Pattern runs on matter: The free monad monad as a module over the cofree comonad comonad

Sophie Libkind and David I. Spivak

ACT 2024 2024 June 17

Outline

1 Introduction

- What's going on here?
- Summary of the talk

2 Polynomial functors and trees

3 The free monad and cofree comonad

4 Conclusion

What's going on here?

What are we? Let's just talk naively about this.

- In some sense we're material: chemical processes formed as bodies.
- But on this material run little scripts: beliefs, habits, know-how, etc.
- Same goes for our computers: they're material running scripts.
- Same goes for our cells: genes are protein-production scripts.

What's going on here?

What are we? Let's just talk naively about this.

- In some sense we're material: chemical processes formed as bodies.
- But on this material run little scripts: beliefs, habits, know-how, etc.
- Same goes for our computers: they're material running scripts.
- Same goes for our cells: genes are protein-production scripts.

Whether "matter" and "pattern" work as names here is up for debate.

- This talk is about a pretty and straightforward math idea:
- Free monads differ from—but interact with—cofree comonads.
- It's about how to both intuit this formally and see its usefulness.

Summary of the talk

Here are four examples of what Sophie and I call "pattern runs on matter":

- Interviews run on people;
- Programs run on operating systems;
- Voting schemes run on voters;
- Games run on players.

Summary of the talk

Here are four examples of what Sophie and I call "pattern runs on matter":

- Interviews run on people;
- Programs run on operating systems;
- Voting schemes run on voters;
- Games run on players.

We explain them in our paper; the main point is the module structure

 $\Phi\colon \mathfrak{c}_p\otimes\mathfrak{m}_q\to\mathfrak{m}_{p\otimes q}$

where c_p is the cofree comonad on p and \mathfrak{m}_q is the free monad on q.

Outline

1 Introduction

2 Polynomial functors and trees

- Polynomial functors
- Trees

3 The free monad and cofree comonad

4 Conclusion

Polynomial functors

I love Poly because it hits a sweet spot of elementary, expressive, elegant.

- It's elementary in that it's just well-organized sets and functions.
- It's *expressive* in that it spans databases, dynamics, and programming.
- It's *elegant* in that it has tons of structure and delightful surprises.

Polynomial functors

I love Poly because it hits a sweet spot of elementary, expressive, elegant.

- It's elementary in that it's just well-organized sets and functions.
- It's *expressive* in that it spans databases, dynamics, and programming.
- It's *elegant* in that it has tons of structure and delightful surprises.

A functor $p: \mathbf{Set} \to \mathbf{Set}$ is polynomial if (TFAE):

- It's a coproduct of representables $p \cong \sum_{i \in I} \mathbf{Set}(A_i, -) = \sum_{i \in I} y^{A_i}$.
- It preserves connected limits (e.g. pullbacks, equalizers, filtered limits).

A map $\varphi \colon p \to q$ between polynomials is (TFAE):

- A natural transformation $p \rightarrow q$. Yoneda and coproduct UP give the equivalence.
- An element of the set $\prod_{i \in I} \sum_{j \in J} \prod_{b \in B_j} \sum_{a \in A_i} 1$.

Polynomial functors

I love Poly because it hits a sweet spot of elementary, expressive, elegant.

- It's elementary in that it's just well-organized sets and functions.
- It's *expressive* in that it spans databases, dynamics, and programming.
- It's *elegant* in that it has tons of structure and delightful surprises.

A functor $p: \mathbf{Set} \to \mathbf{Set}$ is polynomial if (TFAE):

- It's a coproduct of representables $p \cong \sum_{i \in I} \mathbf{Set}(A_i, -) = \sum_{i \in I} y^{A_i}$.
- It preserves connected limits (e.g. pullbacks, equalizers, filtered limits).

A map $\varphi \colon p \to q$ between polynomials is (TFAE):

- A natural transformation $p \rightarrow q$. Yoneda and coproduct UP give the equivalence.
- An element of the set $\prod_{i \in I} \sum_{j \in J} \prod_{b \in B_j} \sum_{a \in A_i} 1$.

The category **Poly** of polynomial functors has tons of structure. Today:

- It has coproducts, and products that distribute over them.
- There's another distributive monoidal closed structure $(y, \otimes, [-, -])$.
- The latter is duoidal with a fourth monoidal structure (y, \triangleleft) :

 $(p_1 \triangleleft p_2) \otimes (q_1 \triangleleft q_2) \longrightarrow (p_1 \otimes q_1) \triangleleft (p_2 \otimes q_2)$

Moore & Mealy machines, and wiring diagrams

Machines of type (A, B) input lists of A's and produce lists of B's

- We start with a set *S*, elements of which are called *states*.
- A Moore machine is a function $S \to B \times S^A$.
- A Mealy machine is a function $S \to (B \times S)^A$.

More gen'ly, for any polynomial p, a p-machine is a p-coalgebra $S \rightarrow p(S)$.

- As **Poly** has left Kan extensions, this can be identified with $Sy^S \rightarrow p$.
- When $p = By^A$ these give Moore; when $p = B^A y^A$ these give Mealy.

Moore & Mealy machines, and wiring diagrams

Machines of type (A, B) input lists of A's and produce lists of B's

- We start with a set *S*, elements of which are called *states*.
- A Moore machine is a function $S \to B \times S^A$.
- A Mealy machine is a function $S \to (B \times S)^A$.

More gen'ly, for any polynomial p, a p-machine is a p-coalgebra $S \rightarrow p(S)$.

As **Poly** has left Kan extensions, this can be identified with $Sy^S \rightarrow p$. When $p = By^A$ these give Moore; when $p = B^A y^A$ these give Mealy. Wiring diagrams depict maps in **Poly**.

- **Right**, we see $\varphi \colon p_1 \otimes \cdots \otimes p_5 \to q$
- The \otimes is a monoidal structure.
 - It's "Day convolution of ×".
 - It's got an easy formula in **Poly**.

Moore & Mealy machines, and wiring diagrams

Machines of type (A, B) input lists of A's and produce lists of B's

- We start with a set *S*, elements of which are called *states*.
- A Moore machine is a function $S \to B \times S^A$.
- A Mealy machine is a function $S \to (B \times S)^A$.

More gen'ly, for any polynomial p, a p-machine is a p-coalgebra $S \rightarrow p(S)$.

As Poly has left Kan extensions, this can be identified with Sy^S → p.
 When p = By^A these give Moore; when p = B^Ay^A these give Mealy.
 Wiring diagrams depict maps in Poly.

- **Right**, we see $\varphi \colon p_1 \otimes \cdots \otimes p_5 \to q$
- \blacksquare The \otimes is a monoidal structure.

It's "Day convolution of \times ".

■ It's got an easy formula in **Poly**.

It turns out that \otimes has a closure [-, -].

- Mealy machines are the "universal other" (dual) of Moore machines.
- Ask me about this afterwards, but basically $[Ay^B, y] \cong B^A y^A$.

Polynomial functors and trees

There are three nice ways to denote a polynomial.

Polynomial functors and trees

There are three nice ways to denote a polynomial.

Some terminology:

- There are p(1) = 6 dots on the bottom; we call these *positions*.
- Each pos'n P: p(1) has a fiber p[P]; call its elements *directions*.

Polynomial functors and trees

There are three nice ways to denote a polynomial.

Some terminology:

- There are p(1) = 6 dots on the bottom; we call these *positions*.
- Each pos'n P: p(1) has a fiber p[P]; call its elements *directions*.

The composite of polynomial functors is again polynomial.

- We denote $p \circ q$ by $p \triangleleft q$, for various reasons.
- We can draw $p \triangleleft q$ by grafting q-corollas on top of p-corollas.

Outline

1 Introduction

2 Polynomial functors and trees

3 The free monad and cofree comonad

- Monads and comonads
- The free monad \mathfrak{m}_p and cofree comonad \mathfrak{c}_p
- Monad monad & comonad comonad
- Pattern runs on matter

4 Conclusion

Monads and comonads

A (y, \triangleleft) -monoid structure on $m: \mathbf{Set} \to \mathbf{Set}$ consists of coherent maps

 $\eta \colon y \to m$ and $\mu \colon m \triangleleft m \to m$

And a (y, \triangleleft) -comonoid structure on $c : \mathbf{Set} \to \mathbf{Set}$ consists of coh'nt maps

 $\epsilon \colon c \to y$ and $\delta \colon c \to c \triangleleft c$

Monads and comonads

A (y, \triangleleft) -monoid structure on m: **Set** \rightarrow **Set** consists of coherent maps

 $\eta: y \to m$ and $\mu: m \triangleleft m \to m$

And a (y, \triangleleft) -comonoid structure on $c \colon \mathbf{Set} \to \mathbf{Set}$ consists of coh'nt maps

$$\epsilon \colon c \to y$$
 and $\delta \colon c \to c \triangleleft c$

Since \triangleleft is functor composition, these are in fact *polynomial* (co)monads.

- One can think of a polynomial monad *m* as a variant of an *operad*.
 We'll be interested in free monads, "flowchart languages".
- And a polynomial comonad *c* is precisely the same as a *category*.
 - We will be interested in cofree comonads, "machines".

The free monad \mathfrak{m}_p

We can build the free monad \mathfrak{m}_p on a polynomial p by induction. Define:

$$p_{(0)} \coloneqq y$$
 and $p_{(i+1)} \coloneqq y + p \triangleleft p_{(i)}$

Let's define $\varphi_{(i)} \colon p_{(i)} \to p_{(i+1)}$ inductively.

$$y \xrightarrow{\varphi_{(0)} := \mathsf{inc}} y + p \quad \text{and} \quad y + p \triangleleft p_{(i)} \xrightarrow{\varphi_{(i+1)} := y + p \triangleleft \varphi_{(i)}} y + p \triangleleft p_{(i+1)}$$

The free monad \mathfrak{m}_p

We can build the free monad \mathfrak{m}_p on a polynomial p by induction. Define:

$$p_{(0)} \coloneqq y$$
 and $p_{(i+1)} \coloneqq y + p \triangleleft p_{(i)}$

Let's define $\varphi_{(i)} \colon p_{(i)} \to p_{(i+1)}$ inductively.

$$y \xrightarrow{\varphi_{(0)}:=\mathsf{inc}} y + p \quad \text{and} \quad y + p \triangleleft p_{(i)} \xrightarrow{\varphi_{(i+1)}:=y + p \triangleleft \varphi_{(i)}} y + p \triangleleft p_{(i+1)}$$

Let
$$p_{(\omega)} := \operatorname{colim}_{i < \omega} p_{(i)} = \operatorname{colim}(y \xrightarrow{\varphi_{(0)}} y + p \xrightarrow{\varphi_{(1)}} y + p \triangleleft (y+p) \rightarrow \cdots).$$

When p is finitary (all exponents are finite), we have $\mathfrak{m}_p = p_{(\omega)}.$
When p is κ -small, you need more directed colimits along the way...
...but there's nothing at all complicated here: $\mathfrak{m}_p = \operatorname{colim}_{i < \kappa} p_{(i)}.$
The map $\eta : y \rightarrow \mathfrak{m}_p$ is obvious, and the map $\mu : \mathfrak{m}_p \triangleleft \mathfrak{m}_p \rightarrow \mathfrak{m}_p$...
involves induction and the interplay between directed colimits and \triangleleft .

The cofree comonad c_p

We can also build the cofree comonad c_p on p by induction. Define:

$$p^{(0)} := y$$
 and $p^{(i+1)} := y imes p \triangleleft p^{(i)}$

Let's define $\varphi^{(i)} \colon p^{(i+1)} \to p^{(i)}$ inductively.

$$y \times p \xrightarrow{\varphi^{(0)} := \mathsf{prj}} y \quad \text{and} \quad y \times p \triangleleft p^{(i+1)} \xrightarrow{\varphi^{(i+1)} := y \times p \triangleleft \varphi^{(i)}} y \times p \triangleleft p^{(i)}$$

The cofree comonad c_p

We can also build the cofree comonad c_p on p by induction. Define:

$$p^{(0)} := y$$
 and $p^{(i+1)} := y imes p \triangleleft p^{(i)}$

Let's define $\varphi^{(i)} \colon p^{(i+1)} \to p^{(i)}$ inductively.

$$y \times p \xrightarrow{\varphi^{(0)} := \mathsf{prj}} y \quad \text{and} \quad y \times p \triangleleft p^{(i+1)} \xrightarrow{\varphi^{(i+1)} := y \times p \triangleleft \varphi^{(i)}} y \times p \triangleleft p^{(i)}$$

Let
$$\mathfrak{c}_{p} := \lim(\dots \to y \times p \triangleleft (y \times p) \xrightarrow{\varphi^{(1)}} y \times p \xrightarrow{\varphi^{(0)}} y).$$

Unlike m, one can stop here, building c doesn't need higher ordinals.
 The map ε: c_p → y is obvious and the map δ: c_p → c_p ⊲ c_p...
 ...involves induction and the interplay between directed limits and ⊲.

The cofree comonad c_p

We can also build the cofree comonad c_p on p by induction. Define:

$$p^{(0)} := y$$
 and $p^{(i+1)} := y imes p \triangleleft p^{(i)}$

Let's define $\varphi^{(i)} \colon p^{(i+1)} \to p^{(i)}$ inductively.

$$y \times p \xrightarrow{\varphi^{(0)} := \mathsf{prj}} y \quad \text{and} \quad y \times p \triangleleft p^{(i+1)} \xrightarrow{\varphi^{(i+1)} := y \times p \triangleleft \varphi^{(i)}} y \times p \triangleleft p^{(i)}$$

Let
$$\mathfrak{c}_{p} := \lim(\dots \to y imes p \triangleleft (y imes p) \xrightarrow{\varphi^{(1)}} y imes p \xrightarrow{\varphi^{(0)}} y).$$

- Unlike \mathfrak{m} , one can stop here, building \mathfrak{c} doesn't need higher ordinals.
- The map $\epsilon : \mathfrak{c}_p \to y$ is obvious and the map $\delta : \mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p \dots$
- \blacksquare ...involves induction and the interplay between directed limits and \lhd .

Remember *p*-machines, e.g. Mealy $p = (Ay)^B$, and Moore $p = Ay^B$?

• A position of c_p is an initialized *p*-machine, up to behav'l equivalence. So how similar are the free monad \mathfrak{m}_p and the cofree comonad c_p ?

Tree representation of \mathfrak{m}_p and \mathfrak{c}_p

Both \mathfrak{m}_p and \mathfrak{c}_p are carried by poly'ls; what are their pos'ns and direc'ns?

- First let's define a *p*-tree to be a rooted tree, where each node is...
- ...labeled by a position P : p(1), and has p[P]-many branches.
- Each position in \mathfrak{m}_p and \mathfrak{c}_p can be represented by a *p*-tree.
 - In \mathfrak{m}_p , each tree is *well-founded*: always a finite path down to root
 - In c_p , they are generally infinite: only stops if it has no branches.

$$p:=\{a\}y^2+\{b\}y^3+\{c\}$$

Tree representation of \mathfrak{m}_p and \mathfrak{c}_p

Both \mathfrak{m}_p and \mathfrak{c}_p are carried by poly'ls; what are their pos'ns and direc'ns?

- First let's define a *p*-tree to be a rooted tree, where each node is...
- ...labeled by a position P : p(1), and has p[P]-many branches.
- Each position in \mathfrak{m}_p and \mathfrak{c}_p can be represented by a *p*-tree.
 - In \mathfrak{m}_p , each tree is *well-founded*: always a finite path down to root
 - In c_p , they are generally infinite: only stops if it has no branches.

The directions at a *p*-tree are very different in \mathfrak{m}_p vs. \mathfrak{c}_p .

- In \mathfrak{m}_p , the set of directions at a *p*-tree is its set of leaves.
- In c_p , the set of directions at a *p*-tree is its set of nodes.

Tree representation of \mathfrak{m}_p and \mathfrak{c}_p

Both \mathfrak{m}_p and \mathfrak{c}_p are carried by poly'ls; what are their pos'ns and direc'ns?

- First let's define a *p*-tree to be a rooted tree, where each node is...
- ...labeled by a position P : p(1), and has p[P]-many branches.
- Each position in \mathfrak{m}_p and \mathfrak{c}_p can be represented by a *p*-tree.
 - In \mathfrak{m}_p , each tree is *well-founded*: always a finite path down to root
 - In c_p , they are generally infinite: only stops if it has no branches.

The directions at a *p*-tree are very different in \mathfrak{m}_p vs. \mathfrak{c}_p .

In \mathfrak{m}_p , the set of directions at a *p*-tree is its set of leaves.

In c_p , the set of directions at a *p*-tree is its set of nodes.

They're so similar, yet uncannily diff't! What else do we know about them?

Monad monad & Comonad comonad

The "free monad" functor $p \mapsto \mathfrak{m}_p$ is a monad **Poly** $\xrightarrow{\mathfrak{m}_-}$ **Poly**.

- There are maps $p \xrightarrow{\eta} \mathfrak{m}_p$ and $\mathfrak{m}_{\mathfrak{m}_p} \xrightarrow{\mu} \mathfrak{m}_p$ that obey the usual eqns.
- So we could call \mathfrak{m}_{-} the *free monad monad*.
- Any polynomial monad m is an algebra of this monad, $\mathfrak{m}_m \to m$.

Monad monad & Comonad comonad

- The "free monad" functor $p \mapsto \mathfrak{m}_p$ is a monad **Poly** $\xrightarrow{\mathfrak{m}_-}$ **Poly**.
 - There are maps $p \xrightarrow{\eta} \mathfrak{m}_p$ and $\mathfrak{m}_{\mathfrak{m}_p} \xrightarrow{\mu} \mathfrak{m}_p$ that obey the usual eqns.
 - So we could call \mathfrak{m}_{-} the *free monad monad*.
 - Any polynomial monad m is an algebra of this monad, $\mathfrak{m}_m \to m$.

And the "cofree comonad" functor $p \mapsto \mathfrak{c}_p$ is a comonad **Poly** $\xrightarrow{\mathfrak{c}_-}$ **Poly**.

- There are maps $\mathfrak{c}_p \xrightarrow{\epsilon} p$ and $\mathfrak{c}_p \xrightarrow{\delta} \mathfrak{c}_{\mathfrak{c}_p}$ that obey the usual eqns.
- So we could call *c*^{_} the *cofree comonad comonad*.
- Any polynomial comonad c is a coalgebra of this monad, $c \rightarrow \mathfrak{c}_c$.

There are various interactions amongst free monads and cofree comonads.

- (Turi-Plotkin) "Oper'l semantics" is a distrib. law $\mathfrak{m}_p \triangleleft \mathfrak{c}_p \rightarrow \mathfrak{c}_p \triangleleft \mathfrak{m}_p$.
- The cofree comonad \mathfrak{c}_{-} is lax monoidal, $y \to \mathfrak{c}_{y}$ and $\mathfrak{c}_{p} \otimes \mathfrak{c}_{p'} \to \mathfrak{c}_{p \otimes p'}$.
- The free monad \mathfrak{m}_{-} is *not* lax mon'l for \otimes (though it is for + and \vee).

 $^{^1} The$ notion of module here comes from nlab, "module over a monoidal functor". The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.

There are various interactions amongst free monads and cofree comonads.

• (Turi-Plotkin) "Oper'l semantics" is a distrib. law $\mathfrak{m}_p \triangleleft \mathfrak{c}_p \rightarrow \mathfrak{c}_p \triangleleft \mathfrak{m}_p$.

• The cofree comonad \mathfrak{c}_{-} is lax monoidal, $y \to \mathfrak{c}_{y}$ and $\mathfrak{c}_{p} \otimes \mathfrak{c}_{p'} \to \mathfrak{c}_{p \otimes p'}$.

The free monad \mathfrak{m}_{-} is *not* lax mon'l for \otimes (though it is for + and \vee).

For any p, q: **Poly**, there's a natural map $\Phi_{p,q}$: $\mathfrak{c}_p \otimes \mathfrak{m}_q \to \mathfrak{m}_{p \otimes q}$.¹

¹The notion of module here comes from nlab, "module over a monoidal functor". The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.

There are various interactions amongst free monads and cofree comonads.

(Turi-Plotkin) "Oper'l semantics" is a distrib. law m_p ⊲ c_p → c_p ⊲ m_p.
The cofree comonad c₋ is lax monoidal, y → c_y and c_p ⊗ c_{p'} → c_{p⊗p'}.
The free monad m₋ is *not* lax mon'l for ⊗ (though it is for + and ∨).
For any p, q : Poly, there's a natural map Φ_{p,q}: c_p ⊗ m_q → m_{p⊗q}.¹

• We see that \mathfrak{m}_{-} is a left module over \mathfrak{c}_{-} by checking two diagrams:

¹The notion of module here comes from nlab, "module over a monoidal functor". The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.

There are various interactions amongst free monads and cofree comonads.

(Turi-Plotkin) "Oper'l semantics" is a distrib. law m_p ⊲ c_p → c_p ⊲ m_p.
The cofree comonad c₋ is lax monoidal, y → c_y and c_p ⊗ c_{p'} → c_{p⊗p'}.
The free monad m₋ is *not* lax mon'l for ⊗ (though it is for + and ∨).
For any p, q : Poly, there's a natural map Φ_{p,q}: c_p ⊗ m_q → m_{p⊗q}.¹

• We see that \mathfrak{m}_{-} is a left module over \mathfrak{c}_{-} by checking two diagrams:

But what does it mean, and how do you use it?

¹The notion of module here comes from nlab, "module over a monoidal functor". The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.

How it works

How do we think about the map $\mathfrak{c}_p \otimes \mathfrak{m}_q \xrightarrow{\Phi} \mathfrak{m}_{p \otimes q}$?

- Think of $T : c_p(1)$ as a machine / operating system running forever.
- Think of $U : \mathfrak{m}_q(1)$ as a terminating program, or a finite flowchart.
- We can lay T next to U and move forward through both in tandem.
 - The root of the tandem thing is the pair of roots.
 - A branch of the tandem thing is a pair of branches.
 - Put a leaf whenever U hits a leaf; return to the remainder of T.

How it works

How do we think about the map $\mathfrak{c}_p \otimes \mathfrak{m}_q \xrightarrow{\Phi} \mathfrak{m}_{p \otimes q}$?

- Think of $T : c_p(1)$ as a machine / operating system running forever.
- Think of $U : \mathfrak{m}_q(1)$ as a terminating program, or a finite flowchart.
- We can lay T next to U and move forward through both in tandem.
 - The root of the tandem thing is the pair of roots.
 - A branch of the tandem thing is a pair of branches.

Put a leaf whenever U hits a leaf; return to the remainder of T. Example: running Moore machines

- We said that an (A, B)-Moore machine sends A-lists to B-lists.
- An initialized (A, B)-Moore machine is a position $M : \mathfrak{c}_{By^A}(1)$.
- An A-list is a position $L : \mathfrak{m}_{Ay} = \text{List}(A)y$.
- There is a map $By^A \otimes Ay \cong BAy^A \xrightarrow{B\epsilon} By$.

• Get: $y \cong y \otimes y \xrightarrow{M \otimes L} \mathfrak{c}_{By^A} \otimes \mathfrak{m}_{Ay} \xrightarrow{\Phi} \mathfrak{m}_{By^A \otimes Ay} \xrightarrow{B\epsilon} \mathfrak{m}_{By} = \operatorname{List}(B)y.$

```
def guessing_game(max_guesses, goal):
    if max_guesses==0:
        return False
    guess=read()
    if guess==goal:
        return True
    return guessing_game(max_guesses-1, goal)
```

```
def guessing_game(max_guesses, goal):
    if max_guesses==0:
        return False
    guess=read()
    if guess==goal:
        return True
    return guessing_game(max_guesses-1, goal)
Let's consider the following polynomial:
```

$$r \coloneqq \sum_{max_guesses:\mathbb{N}} \sum_{goal:\mathbb{N}} y^{\mathsf{Bool}}$$

```
def guessing_game(max_guesses, goal):
    if max_guesses==0:
        return False
    guess=read()
    if guess==goal:
        return True
    return guessing_game(max_guesses-1, goal)
Let's consider the following polynomial:
```

$$\mathit{r} \coloneqq \sum_{\mathit{max_guesses:} \mathbb{N}} \sum_{\mathit{goal:} \mathbb{N}} y^{\mathsf{Boo}}$$

We define a map $r \to \mathbb{N}y$ that plays the game. Ingredients:

- A pos'n in $\mathfrak{m}_{y^{\mathbb{N}}}$ is a flowchart of guesses. The program is $\pi \colon r \to \mathfrak{m}_{y^{\mathbb{N}}}$.
- A position $\sigma: y \to \mathfrak{c}_{\mathbb{N}y}$ is an operator (you? OS?) emitting guesses in \mathbb{N} .
- Note that $y^{\mathbb{N}}$ and $\mathbb{N}y$ are dual, i.e. $[y^{\mathbb{N}}, y] \cong \mathbb{N}y$.

• Use composite: $r \cong y \otimes r \xrightarrow{\sigma \otimes \pi} \mathfrak{c}_{\mathbb{N}y} \otimes \mathfrak{m}_{y^{\mathbb{N}}} \xrightarrow{\Phi} \mathfrak{m}_{[y^{\mathbb{N}},y] \otimes y^{\mathbb{N}}} \to \mathfrak{m}_{y} \cong \mathbb{N}y$

```
def guessing_game(max_guesses, goal):
    if max_guesses==0:
        return False
    guess=read()
    if guess==goal:
        return True
    return guessing_game(max_guesses-1, goal)
Let's consider the following polynomial:
```

$$\mathit{r} \coloneqq \sum_{\mathit{max_guesses:} \mathbb{N}} \sum_{\mathit{goal:} \mathbb{N}} y^{\mathsf{Boo}}$$

We define a map $r \to \mathbb{N}y$ that plays the game. Ingredients:

- A pos'n in $\mathfrak{m}_{y^{\mathbb{N}}}$ is a flowchart of guesses. The program is $\pi \colon r \to \mathfrak{m}_{y^{\mathbb{N}}}$.
- A position $\sigma: y \to \mathfrak{c}_{\mathbb{N}y}$ is an operator (you? OS?) emitting guesses in \mathbb{N} .

• Note that $y^{\mathbb{N}}$ and $\mathbb{N}y$ are dual, i.e. $[y^{\mathbb{N}}, y] \cong \mathbb{N}y$.

• Use composite: $r \cong y \otimes r \xrightarrow{\sigma \otimes \pi} \mathfrak{c}_{\mathbb{N}y} \otimes \mathfrak{m}_{y^{\mathbb{N}}} \xrightarrow{\Phi} \mathfrak{m}_{[y^{\mathbb{N}},y] \otimes y^{\mathbb{N}}} \to \mathfrak{m}_{y} \cong \mathbb{N}y$ Here the stream σ didn't take inputs because $\mathbb{N}y = [y^{\mathbb{N}}, y]$ was particularly simple. 13/14

Outline

1 Introduction

2 Polynomial functors and trees

3 The free monad and cofree comonad

4 Conclusion

Summary

We are interested in the relationship between pattern and matter.

- Here, we're thinking of patterns as terminating programs, like scripts.
- And we're thinking of matter as dynamics that continues forever.
- What does it mean to run the pattern on the matter?

Summary

We are interested in the relationship between pattern and matter.

- Here, we're thinking of patterns as terminating programs, like scripts.
- And we're thinking of matter as dynamics that continues forever.
- What does it mean to run the pattern on the matter?

One answer: think of pattern as monad and matter as comonad.

- We constructed the (co)free (co)monad on any polynomial functor *p*.
- We showed how \mathfrak{c}_p and \mathfrak{m}_p look like two different types of *p*-tree.

Summary

We are interested in the relationship between pattern and matter.

- Here, we're thinking of patterns as terminating programs, like scripts.
- And we're thinking of matter as dynamics that continues forever.
- What does it mean to run the pattern on the matter?

One answer: think of pattern as monad and matter as comonad.

- We constructed the (co)free (co)monad on any polynomial functor *p*.
- We showed how \mathfrak{c}_p and \mathfrak{m}_p look like two different types of *p*-tree.

There are many interesting interactions between \mathfrak{c}_p and \mathfrak{m}_p .

- Matter runs on matter: $\mathfrak{c}_{\rho}\otimes\mathfrak{c}_{\rho'} o\mathfrak{c}_{\rho\otimes\rho'}$. We noted that pattern doesn't run on pattern.
- So it's meaningful to say that \mathfrak{m}_{-} is a \mathfrak{c}_{-} -module: $\mathfrak{c}_{p} \otimes \mathfrak{m}_{q} \to \mathfrak{m}_{p \otimes q}$.
- This statement gives math'ical meaning to "pattern runs on matter."

Thanks; comments and questions welcome!