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Introduction

= To compute with categories we need syntax.

= There is a canonical way to present small categories by
generators and relations (and morphisms between them).

= There is a canonical way to present Set-valued functors.

= But what about profunctors?

A profunctor P : C + D is either
C®PxD—Set or (% — Set?

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this

work.

But... why would we care?
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Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on
the following idea:

Database Schema — Category

Database Instance — Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spil2]
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Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on

the following idea:

Database Schema — Category

Database Instance — Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spil2]

Remark: This data model (as presented in e.g. [Spil2]) has
been superseded by another which incorporates data types and at-
tributes [Sch+17], but the subtlety we are interested in arises already
at this level.

So, how does this work?
2/30



DB Schema <—; Category

A category presentation consists of objects (a.k.a. “sorts”), gen-
erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:

sec

- mng B D Dept mgr.worksln = worksIn

— sec.worksIn = 1pept
workslIn
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DB Schema <— Category

A category presentation consists of objects (a.k.a. “sorts”), gen-

erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:
e ksl ksl
- = mgr.worksln = worksln
C = (¢ mer| Emp Dept
\__ R sec.worksIn = 1pept
workslIn

The dots represent the associative concatenation of paths.
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DB Schema +— Category

C presents the category (C) (“the semantics of C") whose mor-
phisms are the paths in C quotiented by the provable equality
relation ~ generated by the equations.

Explicitly, ~¢ is the smallest equivalence relation that contains all
the equations of C which is compatible with concatenation of paths
(p ~c q implies f.p.g ~¢ f.q.g whenever the expression makes

sense).

We write [p] for the equivalence class of p.
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DB Schema +— Category

In the example, we get:

sec

S .worksIn = worksl|
C — o Emp Dept mgr.wor n WOr n
- > sec.worksln = 1pept

worksln

Obj((C)) ={Emp, Dept}

Mor((C)) ={1emp, LDept,, [worksln], [sec], [mgr],
length 0 length 1

[mgr.mgr], [worksIn.sec], [sec.mgr], . ..

length 2

[mgr¥], [worksln.sec.mgr=2], [sec.mgr*71], ...}

length k, k > 3
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DB Schema +— Category

A morphism of category presentations F : C — D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:
sec Em p— Emp sec
T N Dept—Dept T N
F : Emp Dept o ey Emp Dept
NG mgr—mgr N
worksln worksln—worksIn worksin

sec—rsec.mgr
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DB Schema +— Category

A morphism of category presentations F : C — D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:
sec_ Emp—Emp sec
mgr TN\ Dept—Dept e /S KT N
F : = CEmp Dept —)p d - “/ Emp Dept
N mgr—mgr \_ ~
ety worksln—worksln worksln

sec—>sec.mgr
We require that if p =c g, then F(p) ~p F(q):

mgr.worksln =¢ worksIn ~» mgr.worksln ~¢ worksln v'

sec.worksIn =¢ 1pept ~ (sec.mgr).worksln ~¢ sec.worksIn ~¢ 1pept v/

In this way we obtain a category CatPr and a semantics functor
(—) : CatPr — Cat.
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DB Instance «— Copresheaf

To understand this as a database schema, let us look at an example
copresheaf Z on (C)), which is determined by its action on objects
and on the generating arrows:

worksln
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DB Instance «— Copresheaf

When we visualize with tables, we see that each object ¢ corresponds
to a table and each function symbol in C going out of ¢ corresponds
to a column in that table:

]

mgr
[\

]

’ Emp ‘ mgr ‘ worksln ‘ ’ Deot ‘ <o ‘
Alice Alice CS CSp Alice
Bob Charlie | Math Math | Charlie
Charlie | Charlie | Math
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DB Instance «— Copresheaf

From now on we will use the words “instance” and “copresheaf”
interchangeably.

We can go further and define instance presentations similarly to
presentations for actions of monoids/groups, e.g.

= - E %] .
(e:Emp | v>

generator(s) equations
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DB Instance «— Copresheaf

From now on we will use the words “instance” and “copresheaf”
interchangeably.

We can go further and define instance presentations similarly to
presentations for actions of monoids/groups, e.g.

I=(e:Emp | @ ).
—— ~~
generator(s) equations

This presents the infinite copresheaf (/) : (C) — Set given by

[ Emp [ mgr [ worksIn ]
e] e.mgr] e.worksln
e.mgr] e.mgr?] e.worksln
e . e.worksln
e.workslIn.sec] e.worksln.sec.mgr| e.worksIn
e.worksIn.sec.mgr] e.worksln.sec.mgr?] e.worksln

e.worksln
[ Dept [ sec |
e.worksln e.worksln.sec
e.worksln e.worksln.sec
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DB Instance «— Copresheaf

Formally we define an instance presentation on C to be a category
presentation extending C with a unique object *, new arrows coming
out of *, and some equations involving the newly added arrows, e.g.

I =(e:Emp| @) I'=(e:Emp|emgr=ce)
o o
() ()
. Emp e.mgr=e s Emp
////// ////Work5|n sec * ///////// worksln sec
Dept Dept

A morphism of instance presentations C ¢ : | — J is an assign-
ment of generators x : x — c in [ to paths y;.--- .y, : % — cin D

such that equations in / are respected.
10/30



DB Queries «— Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using
it to query other instances by mapping into them.
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DB Queries «— Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using

it to query other instances by mapping into them.

mgr =
@ ()
> Emp e = mgr.e > Emp
— /worksln sec ’//// / worksIn sec
Dept Dept

= | presents a representable on Emp: Set{)((/), 7) = 7 (Emp)
(i.e. representables are the free (co)presheaves on one generator).
= Setl9)((/), ) is the set of employees in 7 who are their own

managers.
11/30



DB Queries +—— Profunctors!

This is nice for basic querying, but it's not expressive enough if
instead of a set of answers, we actually want to produce a new
instance (e.g. implement data migration).
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DB Queries +—— Profunctors!

This is nice for basic querying, but it's not expressive enough if
instead of a set of answers, we actually want to produce a new
instance (e.g. implement data migration).

Profunctors let us query and transform in more complex ways: given
a profunctor P : C -+ D seen as P : C°P — Set?, define

Evalp : Set? — Set®
Evalp(J) := Set”(P(-),J)

This contains the previous situation as a particular case by setting
C =1, since a profunctor 1 + D is simply a copresheaf on D.
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Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

CJD—>DHQ—>E s Cﬂc?%g

deD
(P ® Q)(c,e) z/ P(c,d) x Q(d, e).
Profunctor composition implements composition of queries, because

Evalp o Evalg = Evalpgo.
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Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

CJD—>DHQ—>E s Cﬂc?%g

deD
(P ® Q)(c,e) z/ P(c,d) x Q(d, e).
Profunctor composition implements composition of queries, because

Evalp o Evalg = Evalpgo.

Examples are much easier with presentations, so let's get to that

first.
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Profunctor Presentations




Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 - C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C — D is a category presentation simultaneously
extending Cmgand D:

Q profunctor

E S ke S /mbols
mp ——————— equatlons between

(//j /\\/ parallel cross-paths
worksln sec

Dept
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Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 - C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C — D is a category presentation simultaneously
extending Cmgand D:

Q profunctor

E S ke S /mbols
mp ——————— equatlons between

(//j /\\/ parallel cross-paths
worksln sec

Dept

This notion turns out to be equivalent to (C°P x D)-instance pre-
sentations.

By defining morphisms of uncurried presentations in a straightfor-
ward way, we obtain a category UnCurr(C,D) and a semantics

functor (—) : UnCurr(C, D) — Prof((C), (D)). 14 /30



Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
(C) — (D), if it admits a finite profunctor presentation P (such that
(P) = P) then we say that it is finitely uncurried presentable
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Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
(C) — (D), if it admits a finite profunctor presentation P (such that
(P) = P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

(P)(c.d) = {lp-f*] | k > 0} c—P"sp-2E
(Q)(d. €) = {[f*.q] | k > 0} A
((P) © (Q)(c. €) = {[p-f*.q] | k > 0} c——d—>e

But any uncurried presentation R : C — E such that (R)(c, e) is infinite

must have an infinite number of generating profunctor symbols. O

15 /30



Curried Profunctor Presentations

Recall that semantically, CAT(C°P x D, Set) ~ CAT(C?, Set?).
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Curried Profunctor Presentations

Recall that semantically, CAT(C°P x D, Set) ~ CAT(C?, Set?).

Solution: move from (C, D)-uncurried presentations to C°P-indexed
families of D-instance presentations, with morphisms between them.

o X7
N7~ ([~

16 /30



Curried Profunctor Presentations

(L (=
NY (I Q.

The morphisms of instance presentations, when composed with
each other, must satisfy the equations of C in a suitable sense (up
to provable equality). We call these curried profunctor presenta-
tions.
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Curried Profunctor Presentations

0 Q. -
YIRS

The morphisms of instance presentations, when composed with

)
)

each other, must satisfy the equations of C in a suitable sense (up
to provable equality). We call these curried profunctor presenta-
tions.

Morphisms are defined in a straightforward way. We obtain a cate-
gory Curr(C, D) with semantics (—) : Curr(C, D) — Prof((C), (D)).
17/30



Syntactic Composition of Curried Presentations

Given curried profunctor presentations P: C — D and Q : D — E,
there is a composite curried presentation P® Q : C — E. This
is obtained by following an algorithm known as sub-query unnesting

or view unfolding (as sketched for instance in [SW17]).
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Given curried profunctor presentations P: C — D and Q : D — E,
there is a composite curried presentation P® Q : C — E. This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ® Q is finite if both P and Q are.
Lemma: the construction extends to a functor

® : Curr(C,D) x Curr(D, E) — Curr(C,E).

Theorem: There is a natural isomorphism

~

po=lo= = (-==)

i.e. ® is correct with respect to profunctor composition.
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Syntactic Composition of Curried Presentations

Given curried profunctor presentations P: C — D and Q : D — E,
there is a composite curried presentation P® Q : C — E. This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ® Q is finite if both P and Q are.
Lemma: the construction extends to a functor

® : Curr(C,D) x Curr(D, E) — Curr(C,E).

Theorem: There is a natural isomorphism

~

prl-loE=) = -e=)
i.e. ® is correct with respect to profunctor composition.
Corollary: the class of finitely curried presentable profunctors is

closed under composition. 18/30



An Example of Syntactic Composition (and Querying)

We explain the ® construction through an example.

Example: consider the following two category presentations.

C D
mgr mgrl
Q mgr2 mgr;.worksln; = worksIny
mgr,.worksln; = workslny
Emp Admm Teach gn
worksln; workslny seci.worksln; = lDept’
worksln sec seca.worksIny = Lpepy
secy secy
Dept Dept

The equations of C are as before. The equations of D are a dupli-
cation of the ones of C, except for the variation mgr,.worksln; =
workslIns.
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An Example of Syntactic Composition (and Querying)

We explain the ® construction through an example.

Example: consider the following two category presentations.

C D
mgr mgr1
Q mgr mgr;.worksln; = workslny
- mgr,.worksln; = worksln;
Emp Admln " Teach ™MEn
worksln; worksln seci.worksIny = lpeyr
worksln sec seca.workslny = 1pep
secy secy
Dept Dept

The equations of C are as before. The equations of D are a duplica-
tion of the ones of C, except for the variation mgr,.worksln; = worksln,.
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An Example of Syntactic Composition (and Querying)

Now consider the following curried presentation P : C — D:

P(Emp) := (a : Admin, t : Teach | t.mgr, = a)
P(Dept) = (d : Dept’ | @)
P(mgr) == {a > a.mgr;,t — t}

P(sec) := {a > d.secy,t — d.secy}
P(worksIn) := {d — a.worksln; }

mgr mgr1
Q mgr2
Emp —— Admln Teach
worksIniworksln,
worksln (//j sec \ /
secy seco
Dept » Dept’

20/30



An Example of Syntactic Composition (and Querying)

Recall the instance presentation /' = (e : Emp | e.mgr = e) from
the introduction, seen as a curried profunctor presentation x — C.
Diagrammatically, the situation is this:

I s C 2 D

mgr mgrl

@

—> Admln

1
e
_— workslniworkslng
worksln sec
secy secz

Dept Dept’

21/30



An Example of Syntactic Composition (and Querying)

mgr mgrl

mgfz

—> Admln

e
worksInjworkslny
worksln se
secy secz

Dept Dept’

To obtain the composite I’ ® P : x — D, we must define a unique
D-instance presentation (I’ ® P)(x). To do it, look at all pairs of
“composable” generators and pair them into new symbols.
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An Example of Syntactic Composition (and Querying)

mgr mgry
() () me
Emp % Admin > Teach

t

~ e®a \._ worksinjworksIn,

secy

Dept C Dept’

To obtain the composite I’ ® P : x — D, we must define a unique
D-instance presentation (I’ ® P)(x). To do it, look at all pairs of
“composable” generators and pair them into new symbols.

We obtain generators e @ a : Admin and e @ t : Teach.

22/30



An Example of Syntactic Composition (and Querying)

mgr mgrl

mgfz

—> Admln

e
/ worksthworksiny
—— worksln
secy secz

Dept Dept’

Then, to obtain the equations of the instance we take all equations
from /'(x), P(Emp) and P(Dept) and “tensor them" on the left and

on the right all possible generators:

e.mgr
e.mgr

t.mgr,

e~ (emgr)®a=e®a ~e®amgrp=e®a
e~ (emgr)@t=e®t ~eRt=e®t
a~e®(t.mgry) =e®a ~ (e®t).mgrpb,=e®a

23/30



An Example of Syntactic Composition (and Querying)

mgr mgrl
mgrz

—> Admln

e
/ workstnyworkslny
* = worksln
secy secz

Dept Dept’

Since there are no arrow symbols in the domain presentation, we are
done. I"® P is the conjunctive query I migrated along P, given by
the instance

(e®a : Admin, e®t : Teach | (e®a).mgr; = e®a, (e®t).mgr, = e®a).

In other words, it looks for all pairs of an admin A and a teacher T

such that the manager of T is A and A is their own manager.
24 /30



Understanding Curried Versus Uncurried

So... What failed here?
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Understanding Curried Versus Uncurried

= We want to guarantee the existence of a finite set of
generators for the composite.
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Understanding Curried Versus Uncurried

= We want to guarantee the existence of a finite set of
generators for the composite.

= |n the definition of ®, we did this by pairing generators from
P and Q into generators of the form p ® g.

= This worked because @ contains instance presentation
morphisms Q(f) for each f in D, which give you the
information to turn a cross-path f.q into some path
Q(f)(q) =q.hi..... he starting with a profunctor symbol of Q.

= Given an uncurried presentation @, we don’t have the
morphisms Q(f) anymore, but can still require that every
cross-path in @ can be rewritten to start with a profunctor
symbol. In this case we say that @ is non-generative.

26 /30



Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.
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Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given ¢ € C let P¢ denote the D-instance presentation obtained by

“restriction”:

//>\‘ ‘/7\\

Lo \ ) o

N \ Yy — T~
C=——— o e
! K A~ A
g \ /
L \\ /
[

vV

vy V-
@ ———————————————— > e
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Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given ¢ € C let P¢ denote the D-instance presentation obtained by

“restriction”:
£ ()
N \
C——"—" o e
/A T 777
i)
]
1
L/ /,
@ ———————————————— > e

Suppose that for every pair of paths t,t' in P€ starting at c, if
t ~p t/, then t =pc t'. (i.e. P is a conservative extension of P€ in
the sense of algebraic theories.) If this happens for all ¢ € C, we
say that P is conservative.

27/30



Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given ¢ € C let P¢ denote the D-instance presentation obtained by

“restriction”:
£ ()
N \
C——"—" o e
/A T 777
i)
]
1
L/ /,
@ ———————————————— > e

Suppose that for every pair of paths t,t' in P€ starting at c, if
t ~p t/, then t =pc t'. (i.e. P is a conservative extension of P€ in
the sense of algebraic theories.) If this happens for all ¢ € C, we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative. 27 /30



Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we
begin by observing the existence of a straightforward uncurrying
operation.
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Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we
begin by observing the existence of a straightforward uncurrying
operation.
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Thm: this construction determines a functor (—) : Curr(C, D) —
UnCurr(C, D) which restricts to finite presentations and preserves

the semantics.
28 /30



Equivalence between Curried and Curryable

Let Crble(C, D) be the non-full subcategory of UnCurr(C, D) spanned
by curryable presentations and morphisms that send all cross-paths
to right paths (x).

Theorem: The functor (—) : Curr(C,D) — UnCurr(C,D) co-
restricts to an equivalence of categories

(=) : Curr(C, D) = Crble(C, D).
This equivalence restricts to an equivalence between the subcate-
gories of finite presentations.

Remark: The technical condition (x) can be dropped by weakening
equivalence to biequivalence (where the 2-cells of Curr(C, D) and
UnCurr(C, D) are given by provable equality of presentations).
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Thank you!
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