

No-go Theorems: Polynomial Comonads That do Not Distribute over Distribution Monads

Amin Karamlou, Nihil Shah

Preliminaries

A monad is a triple (M, η, μ) where:

- 1. $M: C \rightarrow C$ is an endofunctor.
- 2. The unit $\eta: id_C \to M$ is a natural transformation.
- 3. The multiplication $\mu: M^2 \to M$ is a natural transformation.

And the following equations hold:

 $\mu \circ M\mu = \mu \circ \mu M; \quad \mu \circ M\eta = \mu \circ \eta M = id_M$

A **comonad** is a triple (W, ϵ, δ) where:

- 1. $W: C \rightarrow C$ is an endofunctor.
- 2. The counit $\eta: W \rightarrow id_C$ is a natural transformation.
- 3. The compultiplication $\delta: M \to M^2$ is a natural transformation.

And the following equations hold:

 $W\delta \circ \delta = \delta W \circ \delta; \quad W\epsilon \circ \delta = \epsilon W \circ \delta = id_W$

Monads model effectful computation e.g. nondeterminism, probabilities.

An effectful computation from *A* to *B* is represented as a morphism $A \rightarrow MB$.

Comonads model contextual computation e.g. list prefixes, tree nodes.

A contextual computation from *A* to *B* is represented as a morphisms $WA \rightarrow B$.

Monads model effectful computation e.g. nondeterminism, probabilities.

An effectful computation from A to B is represented as a morphism $A \rightarrow MB$.

Comonads model contextual computation e.g. list prefixes, tree nodes.

A contextual computation from *A* to *B* is represented as a morphisms $WA \rightarrow B$.

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

- Obj(Kl(M)) = Obj(C)
- $Hom_{Kl(M)}(A, B) = Hom(A, MB)$
- $id_x = \eta_x$
- $g \circ f = X \xrightarrow{f} MY \xrightarrow{g^*} MZ$ where:
 - $f: X \to MY$ and $g: Y \to MZ$
 - $g^* = \mu_z \circ Mg$

- Obj(coKl(W)) = Obj(C)
- $Hom_{coKl(W)}(A, B) = Hom(WA, B)$
- $id_x = \epsilon_x$
- $g \circ f = WX \xrightarrow{f^*} WY \xrightarrow{g} Z$ where:
 - $f: WX \to Y$ and $g: WY \to Z$ - $f^* = Wf \circ \delta_x$

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

Distributive laws

A (mixed) **distributive law** of a comonad (W, ϵ, δ) over a monad (M, η, μ) is a natural transformation $\lambda : W \circ M \Rightarrow M \circ W$ satisfying four axioms:

Distributive laws

A (mixed) **distributive law** of a comonad (W, ϵ, δ) over a monad (M, η, μ) is a natural transformation $\lambda \colon W \circ M \Rightarrow M \circ W$ satisfying four axioms:

Distributive laws

A (mixed) **distributive law** of a comonad (W, ϵ, δ) over a monad (M, η, μ) is a natural transformation $\lambda : W \circ M \Rightarrow M \circ W$ satisfying four axioms:

Note that each axiom can be satisfied independently. In particular, we say that there exists a **pointed law** between W and M whenever the unit axiom alone is satisfied.

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

• A mixed distributive law $\lambda : W \circ M \Rightarrow M \circ W$ allows us to define a **biKleisli category** biKl(W, M) whose morphisms are of the form $WA \rightarrow MB$:

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

- A mixed distributive law $\lambda \colon W \circ M \Rightarrow M \circ W$ allows us to define a **biKleisli category** biKl(W, M) whose morphisms are of the form $WA \to MB$:
 - Obj(biKl(W, M)) = Obj(C)
 - $Hom_{biKl(W,M)}(A,B) = Hom(WA,MB)$
 - $id_x = \eta_x \circ \epsilon_x$ • $g \circ f = WX \xrightarrow{f^*} WMY \xrightarrow{\lambda_Y} MWY \xrightarrow{g^*} MZ$ where:

Natural question: When can computations that are both contextual, and effectful be modelled as morphisms in a suitable category?

- A mixed distributive law $\lambda : W \circ M \Rightarrow M \circ W$ allows us to define a **biKleisli category** biKl(W, M) whose morphisms are of the form $WA \rightarrow MB$:
 - Obj(biKl(W, M)) = Obj(C)
 - $Hom_{biKl(W,M)}(A,B) = Hom(WA,MB)$
 - $id_x = \eta_x \circ \epsilon_x$ • $g \circ f = WX \xrightarrow{f^*} WMY \xrightarrow{\lambda_Y} MWY \xrightarrow{g^*} MZ$ where:
- biKl(W, M) can be seen as the Kleisli category of M lifted to coKl(W), or equivalently as the coKleisli category of W lifted to Kl(M).

No-go theorems

- Distributive laws are not guaranteed to exist, and even when they do, finding them is often difficult.
- A result attributed to Plotkin shows that the powerset monad does not distribute over the distribution monad.
- [1] Vastly generalises this result to present several families of no-go-theorems for when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature: Do the game comonads G_k distribute over the quantum monad Q_d ?

No-go theorems

- Distributive laws are not guaranteed to exist, and even when they do, finding them is often difficult.
- A result attributed to Plotkin shows that the powerset monad does not distribute over the distribution monad.
- [1] Vastly generalises this result to present several families of no-go-theorems for when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature: Do the game comonads G_k distribute over the quantum monad Q_d ?

No-go theorems

- Distributive laws are not guaranteed to exist, and even when they do, finding them is often difficult.
- A result attributed to Plotkin shows that the powerset monad does not distribute over the distribution monad.
- [1] Vastly generalises this result to present several families of no-go-theorems for when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature: Do the game comonads G_k distribute over the quantum monad Q_d ?

[1] Zwart, Maaike, and Dan Marsden. "No-go theorems for distributive laws." In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1-13. IEEE, 2019.

Outline

- 1. Plotkin Style no-go theorem for prefix lists and powerset.
- 2. Generalising the comonads to almost all polynomial comonads.
- 3. Generalising the monads to "choice" monads.
- 4. Transfer theorems for generalising to (co)monads in other categories.

1. Plotkin Style Argument

- The powerset monad (P, η, μ) on **SET** is given by:
 - 1. P(X) is the set of subsets of X.
 - 2. $\eta_X(x)$ is the singleton set $\{x\}$.
 - 3. μ_X takes a union of sets.

- The powerset monad (P, η, μ) on **SET** is given by:
 - 1. P(X) is the set of subsets of X.
 - 2. $\eta_X(x)$ is the singleton set $\{x\}$.
 - 3. μ_X takes a union of sets.
- The prefix list comonad (N, ϵ, δ) on **SET** is given by:
 - 1. N(X) is the set of all non-empty lists over X.
 - 2. $\epsilon_X[x_1,\ldots,x_n] = x_n$.
 - 3. $\delta_X[x_1, \dots, x_n] = [[x_1], [x_1, x_2], \dots, [x_1, x_2, \dots, x_n]].$

- The powerset monad (P, η, μ) on **SET** is given by:
 - 1. P(X) is the set of subsets of X.
 - 2. $\eta_X(x)$ is the singleton set $\{x\}$.
 - 3. μ_X takes a union of sets.
- The prefix list comonad (N, ϵ, δ) on **SET** is given by:
 - 1. N(X) is the set of all non-empty lists over X.
 - 2. $\epsilon_X[x_1,\ldots,x_n] = x_n$.
 - 3. $\delta_X[x_1, \dots, x_n] = [[x_1], [x_1, x_2], \dots, [x_1, x_2, \dots, x_n]].$

Theorem: There is no distributive law of the comonad (N, ϵ, δ) over the monad (P, η, μ)

Key lemma: There is a unique pointed endofunctor law $N \circ P \Rightarrow P \circ N$ given by:

 $\lambda_X[X_1, \dots, X_N] = \{ [x_1, \dots, x_n] \mid x_i \in X_i \}$

Key lemma: There is a unique pointed endofunctor law $N \circ P \Rightarrow P \circ N$ given by:

 $\lambda_X[X_1, \dots, X_N] = \{ [x_1, \dots, x_n] \mid x_i \in X_i \}$

Key lemma: There is a unique pointed endofunctor law $N \circ P \Rightarrow P \circ N$ given by:

 $\lambda_X[X_1, \dots, X_N] = \{ [x_1, \dots, x_n] \mid x_i \in X_i \}$

In fact, this shows the stronger statement that there is no natural transformation which satisfies both the unit and comultiplication axioms.

2. Generalising the Comonad

• Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.

- Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.
- This induces an endofunctor as follows:
 - 1. $[S \triangleleft P]X = \{(s, l) \mid s \in S, l \colon P(s) \rightarrow X\}$
 - 2. For $g: X \to Y$, $[S \triangleleft P]g$ is defined as $(s, l) \mapsto (s, g \circ l)$.

- Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.
- This induces an endofunctor as follows:
 - 1. $[S \triangleleft P]X = \{(s, l) \mid s \in S, l \colon P(s) \rightarrow X\}$
 - 2. For $g: X \to Y$, $[S \triangleleft P]g$ is defined as $(s, l) \mapsto (s, g \circ l)$.
- Over SET, containers are equivalent to polynomial functors.

- Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.
- This induces an endofunctor as follows:
 - 1. $[S \triangleleft P]X = \{(s, l) \mid s \in S, l \colon P(s) \rightarrow X\}$
 - 2. For $g: X \to Y$, $[S \triangleleft P]g$ is defined as $(s, l) \mapsto (s, g \circ l)$.
- Over SET, containers are equivalent to polynomial functors.
- Directed containers are precisely those containers which admit a comonad structure. They come with a notion of root and sub shape at each position.

- Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.
- This induces an endofunctor as follows:
 - 1. $[S \triangleleft P]X = \{(s, l) \mid s \in S, l \colon P(s) \rightarrow X\}$
 - 2. For $g: X \to Y$, $[S \triangleleft P]g$ is defined as $(s, l) \mapsto (s, g \circ l)$.
- Over SET, containers are equivalent to polynomial functors.
- Directed containers are precisely those containers which admit a comonad structure. They come with a notion of root and sub shape at each position.

- Containers are functors $F = [S \triangleleft P] : \mathbf{SET} \rightarrow \mathbf{SET}$ which have an associated set of shapes *S* and a set of positions P(s) for each shape $s \in S$.
- This induces an endofunctor as follows:
 - 1. $[S \triangleleft P]X = \{(s, l) \mid s \in S, l \colon P(s) \rightarrow X\}$
 - 2. For $g: X \to Y$, $[S \triangleleft P]g$ is defined as $(s, l) \mapsto (s, g \circ l)$.
- Over SET, containers are equivalent to polynomial functors.
- Directed containers are precisely those containers which admit a comonad structure. They come with a notion of root and sub shape at each position.

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In International Conference on Foundations of Software Science and Computation Structures, pages 23–38. Springer, 2003.

Examples

- N is a container where S = Nat and $P(s) = \{1, 2, \dots, s\}$.
- The labelled binary suffix tree comonad $(B, \epsilon^B, \delta^B)$ on SET is given by:
 - 1. B(X) is the set of all binary trees with nodes labelled by elements of X.
 - 2. $\epsilon_X(t)$ returns the root node of t.
 - 3. $\delta_{\chi}(t)$ replaces each node of t with the subtree rooted at that node.
- The pointed list comonad $(N^*, \epsilon^*, \delta^*)$ on **SET** is given by:
 - 1. $N^*(X)$ is the set of all pointed lists over *X*. A pointed list is a tuple (**L**, *i*) where **L** is a list and *i* refers to an index of **L**.
 - 2. $\epsilon_X^*([x_1, \dots, x_n], i) = x_i$.
 - 3. $\delta_X^*(\mathbf{L}, i) = ([(\mathbf{L}, 1), (\mathbf{L}, 2), \dots, (\mathbf{L}, n)], i).$

Examples

- Given k pebbles, the pebble list comonad $(N^k, \epsilon^k, \delta^k)$ on **SET** is given by:
 - 1. $N^{k}(X)$ is the set of non-empty list of moves (p, x) where $p \in [k], x \in X.x$

2.
$$\epsilon_X^k[(p_1, x_1), \dots, (p_n, x_n)] = x_n$$

- 3. $\delta_X^k[(p_1, x_1), \dots, (p_n, x_n)] = [(p_1, \mathbf{L}_1), \dots, (p_n, \mathbf{L}_n)]$ where $\mathbf{L}_i = [(p_1, x_1), \dots, (p_i, x_i)]$
- For a given set S, the coreader comonad $(S \times (-), \epsilon, \delta)$
 - 1. $S \times (-)$ is the product by S endofunctor which has a single position for each shape $s \in S$.
 - 2. $\epsilon_X(s, x) = x$.
 - 3. $\delta_{X}(s, x) = (s, (s, x)).$

Theorem: Every container has a unique pointed law $[S \triangleleft P] \circ P \Rightarrow P \circ [S \triangleleft P]$ given by:

 $\lambda_X(s,l) = \{(s,j: P(s) \to X) \mid \forall p \in P(s), j(p) \in l(p)\}.$

Theorem: Every container has a unique pointed law $[S \triangleleft P] \circ P \Rightarrow P \circ [S \triangleleft P]$ given by:

 $\lambda_X(s,l) = \{(s,j: P(s) \to X) \mid \forall p \in P(s), j(p) \in l(p)\}.$

Theorem: Every container has a unique pointed law $[S \triangleleft P] \circ P \Rightarrow P \circ [S \triangleleft P]$ given by:

 $\lambda_X(s,l) = \{(s,j: P(s) \to X) \mid \forall p \in P(s), j(p) \in l(p)\}.$

By noticing that our Plotkin style argument is essentially a cardinality argument we can generalise our no go-theorem to almost all directed containers.

We use C_W to denote the class of directed containers (W, ε, δ) with $W = [S \triangleleft P]$ such that there exists an $s \in S$ with $|P(s)| \ge 2$.

We use C_W to denote the class of directed containers (W, ε, δ) with $W = [S \triangleleft P]$ such that there exists an $s \in S$ with $|P(s)| \ge 2$.

Theorem: if $(W, \epsilon, \delta) \in C_w$ it does not distribute over the monad (P, η, μ) .

We use C_W to denote the class of directed containers (W, ε, δ) with $W = [S \triangleleft P]$ such that there exists an $s \in S$ with $|P(s)| \ge 2$.

Theorem: if $(W, \epsilon, \delta) \in C_w$ it does not distribute over the monad (P, η, μ) .

Theorem: Let (W, ϵ, δ) be a directed container with $W = [S \triangleleft P]$. *W* is the coreader comonad on S if and only if it has a distributive law over (P, η, μ) .

3. Generalising the Monad

Uniform Choice Monads

• A monad (M, η, μ) is n-uniform choice if the pointed endofunctor (M, η) is n-uniform choice.

Uniform Choice Monads

A monad (M, η, μ) is n-uniform choice if the pointed endofunctor (M, η) is n-uniform choice.

Definition 5.1. Given a pointed endofunctor (M, η) with a natural transformation supp: $M \to \mathcal{P}$, a n-ary term $\beta \colon \mathrm{Id}_{\mathrm{Set}} \times \cdots \times \mathrm{Id}_{\mathrm{Set}} \to M$ for M is a n-uniform choice term if

(1) β is idempotent: For all $X \in$ Set and $x \in X$,

 $\beta(x,\ldots,x)=\eta(x);$

(2) β is commutative: For all $X \in \text{Set}, x_1, \dots, x_n \in X$, and permutations π : $[n] \rightarrow [n]$,

$$\beta(x_1,\ldots,x_n)=\beta(x_{\pi(1)},\ldots,x_{\pi(n)});$$

(3) supp preserves β : For all $X \in$ Set and $x_1, \ldots, x_n \in X$,

 $\operatorname{supp}(\beta(x_1,\ldots,x_n))=\{x_1,\ldots,x_n\}.$

• (P, η, μ) which we have already seen.

- (P, η, μ) which we have already seen.
- The distribution monad (D, η^D, μ^D) is a monad on SET given by:
 - 1. $D(X) = \{ \varphi : X \to [0,1] \mid \text{supp}(\varphi) \text{ is finite} \} \text{ satisfying } \sum s_i = 1.$

2.
$$\eta_X(x) = 1.x$$

3.
$$\mu_X(\sum_i s_i \varphi_i)(x) = \sum_i s_i \cdot \varphi_i(x)$$

- (P, η, μ) which we have already seen.
- The distribution monad (D, η^D, μ^D) is a monad on **SET** given by:
 - 1. $D(X) = \{\varphi : X \to [0,1] \mid \text{supp}(\varphi) \text{ is finite} \}$ satisfying $\sum s_i = 1$.

2.
$$\eta_X(x) = 1.x$$

3.
$$\mu_X(\sum_i s_i \varphi_i)(x) = \sum_i s_i \cdot \varphi_i(x)$$

• The filter monad (F, η, μ) on SET is another example. It is a bit cumbersome to describe so I omit the details. See e.g. [1]

Theorem: If $F = [S \triangleleft P]$ is a container, (M, η, μ) is an *n*-uniform choice monad, and there exists a pointed endofunctor law $\lambda: FM \rightarrow MF$, then λ is "unique up to supports":

$supp(\lambda_X(s, l)) = \{(s, j: P(s) \to X) \mid \forall p \in P(s), j(p) \in supp(l(p))\}$

Theorem: If $F = [S \triangleleft P]$ is a container, (M, η, μ) is an *n*-uniform choice monad, and there exists a pointed endofunctor law $\lambda: FM \rightarrow MF$, then λ is "unique up to supports":

$supp(\lambda_X(s, l)) = \{(s, j: P(s) \to X) \mid \forall p \in P(s), j(p) \in supp(l(p))\}$

We use C_M to denote the class of *n*-uniform choice monads (M, η^M, μ^M) where $n \ge 2$.

Theorem: If $F = [S \triangleleft P]$ is a container, (M, η, μ) is an *n*-uniform choice monad, and there exists a pointed endofunctor law $\lambda: FM \rightarrow MF$, then λ is "unique up to supports":

 $supp(\lambda_X(s, l)) = \{(s, j: P(s) \to X) \mid \forall p \in P(s), j(p) \in supp(l(p))\}$

We use C_M to denote the class of *n*-uniform choice monads (M, η^M, μ^M) where $n \ge 2$.

Theorem: If $(W, \epsilon, \delta) \in C_W$ and $(M, \eta, \mu) \in C_M$ then there is no distributive law.

• We now wish to extend our no-go results to (co)monads that are defined on the category of graphs.

- We now wish to extend our no-go results to (co)monads that are defined on the category of graphs.
- These (co)monads are intimately linked to longstanding techniques in computer science for studying relaxations of graph homomorphism and graph isomorphism.

- We now wish to extend our no-go results to (co)monads that are defined on the category of graphs.
- These (co)monads are intimately linked to longstanding techniques in computer science for studying relaxations of graph homomorphism and graph isomorphism.
- The existence of suitable distributive laws between them would allow us to consider ways of combining comonadic and monadic relaxations.

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." *Journal of Logic and Computation* 31.6 (2021): 1390-1428.

[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

- The Ehrenfeucht–Fraïssé comonad [1] (E, ϵ, δ) on **GRAPH** is given by:
 - 1. E_X is the set of all non-empty lists over X.
 - $2. \quad \boldsymbol{\epsilon}_{\boldsymbol{X}}[x_1,\ldots,x_n] = x_n.$
 - 3. $\delta_X[x_1, \dots, x_n] = [[x_1], [x_1, x_2], \dots, [x_1, x_2, \dots, x_n]].$
 - 4. $Edge([x_1, ..., x_n], [y_1, ..., y_m])$ iff
 - a. One list is a prefix of the other.
 - b. $Edge(x_n, y_m)$.

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." *Journal of Logic and Computation* 31.6 (2021): 1390-1428.

[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

- The Ehrenfeucht–Fraïssé comonad [1] (E, ϵ, δ) on **GRAPH** is given by:
 - 1. E_X is the set of all non-empty lists over X.
 - 2. $\epsilon_X[x_1,\ldots,x_n] = x_n$.
 - 3. $\delta_X[x_1, \dots, x_n] = [[x_1], [x_1, x_2], \dots, [x_1, x_2, \dots, x_n]].$
 - 4. $Edge([x_1, ..., x_n], [y_1, ..., y_m])$ iff
 - a. One list is a prefix of the other.
 - b. $Edge(x_n, y_m)$.
- The BLP monad [2] (B, η, μ) on **GRAPH** is given by:
 - 1. B(X) is the set of subsets of X.
 - 2. $\eta_X(x)$ is the singleton set $\{x\}$.
 - 3. μ_X takes a union of sets.
 - 4. Action on edges is a bit complicated to describe (but not terribly important).

^[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." *Journal of Logic and Computation* 31.6 (2021): 1390-1428.

^[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.

• Clearly, there are significant similarities between E and N. Likewise, there are similarities between B and P.

- Clearly, there are significant similarities between E and N. Likewise, there are similarities between B and P.
- We would like to argue that if there is no distributive law "at the level of sets" then there is no hope of having a distributive law for graphs.

- Clearly, there are significant similarities between E and N. Likewise, there are similarities between B and P.
- We would like to argue that if there is no distributive law "at the level of sets" then there is no hope of having a distributive law for graphs.
- We use two transfer theorems to formalise this argument. These generalise an earlier theorems of Manes and Mulry [1].

- (1) There exists categories 𝔅, 𝔅 with a coreflective adjunction
 L : 𝔅 → 𝔅 ⊣ U : 𝔅 → C between them. We write α, β for the unit and counit of this adjunction.
- (𝔅, ε^𝔅, δ^𝔅), (𝒱, ε^𝔅, δ^𝔅) are comonads over 𝔅, 𝔅 respectively.
- (3) $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}}), (M, \eta^{M}, \mu^{M})$ are monads over $\mathfrak{D}, \mathfrak{C}$ respectively.

- (1) There exists categories 𝔅, 𝔅 with a coreflective adjunction
 L : 𝔅 → 𝔅 ⊣ U : 𝔅 → C between them. We write α, β for the unit and counit of this adjunction.
- (2) (W, ε^W, δ^W), (W, ε^W, δ^W) are comonads over D, C respectively.
- (3) $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}}), (M, \eta^{M}, \mu^{M})$ are monads over $\mathfrak{D}, \mathfrak{C}$ respectively.

- (1) There exists categories 𝔅, 𝔅 with a coreflective adjunction
 L : 𝔅 → 𝔅 ⊣ U : 𝔅 → C between them. We write α, β for the unit and counit of this adjunction.
- (𝔅, ε^𝔅, δ^𝔅), (𝒱, ε^𝔅, δ^𝔅) are comonads over 𝔅, 𝔅 respectively.
- (3) $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}}), (M, \eta^{M}, \mu^{M})$ are monads over $\mathfrak{D}, \mathfrak{C}$ respectively.

Theorem 6.5. Assume the following:

- (1) There exists a coKleisli law $w : WU \to UW$.
- (2) There exists a Kleisli law $m : U\mathbb{M} \to MU$.
- (3) $\rho: \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ and $\rho': \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ are natural transformations satisfying the following "Yang-Baxter" condition:

$$Mw \circ \rho' U \circ Wm = m \mathbb{W} \circ U\rho \circ w\mathbb{M}$$

Then we have:

- (1) If ρ is a distributive law, m is epic, and w is monic, then ρ' is a distributive law.
- (2) If ρ' is a distributive law, *m* is monic, and *w* is epic, then ρ is a distributive law.

Theorem 6.7. Assume the following:

- (1) There exists a split epic natural transformation $w : WU \rightarrow UW$. We write w^- for the section of w.
- (2) There exists a split monic natural transformation $m : U\mathbb{M} \to MU$. We write m^- for the retraction of m.
- (3) $\rho: \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ is a natural transformation.

Then, ρ together with the natural transformation $\rho' : WM \to MW$ defined as $\rho' = MW\alpha^{-1} \circ Mw^{-1} \circ mWL \circ U\rho L \circ wML \circ Wm^{-1}L \circ WM\alpha$, satisfy the following "Yang-Baxter" equation:

 $Mw \circ \rho' U \circ Wm = m \mathbb{W} \circ U\rho \circ w\mathbb{M}$

Theorem 6.7. Assume the following:

- (1) There exists a split epic natural transformation $w : WU \rightarrow UW$. We write w^- for the section of w.
- (2) There exists a split monic natural transformation $m : U\mathbb{M} \to MU$. We write m^- for the retraction of m.
- (3) $\rho: \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ is a natural transformation.

Then, ρ together with the natural transformation $\rho' : WM \to MW$ defined as $\rho' = MW\alpha^{-1} \circ Mw^{-1} \circ mWL \circ U\rho L \circ wML \circ Wm^{-1} L \circ WM\alpha$, satisfy the following "Yang-Baxter" equation:

 $Mw \circ \rho' U \circ Wm = m \mathbb{W} \circ U\rho \circ w\mathbb{M}$

Both theorems admit elegant string diagrammatic proofs!

String diagrams

[1] Hinze, Ralf, and Dan Marsden. Introducing string diagrams: the art of category theory. Cambridge University Press, 2023.

 $C_{\mathbb{M}}(\mathfrak{D})$ denotes the class of monads $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}})$ on \mathfrak{D} with an isomorphic Kleisli law $m : U\mathbb{M} \to MU$ for some $M \in C_M$.

 $C_{\mathbb{M}}(\mathfrak{D})$ denotes the class of monads $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}})$ on \mathfrak{D} with an isomorphic Kleisli law $m : U\mathbb{M} \to MU$ for some $M \in C_M$.

 $C_{\mathbb{W}}(\mathfrak{D})$ denotes the class of comonads $(\mathbb{W}, \varepsilon^{\mathbb{W}}, \delta^{\mathbb{W}})$ on \mathfrak{D} with an isomorphic coKleisli law $w : WU \to U\mathbb{W}$ for some $W \in C_W$.

 $C_{\mathbb{M}}(\mathfrak{D})$ denotes the class of monads $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}})$ on \mathfrak{D} with an isomorphic Kleisli law $m : U\mathbb{M} \to MU$ for some $M \in C_M$.

 $C_{\mathbb{W}}(\mathfrak{D})$ denotes the class of comonads $(\mathbb{W}, \varepsilon^{\mathbb{W}}, \delta^{\mathbb{W}})$ on \mathfrak{D} with an isomorphic coKleisli law $w : WU \to U\mathbb{W}$ for some $W \in C_W$.

Theorem 6.8. If $(\mathbb{W}, \varepsilon^{\mathbb{W}}, \delta^{\mathbb{W}}) \in C_{\mathbb{W}}\mathfrak{D}$ and $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}}) \in C_{\mathbb{M}}\mathfrak{D}$, then there is no distributive law $\rho \colon \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ of (W, ε, δ) over (M, η, μ) .

 $C_{\mathbb{M}}(\mathfrak{D})$ denotes the class of monads $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}})$ on \mathfrak{D} with an isomorphic Kleisli law $m : U\mathbb{M} \to MU$ for some $M \in C_M$.

 $C_{\mathbb{W}}(\mathfrak{D})$ denotes the class of comonads $(\mathbb{W}, \varepsilon^{\mathbb{W}}, \delta^{\mathbb{W}})$ on \mathfrak{D} with an isomorphic coKleisli law $w : WU \to U\mathbb{W}$ for some $W \in C_W$.

Theorem 6.8. If $(\mathbb{W}, \varepsilon^{\mathbb{W}}, \delta^{\mathbb{W}}) \in C_{\mathbb{W}}\mathfrak{D}$ and $(\mathbb{M}, \eta^{\mathbb{M}}, \mu^{\mathbb{M}}) \in C_{\mathbb{M}}\mathfrak{D}$, then there is no distributive law $\rho \colon \mathbb{W}\mathbb{M} \to \mathbb{M}\mathbb{W}$ of (W, ε, δ) over (M, η, μ) .

Corollary: There is no distributive law of (E, ϵ, δ) over (B, η, μ) .

5. It's not entirely hopeless! (Work in progress)

Grading the comonads

- Many of the functors we have been considering come equipped with a natural notion of grading.
- For instance, N can be graded by the natural numbers, giving rise to a family of functors N_k each of which sends a set X to non-empty lists of length less than or equal to k filled with elements of X.
- This allows us to define a graded comonad N_k . We can then derive a graded distributive law of N_k over P.
- This seems to be a way of recovering compositionality at the cost of using more resources

[1] Gaboardi, Marco, et al. "Combining effects and coeffects via grading." ACM SIGPLAN Notices 51.9 (2016): 476-489.