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Preliminaries



A comonad is a triple  where: 

1.  is an endofunctor.

2.The counit  is a natural 

transformation.

3.The compultiplication  is a 

natural transformation.


And the following equations hold:


(W, ϵ, δ)
W : C → C

η : W → idC

δ : M → M2

Wδ ∘ δ = δW ∘ δ; Wϵ ∘ δ = ϵW ∘ δ = idW

A monad is a triple  where: 

1.  is an endofunctor.

2. The unit  is a natural 

transformation.

3. The multiplication  is a natural 

transformation.


And the following equations hold:


(M, η, μ)
M : C → C

η : idC → M

μ : M2 → M

μ ∘ Mμ = μ ∘ μM; μ ∘ Mη = μ ∘ ηM = idM

Monads and comonads



Comonads model contextual 
computation e.g. list prefixes, tree nodes.


A contextual computation from  to  is 
represented as a morphisms .

A B
WA → B

Monads model effectful computation e.g. 
nondeterminism, probabilities.


An effectful computation from  to  is 
represented as a morphism .

A B
A → MB
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Monads and comonads

Natural question: When can computations that are both contextual, and effectful be 
modelled as morphisms in a suitable category? 



• 


• 


• 


•   =   where:


-   and 

-

Obj(coKl(W )) = Obj(C)
HomcoKl(W )(A, B) = Hom(WA, B)

idx = ϵx

g ∘ f WX f* WY g Z
f : WX → Y g : WY → Z
f* = Wf ∘ δx

Monads and comonads

• 


• 


• 


•   =   where:


-   and 

-

Obj(Kl(M )) = Obj(C)
HomKl(M)(A, B) = Hom(A, MB)

idx = ηx

g ∘ f X f MY g* MZ
f : X → MY g : Y → MZ
g* = μz ∘ Mg

Natural question: When can computations that are both contextual, and effectful be 
modelled as morphisms in a suitable category? 
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Distributive laws

A (mixed) distributive law of a comonad  over a monad  is a natural 
transformation        satisfying four axioms:

(W, ϵ, δ) (M, η, μ)
λ : W ∘ M ⇒ M ∘ W

Note that each axiom can be satisfied independently.  In particular, we say that there exists a 
pointed law between  and  whenever the unit axiom alone is satisfied.W M

Unit Multiplication

Counit Comultiplication
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BiKleisli categories

• A mixed distributive law        allows us to define a biKleisli category 
,  whose morphisms are of the form   :

λ : W ∘ M ⇒ M ∘ W
biKl(W M) WA → MB

• 


• 


• 


•   =   where:

Obj(biKl(W, M )) = Obj(C)
HombiKl(W,M)(A, B) = Hom(WA, MB)

idx = ηx ∘ ϵx

g ∘ f WX f* WMY λY MWY g* MZ

• ,  can be seen as the Kleisli category of  lifted to , or 
equivalently as the coKleisli category of  lifted to .
biKl(W M) M coKl(W )

W Kl(M)

Natural question: When can computations that are both contextual, and effectful be 
modelled as morphisms in a suitable category? 



No-go theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is 
often difficult. 


• A result attributed to Plotkin shows that the powerset monad does not distribute 
over the distribution monad.


• [1] Vastly generalises this result to present several families of no-go-theorems for 
when the existence of distributive laws between pairs of monads is impossible.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature: 

Do the game comonads  distribute over the quantum monad ? Gk Qd
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No-go theorems

• Distributive laws are not guaranteed to exist, and even when they do, finding them is 
often difficult. 


• A result attributed to Plotkin shows that the powerset monad does not distribute 
over the distribution monad.


• [1] Vastly generalises this result to present several families of no-go-theorems for 
when the existence of distributive laws between pairs of monads is impossible.

[1] Zwart, Maaike, and Dan Marsden. "No-go theorems for distributive laws." In 2019 34th Annual ACM/IEEE Symposium on Logic in 
Computer Science (LICS), pp. 1-13. IEEE, 2019.

Our contribution: First examples of no-go results for comonad-monad distributive laws.

Inspired by an open question in the game comonads literature: 

Do the game comonads  distribute over the quantum monad ? Gk Qd



Outline

1. Plotkin Style no-go theorem for prefix lists and powerset. 


2. Generalising the comonads to almost all polynomial comonads.


3. Generalising the monads to “choice” monads.


4. Transfer theorems for generalising to (co)monads in other categories.



1. Plotkin Style Argument
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• The powerset monad  on  is given by:

1.  is the set of subsets of .

2.  is the singleton set .

3.  takes a union of sets.

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX
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• The powerset monad  on  is given by:

1.  is the set of subsets of .

2.  is the singleton set .

3.  takes a union of sets.

(P, η, μ) SET
P(X) X
ηX(x) {x}
μX

•   The prefix list  comonad  on  is given by:

1.  is the set of all non-empty lists over . 

2. .

3. .

(N, ϵ, δ) SET
N(X) X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]

First no-go result

Theorem: There is no distributive law of the comonad  over the monad (N, ϵ, δ) (P, η, μ)
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Proof Sketch

Key lemma: There is a unique pointed endofunctor law        given by:
N ∘ P ⇒ P ∘ N

λX[X1, . . . , XN] = {[x1, …, xn] ∣ xi ∈ Xi}

≠

In fact, this shows the stronger statement that there is no natural transformation which 
satisfies both the unit and comultiplication axioms.



2. Generalising the Comonad
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of shapes  and a set of positions  for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S
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Containers

• Containers are functors  which have an associated set 
of shapes  and a set of positions  for each shape .

F = [S ◃ P] : SET → SET
S P(s) s ∈ S

• This induces an endofunctor  as follows:

1. 

2. For ,  is defined as 

[S ◃ P]X = {(s, l) ∣ s ∈ S, l : P(s) → X}
g : X → Y [S ◃ P]g (s, l) ↦ (s, g ∘ l) .

• Over , containers are equivalent to polynomial functors.SET

• Directed containers are precisely those containers which admit a comonad 
structure. They come with a notion of root and sub shape at each position. 

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In International Conference on Foundations of 
Software Science and Computation Structures, pages 23–38. Springer, 2003.



•  is a container where  and .


• The labelled binary suffix tree comonad  on  is given by:

1.  is the set of all binary trees with nodes labelled by elements of .

2.  returns the root node of t. 

3.  replaces each node of t with the subtree rooted at that node.


•  The pointed list comonad  on  is given by:

1.  is the set of all pointed lists over . A pointed list is a tuple  where 

 is a list and  refers to an index of .

2. .

3. .

N S = Nat P(s) = {1,2,…, s}

(B, ϵB, δB) SET
B(X) X
ϵX(t)
δX(t)

(N*, ϵ*, δ*) SET
N*(X) X (L, i)
L i L
ϵ*X ([x1, . . . , xn], i) = xi

δ*X (L, i) = ([(L,1), (L,2), …, (L, n)], i)

Examples



Examples

• Given k pebbles, the pebble list comonad  on  is given by:

1.  is the set of non-empty list of moves  where .x

2. .

3.  where 




• For a given set S, the coreader comonad 

1.  is the product by S endofunctor which has a single position for each 

shape .

2. .

3. .

(Nk, ϵk, δk) SET
Nk(X) (p, x) p ∈ [k], x ∈ X
ϵk

X[(p1, x1), . . . , (pn, xn)] = xn

δk
X[(p1, x1), . . . , (pn, xn)] = [(p1, L1), . . . , (pn, Ln)]

Li = [(p1, x1), …, (pi, xi)]

(S × ( − ), ϵ, δ)
S × ( − )

s ∈ S
ϵX(s, x) = x
δX(s, x) = (s, (s, x))



Uniqueness 



Uniqueness 

Theorem: Every container has a unique pointed law        given by:


 .

[S ◃ P] ∘ P ⇒ P ∘ [S ◃ P]

λX(s, l) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ l(p)}
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Uniqueness 

Theorem: Every container has a unique pointed law        given by:


 .

[S ◃ P] ∘ P ⇒ P ∘ [S ◃ P]

λX(s, l) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ l(p)}

≠

By noticing that our Plotkin style argument is essentially a cardinality argument we can 
generalise our no go-theorem to almost all directed containers.
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Second No-Go Result



Theorem: if  it does not distribute over the monad .(W, ϵ, δ) ∈ Cw (P, η, μ)

Theorem: Let  be a directed container with .  is the coreader 
comonad on S if and only if it has a distributive law over .

(W, ϵ, δ) W = [S ◃ P] W
(P, η, μ)

Second No-Go Result



3. Generalising the Monad



Uniform Choice Monads

• A monad  is n-uniform choice if the pointed endofunctor  is n-uniform 
choice. 

(M, η, μ) (M, η)
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Examples

•  which we have already seen.(P, η, μ)
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Examples

•  which we have already seen.(P, η, μ)

• The distribution monad  is a monad on  given by: 

1.  satisfying .


2. 

3.

(D, ηD, μD) SET
D(X) = {φ : X → [0,1] ∣ supp(φ) is finite} ∑

i

si = 1
ηX(x) = 1.x
μX(∑i siφi)(x) = ∑i si . φi(x)

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).



Examples

•  which we have already seen.(P, η, μ)

• The distribution monad  is a monad on  given by: 

1.  satisfying .


2. 

3.

(D, ηD, μD) SET
D(X) = {φ : X → [0,1] ∣ supp(φ) is finite} ∑

i

si = 1
ηX(x) = 1.x
μX(∑i siφi)(x) = ∑i si . φi(x)

• The filter monad  on  is another example. It is a bit cumbersome to 
describe so I omit the details. See e.g. [1]

(F, η, μ) SET

[1] Leinster, Tom. "Codensity and the ultrafilter monad." arXiv preprint arXiv:1209.3606 (2012).
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exists a pointed endofunctor law , then  is “unique up to supports”:


F = [S ◃ P] (M, η, μ) n
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Third no-go theorem

Theorem: If  is a container,  is an -uniform choice monad, and there 
exists a pointed endofunctor law , then  is “unique up to supports”:


F = [S ◃ P] (M, η, μ) n
λ:FM→MF λ

supp(λX(s, l)) = {(s, j : P(s) → X) ∣ ∀p ∈ P(s), j(p) ∈ supp(l(p))}

Theorem: If  and  then there is no distributive law.(W, ϵ, δ) ∈ CW (M, η, μ) ∈ CM
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(Co)monads on graphs

• We now wish to extend our no-go results to (co)monads that are defined on the 
category of graphs.

• These (co)monads are intimately linked to longstanding techniques in computer 
science for studying relaxations of graph homomorphism and graph isomorphism.

• The existence of suitable distributive laws between them would allow us to consider 
ways of combining comonadic and monadic relaxations.



(Co)monads on graphs

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal 
of Logic and Computation 31.6 (2021): 1390-1428.


[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.



(Co)monads on graphs

• The Ehrenfeucht–Fraïssé comonad [1]  on  is given by:

1.  is the set of all non-empty lists over . 

2. .

3. .

4.  iff


a. One list is a prefix of the other.

b. .

(E, ϵ, δ) GRAPH
EX X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]
Edge([x1, . . . , xn], [y1, . . . , ym])

Edge(xn, ym)

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal 
of Logic and Computation 31.6 (2021): 1390-1428.


[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.



(Co)monads on graphs

• The Ehrenfeucht–Fraïssé comonad [1]  on  is given by:

1.  is the set of all non-empty lists over . 

2. .

3. .

4.  iff


a. One list is a prefix of the other.

b. .

(E, ϵ, δ) GRAPH
EX X
ϵX[x1, . . . , xn] = xn

δX[x1, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . xn]]
Edge([x1, . . . , xn], [y1, . . . , ym])

Edge(xn, ym)

• The BLP monad [2]  on  is given by:

1.  is the set of subsets of .

2.  is the singleton set .

3.  takes a union of sets.

4. Action on edges is a bit complicated to describe (but not terribly important).

(B, η, μ) GRAPH
B(X) X
ηX(x) {x}
μX

[1] Abramsky, Samson, and Nihil Shah. "Relating structure and power: Comonadic semantics for computational resources." Journal 
of Logic and Computation 31.6 (2021): 1390-1428.


[2] Connolly, Adam. Game comonads and beyond: compositional constructions for logic and algorithms. Diss. 2023.
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Intuitive argument

• Clearly, there are significant similarities between  and .  Likewise, there are 
similarities between  and . 

E N
B P

• We would like to argue that if there is no distributive law “at the level of sets” then 
there is no hope of having a distributive law for graphs.

• We use two transfer theorems to formalise this argument. These generalise an earlier 
theorems of Manes and Mulry [1].

[1] Manes, Ernie, and Philip Mulry. "Monad compositions. I: General constructions and recursive distributive laws." Theory and 
Applications of Categories [electronic only] 18 (2007): 172-208.
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Transfer Theorem 2

Both theorems admit elegant string diagrammatic proofs!



String diagrams

[1] Hinze, Ralf, and Dan Marsden. Introducing string diagrams: the art of category theory. Cambridge University Press, 2023.
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Most general no-go theorem

Corollary: There is no distributive law of  over .(E, ϵ, δ) (B, η, μ)



5. It’s not entirely hopeless!  
(Work in progress)



Grading the comonads

• Many of the functors we have been considering come equipped with a natural 
notion of grading.


• For instance,  can be graded by the natural numbers, giving rise to a family of 
functors  each of which sends a set  to non-empty lists of length less than or 
equal to  filled with elements of .


• This allows us to define a graded comonad . We can then derive a graded 
distributive law of  over .


• This seems to be a way of recovering compositionality at the cost of using more 
resources

N
Nk X
k X

Nk
Nk P

[1] Gaboardi, Marco, et al. "Combining effects and coeffects via grading." ACM SIGPLAN Notices 51.9 (2016): 476-489.


