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Today’s Story

There are two types of derivative operations used in automatic differentiation:

forward differentiation reverse differentiation

Cartesian differential categories provide the categorial foundations of forward differentiation

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories

Cartesian differential categories have a rich literature and have been successful in formalizing
important concepts from differential calculus.

Cartesian reverse differential categories provide the categorial foundations of
reverse differentiation

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.

and have become quite popular, but still in the early stages...

G. Cruttwell,& J.-S. P. Lemay Reverse Tangent Categories. CSL2024 (2024)

G. Cruttwell, J. Gallagher, J.-S. P. Lemay & D. Pronk Monoidal reverse differential categories. MSCS (2022)

Wilson, P., & Zanasi, F. Categories of Differentiable Polynomial Circuits for Machine Learning. ACT2022 (2022)

Cruttwell, G., Gavranović, B., Ghani, N., Wilson, P., & Zanasi, F.: Categorical foundations of gradient-based

learning. ESOP2022 (2022)

Wilson, P., & Zanasi, F. Derivative Ascent: A Categorical Approach to Learning Boolean Circuits. ACT2020

Cruttwell, G., Gallagher, J., & Pronk, D. (2020) Categorical semantics of a simple differential programming

language. ACT2020
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Today’s Story

Cartesian differential categories come equipped a forward differentiation, whose axioms
includes the chain rule, expressing the forward derivative of a composition.

Cartesian reverse differential categories come equipped a reverse differential combinator,
whose axioms includes the reverse chain rule, expressing the reverse derivative of a
composition.

The main theorem about reverse differentiation is that:

reverse differentiation = forward differentiation + transpose operation

So every Cartesian reverse differential category is a Cartesian differential category with a
linear transpose operator, and vice-versa. In particular, the reverse derivative is the transpose
of the forward derivative, and vice-versa.

So when developing and studying the theory of reverse differentiation, we can take the
forward differentiation concepts and see what the transpose operation gives us.
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Today’s Story

Faà di Bruno’s Formula provides a higher-order chain rule for the formula of a higher-order
forward derivative of a composition.

Faà di Bruno’s Formula also holds in a Cartesian differential category

Cockett, J.R.B. and Seely, R.A.G. The Faa di bruno construction. (2011)

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

TODAY’S STORY: Provide a reverse differential version of Faà di Bruno’s Formula for a
higher-order reverse chain rule in a Cartesian reverse differential category.
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How we will get there

To express Faà di Bruno’s Formula in a Cartesian differential category, we need:

Partial Forward Differentiation

Higher-Order Forward Derivatives

So to express the reverse Faà di Bruno’s Formula we will need to properly define:

Partial Reverse Differentiation

Higher-Order Reverse Derivatives

in a Cartesian reverse differential category, such that they are indeed the transpose of their
forward mode counterparts. So in our ACT paper, we developed partial reverse derivation
which allowed us to revisit and give a better understanding of some of the results in:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.

The reverse Faà di Bruno’s Formula is then computed by taking the transpose of the Faà di
Bruno’s Formula. Surprisingly the reverse Faà di Bruno’s Formula involves both reverse
derivatives and forward derivatives!
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Cartesian Left k-Linear Categories – Definition

The underlying category of a Cartesian (reverse) differential is a Cartesian left k-linear category.

Definition

For a commutative semiring k, a left k-linear category is a category X with finite products such
that each homset X(A,B) is a k-module such that pre-composition preserves the k-linear
structure:

(s · f + t · g) ◦ x = s · (f ◦ x) + t · (g ◦ x)

A map f : A→ B is said to be k-linear if post-composition by f preserves the k-linear structure:

f ◦ (s · x + t · y) = s · (f ◦ x) + t · (f ◦ y)

A Cartesian left k-linear category is a Cartesian left k-linear with finite products such that the
projection maps πj : A1 × . . .× An → Aj are k-linear.



Cartesian Differential Categories – Definition

Definition

A Cartesian k-differential category (CDC) is a Cartesian left k-linear category which comes
equipped with a forward differential combinator:

f : A→ B

D[f ] : A× A→ B

where D[f ] is called the forward derivative of f , and satisfies seven axioms.

There is a very practical term logic. So we write:

D[f ](a, b) :=
df (x)

dx
(a) · b

In particular, the chain rule is:

D[g ◦ f ](a, b) = D[g ] (f (a),D[f ](a, b))
dg(f (x))

dx
(a) · b =

dg(x)

dx
(f (a)) ·

(
df (x)

dx
(a) · b

)
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Cartesian Differential Categories – Smooth Functions

Example

Let SMOOTH be the Lawvere theory of real smooth functions, that is, whose objects are
Euclidean spaces Rn and whose maps are real smooth functions F : Rn → Rm. Note we have that
F = 〈f1, . . . , fn〉 for real smooth functions fi : Rn → R.

Then SMOOTH is a CDC, where for F : Rn → Rm, its derivative D[F ] : Rn × Rn → Rm is then
defined as:

D[F ](~x , ~y) =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉
which is the total derivative of F .

In particular, for a smooth function f : Rn → R, its derivative D[f ] : Rn × Rn → R is just the sum
of its partial derivatives:

D[f ](~x , ~y) =
n∑

i=1

∂f

∂xi
(~x)yi



Cartesian Reverse Differential Categories – Definition

Definition

A Cartesian k-reverse differential category (CRDC) is a Cartesian left k-linear category which
comes equipped with a reverse differential combinator:

f : A→ B

R[f ] : A× B → A

where R[f ] is called the reverse derivative of f , and satisfies seven axioms.

Inspired by the term logic for CDC, we use this notationa:

R[f ](a, b) :=
rf (x)

rx
(a) · b

In particular, the reverse chain rule is:

R[g ◦ f ](a, b) = R[f ] (a,R[g ](f (a), b))
rg (f (x))

rx
(a) · b =

rf (x)

rx
(a) ·

(
rg(y)

ry
(f (a)) · b

)
aWe leave it to future work to give a sound and complete term logic for CRDC
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Cartesian Reverse Differential Categories – Smooth Functions

Example

SMOOTH is a CRDC, where for F : Rn → Rm, its reverse derivative R[F ] : Rn × Rm → Rn is
defined as:

R[F ](~x , ~y) =

〈
m∑
i=1

∂fi

∂x1
(~x)yi , . . . ,

m∑
i=1

∂fi

∂xn
(~x)yi

〉

In particular, for a smooth function f : Rn → R, its reverse derivative R[f ] : Rn × R→ Rn is just
the tuple of its partial derivatives:
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∂f

∂x1
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∂f

∂xn
(~x)y
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Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

To help express this, it will useful to talk about partial reverse derivatives!

But first the forward version.



Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

To help express this, it will useful to talk about partial reverse derivatives!

But first the forward version.



Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

To help express this, it will useful to talk about partial reverse derivatives!

But first the forward version.



Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

To help express this, it will useful to talk about partial reverse derivatives!

But first the forward version.



Partial Forward Derivatives

In a CDC, for a map f : A1× . . .×An → B, we can take its partial forward derivative with respect
to Aj while keeping the rest constant.

We do this by inserting zeroes into the total derivative.

Definition

In a CDC, for a map f : A1 × . . .× An → B, its j-th partial forward derivative is the map
Dj [f ] : A1 × . . .× An × Aj → B defined as:

df (a1, . . . , aj−1, xj , aj+1, . . . , an)

dxj
(aj ) · b :=

df (x1, . . . , xn)

d(x1, . . . , xn)
(a1, . . . , an) · (0, . . . , 0, b, 0, . . . , 0)

Lemma

In a CDC, for a map f : A1 × . . .× An → B:

df (x1, . . . , xn)

d(x1, . . . , xn)
(a1, . . . , an) · (b1, . . . , bn) =

n∑
j=1

df (a1, . . . , aj−1, xj , aj+1, . . . , an)

dxj
(aj ) · bj
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Partial Reverse Derivatives **New**

In a CRDC, for a map f : A1 × . . .× An → B, we wish to take its partial reverse derivative with
respect to Aj while keeping the rest constant.

So we want a map of type Rj [f ] : A1 × . . .× An × B → Aj .

Well consider the total reverse derivative R[f ] : A1 × . . .× An × B → A1 × . . .× An.

Then we get Rj [f ] simply by projection!

Definition

In a CRDC, for a map f : A1 × . . .× An → B, its j-th partial reverse derivative is the map
Rj [f ] : A1 × . . .× An × B → Aj defined as:

rf (a1, . . . , aj−1, xj , aj+1, . . . , an)

rxj
(aj ) · b := πj

(
rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b

)

Lemma

In a CRDC, for a map f : A1 × . . .× An → B:

rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b =

〈
rf (x1, a2, . . . , an)

rx1
(a1) · b, . . . ,

rf (a1, . . . , xn)

rxn
(an) · b

〉
Partial reverse derivatives have been quite useful, and they have given us a useful new perspective
on some of the identities in:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.



Partial Reverse Derivatives **New**

In a CRDC, for a map f : A1 × . . .× An → B, we wish to take its partial reverse derivative with
respect to Aj while keeping the rest constant.

So we want a map of type Rj [f ] : A1 × . . .× An × B → Aj .

Well consider the total reverse derivative R[f ] : A1 × . . .× An × B → A1 × . . .× An.

Then we get Rj [f ] simply by projection!

Definition

In a CRDC, for a map f : A1 × . . .× An → B, its j-th partial reverse derivative is the map
Rj [f ] : A1 × . . .× An × B → Aj defined as:

rf (a1, . . . , aj−1, xj , aj+1, . . . , an)

rxj
(aj ) · b := πj

(
rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b

)

Lemma

In a CRDC, for a map f : A1 × . . .× An → B:

rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b =

〈
rf (x1, a2, . . . , an)

rx1
(a1) · b, . . . ,

rf (a1, . . . , xn)

rxn
(an) · b

〉
Partial reverse derivatives have been quite useful, and they have given us a useful new perspective
on some of the identities in:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.



Partial Reverse Derivatives **New**

In a CRDC, for a map f : A1 × . . .× An → B, we wish to take its partial reverse derivative with
respect to Aj while keeping the rest constant.

So we want a map of type Rj [f ] : A1 × . . .× An × B → Aj .

Well consider the total reverse derivative R[f ] : A1 × . . .× An × B → A1 × . . .× An.

Then we get Rj [f ] simply by projection!

Definition

In a CRDC, for a map f : A1 × . . .× An → B, its j-th partial reverse derivative is the map
Rj [f ] : A1 × . . .× An × B → Aj defined as:

rf (a1, . . . , aj−1, xj , aj+1, . . . , an)

rxj
(aj ) · b := πj

(
rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b

)

Lemma

In a CRDC, for a map f : A1 × . . .× An → B:

rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b =

〈
rf (x1, a2, . . . , an)

rx1
(a1) · b, . . . ,

rf (a1, . . . , xn)

rxn
(an) · b

〉
Partial reverse derivatives have been quite useful, and they have given us a useful new perspective
on some of the identities in:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.



Partial Reverse Derivatives **New**

In a CRDC, for a map f : A1 × . . .× An → B, we wish to take its partial reverse derivative with
respect to Aj while keeping the rest constant.

So we want a map of type Rj [f ] : A1 × . . .× An × B → Aj .

Well consider the total reverse derivative R[f ] : A1 × . . .× An × B → A1 × . . .× An.

Then we get Rj [f ] simply by projection!

Definition

In a CRDC, for a map f : A1 × . . .× An → B, its j-th partial reverse derivative is the map
Rj [f ] : A1 × . . .× An × B → Aj defined as:

rf (a1, . . . , aj−1, xj , aj+1, . . . , an)

rxj
(aj ) · b := πj

(
rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b

)

Lemma

In a CRDC, for a map f : A1 × . . .× An → B:

rf (x1, . . . , xn)

r(x1, . . . , xn)
(a1, . . . , an) · b =

〈
rf (x1, a2, . . . , an)

rx1
(a1) · b, . . . ,

rf (a1, . . . , xn)

rxn
(an) · b

〉
Partial reverse derivatives have been quite useful, and they have given us a useful new perspective
on some of the identities in:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories. In the proceedings of CSL2020.



Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

In a CRDC, the forward differential combinator is defined as follows:

df (x)

dx
(a) · b :=

r
rf (x)

rx
(a) · y

ry
(0) · b

So essentially the partial reverse derivative in the second argument of the total reverse derivative.

To talk about the transpose, we first need to talk about linearity!
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D-Linearity

Now a map is D-linear in an argument if when forward differentiating with respect to that
argument, one gets back the starting map.

Definition

In a CDC, a map f : A1 × . . .× An → B is said to be differential linear (D-linear) in Aj if when
taking its j-th partial forward derivative, the following equality holds:

df (a1, . . . , aj−1, xj , aj+1, . . . , an)

dxj
(aj ) · b = f (a1, . . . , aj−1, b, aj+1, . . . , an)

Example

In SMOOTH, being D-linear in argument is the same as being R-linear. (However, in an arbitrary
CDC, while D-linearity implies k-linearity, the converse is not necessarily true.)
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argument, one gets back the starting map.

Definition

In a CDC, a map f : A1 × . . .× An → B is said to be differential linear (D-linear) in Aj if when
taking its j-th partial forward derivative, the following equality holds:

df (a1, . . . , aj−1, xj , aj+1, . . . , an)

dxj
(aj ) · b = f (a1, . . . , aj−1, b, aj+1, . . . , an)

Example
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Contextual Linear Dagger

A contextual linear dagger is an involutive and contravariant operation on maps with a D-linear
argument, which swaps the codomain with said D-linear argument.

Definition

A CDC is said to have a contextual linear dagger if it comes equipped with an operator † which
for every map:

f : C1 × A× C2 → B

which is D-linear in A, gets associated to a map of type:

f †[C1× ×C2] : C1 × B × C2 → A

which is D-linear in B, and is called the D-linear transpose in A of f . Moreover, † is required to
be involutative, contravariant, and behaves well with the product structure.



Cartesian Reverse Differential Categories – Fundamental Theorem

reverse differentiation = forward differentiation + transpose operation

Theorem

A Cartesian reverse differential category is the same as a Cartesian differential category equipped
with a contextual linear dagger.

In a CRDC, the forward differential combinator is defined as follows:

df (x)

dx
(a) · b :=

r
rf (x)

rx
(a) · y

ry
(0) · b

while the contextual linear dagger is defined as follows:

f †[C1× ×C2](c1, b, c2) :=
rf (c1, x , c2)

rx
(0) · b

So the partial reverse derivative in the D-linear variable.
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Forward Differentiation and Reverse Differentiation are Transposes!

In a CRDC, we have that:

R[f ]†[A× ] = D[f ] D[f ]†[A× ] = R[f ]

So the total forward derivative is D-linear transpose of the reverse derivative (and vice-versa).

The same is true for the partial (reverse) differentiation!

Lemma

In a CRDC

Rj [f ]†[A1×...×An× ] = Dj [f ] Dj [f ]†[A1×...×An× ] = Rj [f ]
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Lemma
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How we will get there

To express Faà di Bruno’s Formula in a Cartesian differential category, we need:

Partial Forward Differentiation

Higher-Order Forward Derivatives

So to express the reverse Faà di Bruno’s Formula we will need to properly define:

Partial Reverse Differentiation

Higher-Order Reverse Derivatives

in a Cartesian reverse differential category, such that they are indeed the transpose of their
forward mode counterparts.

The reverse Faà di Bruno’s Formula is then computed by taking the transpose of the Faà di
Bruno’s Formula. Surprisingly the reverse Faà di Bruno’s Formula involves both reverse
derivatives and forward derivatives!



Higher Order Forward Derivatives

In a CDC, we can apply the differential order n-times to get:

Dn[f ] : A×
2n

→ B

called the n-th total forward derivative of f .

However, by the axioms of a CDC there is a lot of redundant information in Dn[f ].

For example, the second total forward derivative can be worked out to be:

d
df (x)

dx
(y) · z

d(y , z)
(a, b) · (c, d) =

d
df (x)

dx
(y) · b

dy
a · c +

df (x)

dx
(a) · d

So we see that D2[f ] has a D[f ] summand – which does not tell us any new information about f .
Instead, all the new information comes from differentiating the first argument repeatedly.
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Higher Order Forward Derivatives

For a map f : A→ B, its n-th forward derivative is defined by continuously deriving the first
argument of the derivative:

A→ B

A× A→ B

A× A× A→ B

...

A× A× . . .× A︸ ︷︷ ︸
n-times

→ B

Definition

In a CDC, for a map f : A→ B, its n-th forward derivative is the map ∂(n)[f ] : A× A×
n → B,

which we write as:

∂(n)[f ](a0, a1, . . . , an) :=
d(n)f (x)

dx
(a0) · a1 · . . . · an

and is defined inductively as:

d(0)f (x)

dx
(a0) = f (a0)

d(n+1)f (x)

dx
(a0) · a1 · . . . · an · an+1 =

d
d(n)f (x)

dx
(y) · a1 · . . . · an

dy
(a0) · an+1

The n-th derivative is D-linear in its last n-arguments and also symmetric in its last n-arguments.
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Higher Order Reverse Derivatives

In a CRDC, we can apply the reverse differential combinator:

A→ B

A× B → A

A× B × A→ A× B

A× B × A× A× B → A× B × A

...

So the type of Rn[f ], the n-th total reverse derivative of f , is quite complex with a large number
of inputs and a large number of outputs.

However, by the axioms of a CRDC there is a lot of redundant information in Rn[f ] again.

For example, the second total reverse derivative can be worked out to be:

r
rf (x)

rx
(y) · z

r(y , z)
(a1, b) · a2 =

〈
r

rf (x)

rx
(a1) · u

ru
(b) · a2,

df (x)

dx
(a1) · a2

〉

So we see that R2[f ] has a R[f ] part...
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Higher Order Reverse Derivatives **NEW**

For a map f : A→ B, its n-th reverse derivative is defined by continuously reverse deriving the
first argument of the reverse derivative:

A→ B

A× B → A

A× B × A→ A

...

A××B × A× . . .× A︸ ︷︷ ︸
(n−1)-times

→ A

Definition

In a CDC, for a map f : A→ B, its n-th reverse derivative is the map

ρ(n)[f ] : A× B × A×
(n−1) → B, which we write as:

ρ(n)[f ](a0, b, a2, . . . , an) =
r(n)f (x)

rx
(a0) · b · a2 · . . . · an

and is defined inductively as:

r(0)f (x)

rx
(a0) = f (a0)

r(n+1)f (x)

rx
(a0) · b · a1 · . . . · an+1 =

r
r(n)f (x)

dx
(y) · b · . . . · an

ry
(a0) · an+1
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Transpose?

We would like that the nth higher order forward derivative is the D-linear transpose of the nth
higher order reverse derivative...

The first thing to address is which D-linear argument should we transpose:

∂(n)[f ] : A× A× . . .× A︸ ︷︷ ︸
n-times

→ B

Well to fit with the type of:

ρ(n)[f ] : A××B × A× . . .× A︸ ︷︷ ︸
(n−1)-times

→ A

We transpose the first A... ∂(n)[f ] but since is symmetric in its D-linear arguments, it does not
matter which one we take really.

We want this:
∂(n)[f ]†[A× ×An ] = ρ(n)[f ]

Unfortunately, this does not seem to follow from just the axioms of the reverse differential
combinator...

So we introduce an extra compatibility between the forward differential combinator and the
reverse differential combinator.
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Stable Rule

Definition

A CRDC is said to satisfy the stable rule if:

r
df (x)

x
(y) · a2

ry
(a1) · b =

r
rf (x)

x
(y) · b

dy
(a1) · a2

All examples of CRDC that we have satisfy the stable rule, so in particular SMOOTH satisfies the
stable rule. (There is a linear closed reason for this...)

And yet this rule does not seem to follow from the reverse differential combinator axioms! (I
could be wrong... I hope I’m hope wrong!)

Lemma

In a CRDC which satisfies the stable rule:

∂(n)[f ]†[A× ×An ] = ρ(n)[f ]
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Faà di Bruno Formula

The Faà di Bruno Formula is given by a sum indexed by non-empty partitions of finite sets.

For every n ∈ N, define the totally ordered set [n + 1] = {1 < . . . < n + 1}.

For every subset I = {i1 < . . . < im} ⊆ [n + 1], for a vector ~x = (x1, . . . , xn+1), define
~x |I = (xi1 , . . . , xim )

We denote a non-empty partition of [n + 1] as [n + 1] = A1| . . . |Ak , and let |Aj | be the
cardinality of Aj .

Theorem

In a CDC,

d(n+1)g(f (x))

dx
(a0) · a1 · a2 · . . . · an+1

=
∑

[n+1]=A1|...|Ak

d(k)g(z)

dz
(f (a0)) ·

(
d(|A1|)f (x)

dx
(a0) · ~a|A1

)
· . . . ·

(
d(|Ak |)f (x)

dx
(a0) · ~a|Ak

)
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Reverse (Mode?) Faà di Bruno Formula

We are finally in a position to give the reverse Faà di Bruno’s Formula.

For convenience, we will assume that in a non-empty partition [n + 1] = A1| . . . |Ak , that
1 ∈ [n + 1] is always in 1 ∈ A1.

Theorem

In a CRDC which satisfies the stable rule:

r(n+1)g(f (x))

rx
(a0) · b · a2 · . . . · an+1 =

∑
[n+1]=A1|...|Ak

1∈A1

r(|A1|)f (x)

rx
(a0) ·

(
r(k)g(y)

ry
(a0) · b ·

(
d(|A2|)f (x)

dx
(a0) · ~a|A2

)
· . . . ·

(
d(|Ak |)f (x)

dx
(a0) · ~a|Ak

))
· ~a|A1−{1}

The proof is by applying the linear transpose to the forward mode Faà di Bruno Formula.

The formula can be given without assuming 1 ∈ A1, but it’s much more convenient!

This can be full written using only reverse differential operators!
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Reverse (Mode?) Faà di Bruno Formula

When n = 0 in the reverse Faà di Bruno’s Formula, we get back precisely the reverse chain
rule! The only non-empty partition of [1] is [1] = A1 = {1}, which is why no forward
derivatives appear in the reverse chain rule.

rg (f (x))

rx
(a) · b =

rf (x)

rx
(a) ·

(
rg(y)

ry
(f (a)) · b

)

When n = 1, the non-empty partitions of [2] are [1] = A1 = {1}|A2 = {2} and
[2] = A1 = {1, 2}. So the reverse Faà di Bruno’s Formula for the second reverse derivative is:

r(2)g (f (x))

rx
(a0) · b · a2

=
r(1)f (x)

rx
(a0) ·

(
r(2)g(y)

ry
(f (a0)) · b ·

(
df (x)

dx
(a0) · a2

))

+
r(2)f (x)

rx
(a0) ·

(
r(1)g(y)

ry
(f (a0)) · b

)
· a2

Try working out the higher levels! (make sure you have lots of space!)
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[2] = A1 = {1, 2}. So the reverse Faà di Bruno’s Formula for the second reverse derivative is:

r(2)g (f (x))

rx
(a0) · b · a2

=
r(1)f (x)

rx
(a0) ·

(
r(2)g(y)

ry
(f (a0)) · b ·

(
df (x)

dx
(a0) · a2

))

+
r(2)f (x)

rx
(a0) ·

(
r(1)g(y)

ry
(f (a0)) · b

)
· a2

Try working out the higher levels! (make sure you have lots of space!)



Future Work: Cofree Cartesian Reverse Differential Categories?

For every Cartesian k-left linear category, there exists a cofree CDC over it via what’s called
the Faà di Bruno construction, where composition in this cofree CDC is given by Faà di
Bruno’s formula.

Cockett, J.R.B. and Seely, R.A.G. The Faa di bruno construction. (2011)

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Lemay, J-S P. A Tangent Category Alternative to the Faa di Bruno Construction.

Lemay, J-S P. Properties and Characterisations of Cofree Cartesian Differential Categories.

Can the reverse Faà di Bruno’s formula be used to defined cofree CRDC?
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