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Introduction What’s going on here?

What’s going on here?

What are we? Let’s just talk naively about this.

In some sense we’re material: chemical processes formed as bodies.

But on this material run little scripts: beliefs, habits, know-how, etc.

Same goes for our computers: they’re material running scripts.

Same goes for our cells: genes are protein-production scripts.

Whether “matter” and “pattern” work as names here is up for debate.

This talk is about a pretty and straightforward math idea:

Free monads differ from—but interact with—cofree comonads.

It’s about how to both intuit this formally and see its usefulness.
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Introduction Summary of the talk

Summary of the talk

Here are four examples of what Sophie and I call “pattern runs on matter”:

Interviews run on people;

Programs run on operating systems;

Voting schemes run on voters;

Games run on players.

We explain them in our paper; the main point is the module structure

Φ: cp ⊗mq → mp⊗q

where cp is the cofree comonad on p and mq is the free monad on q.
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Polynomial functors and trees Polynomial functors

Polynomial functors

I love Poly because it hits a sweet spot of elementary, expressive, elegant.

It’s elementary in that it’s just well-organized sets and functions.

It’s expressive in that it spans databases, dynamics, and programming.

It’s elegant in that it has tons of structure and delightful surprises.

A functor p : Set → Set is polynomial if (TFAE):

It’s a coproduct of representables p ∼=
∑

i∈I Set(Ai ,−) =
∑

i∈I y
Ai .

It preserves connected limits (e.g. pullbacks, equalizers, filtered limits).

A map φ : p → q between polynomials is (TFAE):

A natural transformation p → q. Yoneda and coproduct UP give the equivalence.

An element of the set
∏

i∈I
∑

j∈J
∏

b∈Bj

∑
a∈Ai

1.
The category Poly of polynomial functors has tons of structure. Today:

It has coproducts, and products that distribute over them.

There’s another distributive monoidal closed structure (y,⊗, [−,−]).

The latter is duoidal with a fourth monoidal structure (y, ◁):

(p1 ◁ p2)⊗ (q1 ◁ q2) −→ (p1 ⊗ q1) ◁ (p2 ⊗ q2)
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Polynomial functors and trees Polynomial functors

Moore & Mealy machines, and wiring diagrams

Machines of type (A,B) input lists of A’s and produce lists of B’s

We start with a set S , elements of which are called states.

A Moore machine is a function S → B × SA.

A Mealy machine is a function S → (B × S)A.

More gen’ly, for any polynomial p, a p-machine is a p-coalgebra S → p(S).

As Poly has left Kan extensions, this can be identified with SyS → p.

When p = ByA these give Moore; when p = BAyA these give Mealy.

Wiring diagrams depict maps in Poly.

Right, we see φ : p1 ⊗ · · · ⊗ p5 → q

The ⊗ is a monoidal structure.

It’s “Day convolution of ×”.

It’s got an easy formula in Poly.

φ =
p1

p2

p3

p4

p5

q

It turns out that ⊗ has a closure [−,−].

Mealy machines are the “universal other” (dual) of Moore machines.

Ask me about this afterwards, but basically [AyB , y] ∼= BAyA.

4 / 14
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Polynomial functors and trees Trees

Polynomial functors and trees

There are three nice ways to denote a polynomial.

Algebraic Bundle Corolla forest

y2 + 3y+ 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Some terminology:

There are p(1) = 6 dots on the bottom; we call these positions.

Each pos’n P : p(1) has a fiber p[P]; call its elements directions.

The composite of polynomial functors is again polynomial.

We denote p ◦ q by p ◁ q, for various reasons.

We can draw p ◁ q by grafting q-corollas on top of p-corollas.

•
• •

•
• •

•
• •

•
• •

•
•

•
•

p ◁ q = y6 + 3y3 + 2

◁

p

q

•
1

•
2

p = y2 + y

•
1

•
2

q = y3 + 1
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The free monad and cofree comonad Monads and comonads

Monads and comonads

A (y, ◁)-monoid structure on m : Set → Set consists of coherent maps

η : y → m and µ : m ◁m → m

And a (y, ◁)-comonoid structure on c : Set → Set consists of coh’nt maps

ϵ : c → y and δ : c → c ◁ c

Since ◁ is functor composition, these are in fact polynomial (co)monads.

One can think of a polynomial monad m as a variant of an operad.

We’ll be interested in free monads, “flowchart languages”.

And a polynomial comonad c is precisely the same as a category.

We will be interested in cofree comonads, “machines”.
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The free monad and cofree comonad The free monad mp and cofree comonad cp

The free monad mp

We can build the free monad mp on a polynomial p by induction. Define:

p(0) := y and p(i+1) := y+ p ◁ p(i)

Let’s define φ(i) : p(i) → p(i+1) inductively.

y
φ(0):=inc
−−−−−→ y+ p and y+ p ◁ p(i)

φ(i+1):=y+p◁φ(i)−−−−−−−−−−→ y+ p ◁ p(i+1)

Let p(ω) := colimi<ω p(i) = colim(y
φ(0)−−→ y+p

φ(1)−−→ y+p ◁ (y+p) → · · · ).
When p is finitary (all exponents are finite), we have mp = p(ω).

When p is κ-small, you need more directed colimits along the way...

...but there’s nothing at all complicated here: mp = colimi<κ p(i).

The map η : y → mp is obvious, and the map µ : mp ◁mp → mp ...

involves induction and the interplay between directed colimits and ◁.
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The free monad and cofree comonad The free monad mp and cofree comonad cp

The cofree comonad cp

We can also build the cofree comonad cp on p by induction. Define:

p(0) := y and p(i+1) := y× p ◁ p(i)

Let’s define φ(i) : p(i+1) → p(i) inductively.

y× p
φ(0):=prj−−−−−→ y and y× p ◁ p(i+1) φ(i+1):=y×p◁φ(i)

−−−−−−−−−−→ y× p ◁ p(i)

Let cp := lim(· · · → y× p ◁ (y× p)
φ(1)

−−→ y× p
φ(0)

−−→ y).

Unlike m, one can stop here, building c doesn’t need higher ordinals.

The map ϵ : cp → y is obvious and the map δ : cp → cp ◁ cp...

...involves induction and the interplay between directed limits and ◁.

Remember p-machines, e.g. Mealy p = (Ay)B , and Moore p = AyB?

A position of cp is an initialized p-machine, up to behav’l equivalence.

So how similar are the free monad mp and the cofree comonad cp?

8 / 14
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The free monad and cofree comonad The free monad mp and cofree comonad cp

Tree representation of mp and cp

Both mp and cp are carried by poly’ls; what are their pos’ns and direc’ns?

First let’s define a p-tree to be a rooted tree, where each node is...

...labeled by a position P : p(1), and has p[P]-many branches.

Each position in mp and cp can be represented by a p-tree.

In mp, each tree is well-founded: always a finite path down to root

In cp, they are generally infinite: only stops if it has no branches.

p:={a}y2+{b}y3+{c}

a

b

c

a

b

c

a

b

a c b

a

b

c c

a

c··· ··· ··· ··· ··· ··· ···

The directions at a p-tree are very different in mp vs. cp.

In mp, the set of directions at a p-tree is its set of leaves.

In cp, the set of directions at a p-tree is its set of nodes.

They’re so similar, yet uncannily diff’t! What else do we know about them?
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The free monad and cofree comonad Monad monad & comonad comonad

Monad monad & Comonad comonad

The “free monad” functor p 7→ mp is a monad Poly
m−−−→ Poly.

There are maps p
η−→ mp and mmp

µ−→ mp that obey the usual eqns.

So we could call m− the free monad monad.

Any polynomial monad m is an algebra of this monad, mm → m.

And the “cofree comonad” functor p 7→ cp is a comonad Poly
c−−→ Poly.

There are maps cp
ϵ−→ p and cp

δ−→ ccp that obey the usual eqns.

So we could call c− the cofree comonad comonad.

Any polynomial comonad c is a coalgebra of this monad, c → cc .
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The free monad and cofree comonad Monad monad & comonad comonad

Interactions between m− and c−

There are various interactions amongst free monads and cofree comonads.

(Turi-Plotkin) “Oper’l semantics” is a distrib. law mp ◁ cp → cp ◁mp.

The cofree comonad c− is lax monoidal, y → cy and cp ⊗ cp′ → cp⊗p′ .

The free monad m− is not lax mon’l for ⊗ (though it is for + and ∨).

For any p, q : Poly, there’s a natural map Φp,q : cp ⊗mq → mp⊗q.
1

We see that m− is a left module over c− by checking two diagrams:

y⊗mq mq

cy ⊗mq my⊗q

∼=

∼=

Φy,q

cp ⊗ cp′ ⊗mq cp ⊗mp′⊗q

cp⊗p′ ⊗mq mp⊗p′⊗q

cp⊗Φp′,q

Φp,p′⊗q

Φp⊗p′,q

But what does it mean, and how do you use it?

1The notion of module here comes from nlab, ”module over a monoidal functor”.
The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.

11 / 14
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cp⊗p′ ⊗mq mp⊗p′⊗q

cp⊗Φp′,q

Φp,p′⊗q

Φp⊗p′,q

But what does it mean, and how do you use it?

1The notion of module here comes from nlab, ”module over a monoidal functor”.
The module structure Φ is similar to a result of Katsumata-Rivas-Uustalu.
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The free monad and cofree comonad Monad monad & comonad comonad

How it works

How do we think about the map cp ⊗mq
Φ−→ mp⊗q?

Think of T : cp(1) as a machine / operating system running forever.

Think of U : mq(1) as a terminating program, or a finite flowchart.

We can lay T next to U and move forward through both in tandem.

The root of the tandem thing is the pair of roots.

A branch of the tandem thing is a pair of branches.

Put a leaf whenever U hits a leaf; return to the remainder of T .

Example: running Moore machines

We said that an (A,B)-Moore machine sends A-lists to B-lists.

An initialized (A,B)-Moore machine is a position M : cByA(1).

An A-list is a position L : mAy = List(A)y.

There is a map ByA ⊗ Ay ∼= BAyA
Bϵ−→ By.

Get: y ∼= y⊗ y
M⊗L−−−→ cByA ⊗mAy

Φ−→ mByA⊗Ay
Bϵ−→ mBy = List(B)y.
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The free monad and cofree comonad Pattern runs on matter

Programs run on operators

def guessing game(max guesses, goal):

if max guesses==0:

return False

guess=read()

if guess==goal:

return True

return guessing game(max guesses-1, goal)

Let’s consider the following polynomial:

r :=
∑

max guesses:N

∑
goal :N

yBool

We define a map r → Ny that plays the game. Ingredients:

A pos’n in myN is a flowchart of guesses. The program is π : r → myN .

A position σ : y → cNy is an operator (you? OS?) emitting guesses in N.
Note that yN and Ny are dual, i.e. [yN, y] ∼= Ny.
Use composite: r ∼= y⊗ r

σ⊗π−−−→ cNy ⊗myN
Φ−→ m[yN,y]⊗yN → my

∼= Ny
Here the stream σ didn’t take inputs because Ny = [yN, y] was particularly simple.
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Conclusion

Summary

We are interested in the relationship between pattern and matter.

Here, we’re thinking of patterns as terminating programs, like scripts.

And we’re thinking of matter as dynamics that continues forever.

What does it mean to run the pattern on the matter?

One answer: think of pattern as monad and matter as comonad.

We constructed the (co)free (co)monad on any polynomial functor p.

We showed how cp and mp look like two different types of p-tree.

There are many interesting interactions between cp and mp.

Matter runs on matter: cp ⊗ cp′ → cp⊗p′ . We noted that pattern doesn’t run on pattern.

So it’s meaningful to say that m− is a c−-module: cp ⊗mq → mp⊗q.

This statement gives math’ical meaning to “pattern runs on matter.”

Thanks; comments and questions welcome!
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