

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal
of Logic and Computation 31.6 (2021): 1390-1428.

[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

(Co)monads on graphs

• The Ehrenfeucht–Fraïssé comonad [1] on is given by:

1. is the set of all non-empty lists over .

2. .

3. .

4. iff

a. One list is a prefix of the other.

b. .

(E, ϵ, δ) GRAPH
EX X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]
Edge([x1, . . . , xn], [y1, . . . , ym])

Edge(xn, ym)

• The BLP monad [2] on is given by:

1. is the set of subsets of .

2. is the singleton set .

3. takes a union of sets.

4. Action on edges is a bit complicated to describe (but not terribly important).

(B, η, μ) GRAPH
B(X) X
ηX(x) {x}
μX

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal
of Logic and Computation 31.6 (2021): 1390-1428.

[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

Intuitive argument

[1] Manes, Ernie, and Philip Mulry. "Monad compositions. I: General constructions and recursive distributive laws." Theory and
Applications of Categories [electronic only] 18 (2007): 172-208.

Intuitive argument

• Clearly, there are significant similarities between and . Likewise, there are
similarities between and .

E N
B P

[1] Manes, Ernie, and Philip Mulry. "Monad compositions. I: General constructions and recursive distributive laws." Theory and
Applications of Categories [electronic only] 18 (2007): 172-208.

Intuitive argument

• Clearly, there are significant similarities between and . Likewise, there are
similarities between and .

E N
B P

• We would like to argue that if there is no distributive law “at the level of sets” then
there is no hope of having a distributive law for graphs.

[1] Manes, Ernie, and Philip Mulry. "Monad compositions. I: General constructions and recursive distributive laws." Theory and
Applications of Categories [electronic only] 18 (2007): 172-208.

Intuitive argument

• Clearly, there are significant similarities between and . Likewise, there are
similarities between and .

E N
B P

• We would like to argue that if there is no distributive law “at the level of sets” then
there is no hope of having a distributive law for graphs.

• We use two transfer theorems to formalise this argument. These generalise an earlier
theorems of Manes and Mulry [1].

[1] Manes, Ernie, and Philip Mulry. "Monad compositions. I: General constructions and recursive distributive laws." Theory and
Applications of Categories [electronic only] 18 (2007): 172-208.

Transfer Theorem 1

Transfer Theorem 1

Transfer Theorem 1

Transfer Theorem 2

Transfer Theorem 2

Both theorems admit elegant string diagrammatic proofs!

String diagrams

[1] Hinze, Ralf, and Dan Marsden. Introducing string diagrams: the art of category theory. Cambridge University Press, 2023.

Most general no-go theorem

Most general no-go theorem

Most general no-go theorem

Most general no-go theorem

Most general no-go theorem

Corollary: There is no distributive law of over .(E, ϵ, δ) (B, η, μ)

5. It’s not entirely hopeless!
(Work in progress)

Grading the comonads

• Many of the functors we have been considering come equipped with a natural
notion of grading.

• For instance, can be graded by the natural numbers, giving rise to a family of
functors each of which sends a set to non-empty lists of length less than or
equal to filled with elements of .

• This allows us to define a graded comonad . We can then derive a graded
distributive law of over .

• This seems to be a way of recovering compositionality at the cost of using more
resources

N
Nk X
k X

Nk
Nk P

[1] Gaboardi, Marco, et al. "Combining effects and coeffects via grading." ACM SIGPLAN Notices 51.9 (2016): 476-489.

