
Presenting Profunctors

Gabriel Goren Roig12 Emilio Minichiello3 Joshua Meyers3

1Departamento de Matemática, Universidad de Buenos Aires, Argentina

2Instituto de Ciencias de la Computación (ICC), CONICET

3Conexus AI

Applied Category Theory 2024

Introduction

• To compute with categories we need syntax.

• There is a canonical way to present small categories by
generators and relations (and morphisms between them).

• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?

1 / 30

Introduction

• To compute with categories we need syntax.
• There is a canonical way to present small categories by

generators and relations (and morphisms between them).

• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?

1 / 30

Introduction

• To compute with categories we need syntax.
• There is a canonical way to present small categories by

generators and relations (and morphisms between them).
• There is a canonical way to present Set-valued functors.

• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?

1 / 30

Introduction

• To compute with categories we need syntax.
• There is a canonical way to present small categories by

generators and relations (and morphisms between them).
• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?

1 / 30

Introduction

• To compute with categories we need syntax.
• There is a canonical way to present small categories by

generators and relations (and morphisms between them).
• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?

1 / 30

Introduction

• To compute with categories we need syntax.
• There is a canonical way to present small categories by

generators and relations (and morphisms between them).
• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?
1 / 30

Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on
the following idea:

Database Schema ←→ Category
Database Instance ←→ Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has
been superseded by another which incorporates data types and at-
tributes [Sch+17], but the subtlety we are interested in arises already
at this level.

So, how does this work?

2 / 30

Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on
the following idea:

Database Schema ←→ Category
Database Instance ←→ Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has
been superseded by another which incorporates data types and at-
tributes [Sch+17], but the subtlety we are interested in arises already
at this level.

So, how does this work?

2 / 30

Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on
the following idea:

Database Schema ←→ Category
Database Instance ←→ Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has
been superseded by another which incorporates data types and at-
tributes [Sch+17], but the subtlety we are interested in arises already
at this level.

So, how does this work?
2 / 30

DB Schema←→ Category

A category presentation consists of objects (a.k.a. “sorts”), gen-
erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept



The dots represent the associative concatenation of paths.

3 / 30

DB Schema←→ Category

A category presentation consists of objects (a.k.a. “sorts”), gen-
erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept



The dots represent the associative concatenation of paths.

3 / 30

DB Schema←→ Category

A category presentation consists of objects (a.k.a. “sorts”), gen-
erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept


The dots represent the associative concatenation of paths.

3 / 30

DB Schema←→ Category

C presents the category LCM (“the semantics of C”) whose mor-
phisms are the paths in C quotiented by the provable equality
relation ≈C generated by the equations.

Explicitly, ≈C is the smallest equivalence relation that contains all
the equations of C which is compatible with concatenation of paths
(p ≈C q implies f .p.g ≈C f .q.g whenever the expression makes
sense).

We write [p] for the equivalence class of p.

4 / 30

DB Schema←→ Category

In the example, we get:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept


Obj(LCM) :={Emp, Dept}
Mor(LCM) :={1Emp, 1Dept,︸ ︷︷ ︸

length 0

, [worksIn], [sec], [mgr]︸ ︷︷ ︸
length 1

,

[mgr.mgr], [worksIn.sec], [sec.mgr]︸ ︷︷ ︸
length 2

, . . .

[mgrk], [worksIn.sec.mgrk−2], [sec.mgrk−1]︸ ︷︷ ︸
length k, k ≥ 3

, . . . }

5 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.

6 / 30

DB Instance←→ Copresheaf

To understand this as a database schema, let us look at an example
copresheaf I on LCM, which is determined by its action on objects
and on the generating arrows:

I :=

Alice

Bob

Charlie

CS

Math

dep

sec

mgr : LCM→ Set

Emp Deptmgr

worksIn

sec

7 / 30

DB Instance←→ Copresheaf

When we visualize with tables, we see that each object c corresponds
to a table and each function symbol in C going out of c corresponds
to a column in that table:

Alice

Bob

Charlie

CS

Math

dep

sec

mgr

Emp mgr worksIn
Alice Alice CS
Bob Charlie Math
Charlie Charlie Math

Dept sec
CS Alice
Math Charlie

8 / 30

DB Instance←→ Copresheaf

From now on we will use the words “instance” and “copresheaf”
interchangeably.

We can go further and define instance presentations similarly to
presentations for actions of monoids/groups, e.g.

I = ⟨ e : Emp︸ ︷︷ ︸
generator(s)

| ∅︸︷︷︸
equations

⟩.

This presents the infinite copresheaf LIM : LCM→ Set given by
Emp mgr worksIn
[e] [e.mgr] [e.worksIn]
[e.mgr] [e.mgr2] [e.worksIn]
. [e.worksIn]
[e.worksIn.sec] [e.worksIn.sec.mgr] [e.worksIn]
[e.worksIn.sec.mgr] [e.worksIn.sec.mgr2] [e.worksIn]
. [e.worksIn]

Dept sec
[e.worksIn] [e.worksIn.sec]
[e.worksIn] [e.worksIn.sec]

9 / 30

DB Instance←→ Copresheaf

From now on we will use the words “instance” and “copresheaf”
interchangeably.

We can go further and define instance presentations similarly to
presentations for actions of monoids/groups, e.g.

I = ⟨ e : Emp︸ ︷︷ ︸
generator(s)

| ∅︸︷︷︸
equations

⟩.

This presents the infinite copresheaf LIM : LCM→ Set given by
Emp mgr worksIn
[e] [e.mgr] [e.worksIn]
[e.mgr] [e.mgr2] [e.worksIn]
. [e.worksIn]
[e.worksIn.sec] [e.worksIn.sec.mgr] [e.worksIn]
[e.worksIn.sec.mgr] [e.worksIn.sec.mgr2] [e.worksIn]
. [e.worksIn]

Dept sec
[e.worksIn] [e.worksIn.sec]
[e.worksIn] [e.worksIn.sec]

9 / 30

DB Instance←→ Copresheaf

Formally we define an instance presentation on C to be a category
presentation extending C with a unique object ∗, new arrows coming
out of ∗, and some equations involving the newly added arrows, e.g.

I = ⟨e : Emp | ∅⟩ I ′ = ⟨e : Emp | e.mgr = e⟩

Emp

∗

Dept

mgr

worksIn

e

sec

e.mgr = e Emp

∗

Dept

mgr

worksIn

e

sec

A morphism of instance presentations C ϕ : I → J is an assign-
ment of generators x : ∗ → c in I to paths y1. · · · .yn : ∗ → c in D
such that equations in I are respected.

10 / 30

DB Queries ←→ Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using
it to query other instances by mapping into them.

Emp

∗

Dept

mgr

worksIn

e

sec

e = mgr.e Emp

∗

Dept

mgr

worksIn

e

sec

• I presents a representable on Emp: SetLCM(LIM,J) ∼= J (Emp)
(i.e. representables are the free (co)presheaves on one generator).

• SetLCM(LI ′M,J) is the set of employees in J who are their own
managers.

11 / 30

DB Queries ←→ Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using
it to query other instances by mapping into them.

Emp

∗

Dept

mgr

worksIn

e

sec

e = mgr.e Emp

∗

Dept

mgr

worksIn

e

sec

• I presents a representable on Emp: SetLCM(LIM,J) ∼= J (Emp)
(i.e. representables are the free (co)presheaves on one generator).

• SetLCM(LI ′M,J) is the set of employees in J who are their own
managers.

11 / 30

DB Queries ←→ Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using
it to query other instances by mapping into them.

Emp

∗

Dept

mgr

worksIn

e

sec

e = mgr.e Emp

∗

Dept

mgr

worksIn

e

sec

• I presents a representable on Emp: SetLCM(LIM,J) ∼= J (Emp)
(i.e. representables are the free (co)presheaves on one generator).

• SetLCM(LI ′M,J) is the set of employees in J who are their own
managers.

11 / 30

DB Queries ←→ Profunctors!

This is nice for basic querying, but it’s not expressive enough if
instead of a set of answers, we actually want to produce a new
instance (e.g. implement data migration).

Profunctors let us query and transform in more complex ways: given
a profunctor P : C −7−→ D seen as P : Cop → SetD, define

EvalP : SetD → SetC

EvalP(J) := SetD(P(−),J)

This contains the previous situation as a particular case by setting
C = 1, since a profunctor 1 −7−→ D is simply a copresheaf on D.

12 / 30

DB Queries ←→ Profunctors!

This is nice for basic querying, but it’s not expressive enough if
instead of a set of answers, we actually want to produce a new
instance (e.g. implement data migration).

Profunctors let us query and transform in more complex ways: given
a profunctor P : C −7−→ D seen as P : Cop → SetD, define

EvalP : SetD → SetC

EvalP(J) := SetD(P(−),J)

This contains the previous situation as a particular case by setting
C = 1, since a profunctor 1 −7−→ D is simply a copresheaf on D.

12 / 30

Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

C D E C EPp Qp P⊙Qp

(P ⊙Q)(c, e) ∼=
∫ d∈D

P(c, d)×Q(d , e).

Profunctor composition implements composition of queries, because

EvalP ◦ EvalQ ∼= EvalP⊙Q.

Examples are much easier with presentations, so let’s get to that
first.

13 / 30

Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

C D E C EPp Qp P⊙Qp

(P ⊙Q)(c, e) ∼=
∫ d∈D

P(c, d)×Q(d , e).

Profunctor composition implements composition of queries, because

EvalP ◦ EvalQ ∼= EvalP⊙Q.

Examples are much easier with presentations, so let’s get to that
first.

13 / 30

Profunctor Presentations

Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 −7−→ C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C → D is a category presentation simultaneously
extending C and D:

Emp • •

Dept •

mgr

profunctor
symbols

worksIn sec

+
equations between
parallel cross-paths

This notion turns out to be equivalent to (Cop × D)-instance pre-
sentations.

By defining morphisms of uncurried presentations in a straightfor-
ward way, we obtain a category UnCurr(C , D) and a semantics
functor L−M : UnCurr(C , D)→ Prof(LCM, LDM).

14 / 30

Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 −7−→ C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C → D is a category presentation simultaneously
extending C and D:

Emp • •

Dept •

mgr

profunctor
symbols

worksIn sec

+
equations between
parallel cross-paths

This notion turns out to be equivalent to (Cop × D)-instance pre-
sentations.

By defining morphisms of uncurried presentations in a straightfor-
ward way, we obtain a category UnCurr(C , D) and a semantics
functor L−M : UnCurr(C , D)→ Prof(LCM, LDM).

14 / 30

Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 −7−→ C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C → D is a category presentation simultaneously
extending C and D:

Emp • •

Dept •

mgr

profunctor
symbols

worksIn sec

+
equations between
parallel cross-paths

This notion turns out to be equivalent to (Cop × D)-instance pre-
sentations.

By defining morphisms of uncurried presentations in a straightfor-
ward way, we obtain a category UnCurr(C , D) and a semantics
functor L−M : UnCurr(C , D)→ Prof(LCM, LDM).

14 / 30

Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

LPM(c, d) = {[p.f k] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.

15 / 30

Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

LPM(c, d) = {[p.f k] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.

15 / 30

Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

LPM(c, d) = {[p.f k] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.

15 / 30

Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

LPM(c, d) = {[p.f k] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.

15 / 30

Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):
LPM(c, d) = {[p.f k] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.

15 / 30

Curried Profunctor Presentations

Recall that semantically, CAT(Cop ×D, Set) ≃ CAT(Cop, SetD).

Solution: move from (C , D)-uncurried presentations to Cop-indexed
families of D-instance presentations, with morphisms between them.

• • •

• •

• •

∗

•

• •

∗

•

16 / 30

Curried Profunctor Presentations

Recall that semantically, CAT(Cop ×D, Set) ≃ CAT(Cop, SetD).

Solution: move from (C , D)-uncurried presentations to Cop-indexed
families of D-instance presentations, with morphisms between them.

• • •

• •

• •

∗

•

• •

∗

•

16 / 30

Curried Profunctor Presentations

• • •

• •

• •

∗

•

• •

∗

•

The morphisms of instance presentations, when composed with
each other, must satisfy the equations of C in a suitable sense (up
to provable equality). We call these curried profunctor presenta-
tions.

Morphisms are defined in a straightforward way. We obtain a cate-
gory Curr(C , D) with semantics L−M : Curr(C , D)→ Prof(LCM, LDM).

17 / 30

Curried Profunctor Presentations

• • •

• •

• •

∗

•

• •

∗

•

The morphisms of instance presentations, when composed with
each other, must satisfy the equations of C in a suitable sense (up
to provable equality). We call these curried profunctor presenta-
tions.

Morphisms are defined in a straightforward way. We obtain a cate-
gory Curr(C , D) with semantics L−M : Curr(C , D)→ Prof(LCM, LDM).

17 / 30

Syntactic Composition of Curried Presentations

Given curried profunctor presentations P : C → D and Q : D → E ,
there is a composite curried presentation P ⊛ Q : C → E . This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ⊛ Q is finite if both P and Q are.

Lemma: the construction extends to a functor

⊛ : Curr(C , D)× Curr(D, E)→ Curr(C , E).

Theorem: There is a natural isomorphism

µ : L−M⊙ L=M
∼=−→ L−⊛ =M

i.e. ⊛ is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is
closed under composition.

18 / 30

Syntactic Composition of Curried Presentations

Given curried profunctor presentations P : C → D and Q : D → E ,
there is a composite curried presentation P ⊛ Q : C → E . This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ⊛ Q is finite if both P and Q are.

Lemma: the construction extends to a functor

⊛ : Curr(C , D)× Curr(D, E)→ Curr(C , E).

Theorem: There is a natural isomorphism

µ : L−M⊙ L=M
∼=−→ L−⊛ =M

i.e. ⊛ is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is
closed under composition.

18 / 30

Syntactic Composition of Curried Presentations

Given curried profunctor presentations P : C → D and Q : D → E ,
there is a composite curried presentation P ⊛ Q : C → E . This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ⊛ Q is finite if both P and Q are.

Lemma: the construction extends to a functor

⊛ : Curr(C , D)× Curr(D, E)→ Curr(C , E).

Theorem: There is a natural isomorphism

µ : L−M⊙ L=M
∼=−→ L−⊛ =M

i.e. ⊛ is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is
closed under composition.

18 / 30

Syntactic Composition of Curried Presentations

Given curried profunctor presentations P : C → D and Q : D → E ,
there is a composite curried presentation P ⊛ Q : C → E . This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ⊛ Q is finite if both P and Q are.

Lemma: the construction extends to a functor

⊛ : Curr(C , D)× Curr(D, E)→ Curr(C , E).

Theorem: There is a natural isomorphism

µ : L−M⊙ L=M
∼=−→ L−⊛ =M

i.e. ⊛ is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is
closed under composition. 18 / 30

An Example of Syntactic Composition (and Querying)

We explain the ⊛ construction through an example.

Example: consider the following two category presentations.

C D

Emp Admin Teach

Dept Dept′

mgr

worksIn

mgr1

worksIn1

mgr2

worksIn2

sec
sec1 sec2

mgr1.worksIn1 = worksIn1

mgr2.worksIn1 = worksIn2

sec1.worksIn1 = 1Dept′

sec2.worksIn2 = 1Dept′

The equations of C are as before. The equations of D are a dupli-
cation of the ones of C , except for the variation mgr2.worksIn1 =
worksIn2.

19 / 30

An Example of Syntactic Composition (and Querying)

We explain the ⊛ construction through an example.

Example: consider the following two category presentations.

C D

Emp Admin Teach

Dept Dept′

mgr

worksIn

mgr1

worksIn1

mgr2

worksIn2

sec
sec1 sec2

mgr1.worksIn1 = worksIn1

mgr2.worksIn1 = worksIn2

sec1.worksIn1 = 1Dept′

sec2.worksIn2 = 1Dept′

The equations of C are as before. The equations of D are a duplica-
tion of the ones of C , except for the variation mgr2.worksIn1 = worksIn2.

19 / 30

An Example of Syntactic Composition (and Querying)

Now consider the following curried presentation P : C → D:

P(Emp) := ⟨a : Admin, t : Teach | t.mgr2 = a⟩
P(Dept) := ⟨d : Dept′ | ∅⟩
P(mgr) := {a 7→ a.mgr1, t 7→ t}
P(sec) := {a 7→ d.sec1, t 7→ d.sec2}

P(worksIn) := {d 7→ a.worksIn1}

Emp Admin Teach

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2

sec

d

sec1 sec2

20 / 30

An Example of Syntactic Composition (and Querying)

Recall the instance presentation I ′ = ⟨e : Emp | e.mgr = e⟩ from
the introduction, seen as a curried profunctor presentation ∗ → C .
Diagrammatically, the situation is this:

∗ C D

Emp Admin Teach

∗

Dept Dept′

I′ P

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

sec

d

sec1 sec2

21 / 30

An Example of Syntactic Composition (and Querying)

∗ C D

Emp Admin Teach

∗

Dept Dept′

I′ P

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

sec

d

sec1 sec2

To obtain the composite I ′ ⊛ P : ∗ → D, we must define a unique
D-instance presentation (I ′ ⊛ P)(∗). To do it, look at all pairs of
“composable” generators and pair them into new symbols.

We obtain generators e⊗ a : Admin and e⊗ t : Teach.

22 / 30

An Example of Syntactic Composition (and Querying)

Emp Admin Teach

∗

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

e⊗a

e⊗tsec

d

sec1 sec2

To obtain the composite I ′ ⊛ P : ∗ → D, we must define a unique
D-instance presentation (I ′ ⊛ P)(∗). To do it, look at all pairs of
“composable” generators and pair them into new symbols.

We obtain generators e⊗ a : Admin and e⊗ t : Teach.

22 / 30

An Example of Syntactic Composition (and Querying)

Emp Admin Teach

∗

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

e⊗a

e⊗tsec

d

sec1 sec2

Then, to obtain the equations of the instance we take all equations
from I ′(∗), P(Emp) and P(Dept) and “tensor them” on the left and
on the right all possible generators:

e.mgr = e⇝ (e.mgr)⊗ a = e⊗ a ⇝ e⊗ a.mgr1 = e⊗ a
e.mgr = e⇝ (e.mgr)⊗ t = e⊗ t ⇝ e⊗ t = e⊗ t

t.mgr2 = a⇝ e⊗ (t.mgr2) = e⊗ a ⇝ (e⊗ t).mgr2 = e⊗ a

23 / 30

An Example of Syntactic Composition (and Querying)

Emp Admin Teach

∗

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

e⊗a

e⊗tsec

d

sec1 sec2

Since there are no arrow symbols in the domain presentation, we are
done. I ′ ⊛ P is the conjunctive query I ′ migrated along P, given by
the instance

⟨e⊗a : Admin, e⊗t : Teach | (e⊗a).mgr1 = e⊗a, (e⊗t).mgr2 = e⊗a⟩.

In other words, it looks for all pairs of an admin A and a teacher T
such that the manager of T is A and A is their own manager.

24 / 30

Understanding Curried Versus Uncurried

So... What failed here?

c d ep

f

q

25 / 30

Understanding Curried Versus Uncurried

• We want to guarantee the existence of a finite set of
generators for the composite.

• In the definition of ⊛, we did this by pairing generators from
P and Q into generators of the form p ⊗ q.

• This worked because Q contains instance presentation
morphisms Q(f) for each f in D, which give you the
information to turn a cross-path f .q into some path
Q(f)(q) ≡ q.h1.hℓ starting with a profunctor symbol of Q.

• Given an uncurried presentation Q, we don’t have the
morphisms Q(f) anymore, but can still require that every
cross-path in Q can be rewritten to start with a profunctor
symbol. In this case we say that Q is non-generative.

26 / 30

Understanding Curried Versus Uncurried

• We want to guarantee the existence of a finite set of
generators for the composite.

• In the definition of ⊛, we did this by pairing generators from
P and Q into generators of the form p ⊗ q.

• This worked because Q contains instance presentation
morphisms Q(f) for each f in D, which give you the
information to turn a cross-path f .q into some path
Q(f)(q) ≡ q.h1.hℓ starting with a profunctor symbol of Q.

• Given an uncurried presentation Q, we don’t have the
morphisms Q(f) anymore, but can still require that every
cross-path in Q can be rewritten to start with a profunctor
symbol. In this case we say that Q is non-generative.

26 / 30

Understanding Curried Versus Uncurried

• We want to guarantee the existence of a finite set of
generators for the composite.

• In the definition of ⊛, we did this by pairing generators from
P and Q into generators of the form p ⊗ q.

• This worked because Q contains instance presentation
morphisms Q(f) for each f in D, which give you the
information to turn a cross-path f .q into some path
Q(f)(q) ≡ q.h1.hℓ starting with a profunctor symbol of Q.

• Given an uncurried presentation Q, we don’t have the
morphisms Q(f) anymore, but can still require that every
cross-path in Q can be rewritten to start with a profunctor
symbol. In this case we say that Q is non-generative.

26 / 30

Understanding Curried Versus Uncurried

• We want to guarantee the existence of a finite set of
generators for the composite.

• In the definition of ⊛, we did this by pairing generators from
P and Q into generators of the form p ⊗ q.

• This worked because Q contains instance presentation
morphisms Q(f) for each f in D, which give you the
information to turn a cross-path f .q into some path
Q(f)(q) ≡ q.h1.hℓ starting with a profunctor symbol of Q.

• Given an uncurried presentation Q, we don’t have the
morphisms Q(f) anymore, but can still require that every
cross-path in Q can be rewritten to start with a profunctor
symbol. In this case we say that Q is non-generative.

26 / 30

Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given c ∈ C let Pc denote the D-instance presentation obtained by
“restriction”:

c • •

• •

Suppose that for every pair of paths t, t ′ in Pc starting at c, if
t ≈P t ′, then t ≈Pc t ′. (i.e. P is a conservative extension of Pc in
the sense of algebraic theories.) If this happens for all c ∈ C , we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative.

27 / 30

Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given c ∈ C let Pc denote the D-instance presentation obtained by
“restriction”:

c • •

• •

Suppose that for every pair of paths t, t ′ in Pc starting at c, if
t ≈P t ′, then t ≈Pc t ′. (i.e. P is a conservative extension of Pc in
the sense of algebraic theories.) If this happens for all c ∈ C , we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative.

27 / 30

Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given c ∈ C let Pc denote the D-instance presentation obtained by
“restriction”:

c • •

• •

Suppose that for every pair of paths t, t ′ in Pc starting at c, if
t ≈P t ′, then t ≈Pc t ′. (i.e. P is a conservative extension of Pc in
the sense of algebraic theories.) If this happens for all c ∈ C , we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative.

27 / 30

Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given c ∈ C let Pc denote the D-instance presentation obtained by
“restriction”:

c • •

• •

Suppose that for every pair of paths t, t ′ in Pc starting at c, if
t ≈P t ′, then t ≈Pc t ′. (i.e. P is a conservative extension of Pc in
the sense of algebraic theories.) If this happens for all c ∈ C , we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative. 27 / 30

Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we
begin by observing the existence of a straightforward uncurrying
operation.

• •

∗

•

• •

∗

•

• • •

• •

Thm: this construction determines a functor (−) : Curr(C , D) →
UnCurr(C , D) which restricts to finite presentations and preserves
the semantics.

28 / 30

Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we
begin by observing the existence of a straightforward uncurrying
operation.

• •

∗

•

• •

∗

•

• • •

• •

Thm: this construction determines a functor (−) : Curr(C , D) →
UnCurr(C , D) which restricts to finite presentations and preserves
the semantics.

28 / 30

Equivalence between Curried and Curryable

Let Crble(C , D) be the non-full subcategory of UnCurr(C , D) spanned
by curryable presentations and morphisms that send all cross-paths
to right paths (∗).

Theorem: The functor (−) : Curr(C , D) → UnCurr(C , D) co-
restricts to an equivalence of categories

(−) : Curr(C , D) ≃−→ Crble(C , D).

This equivalence restricts to an equivalence between the subcate-
gories of finite presentations.

Remark: The technical condition (∗) can be dropped by weakening
equivalence to biequivalence (where the 2-cells of Curr(C , D) and
UnCurr(C , D) are given by provable equality of presentations).

29 / 30

Thank you!

[Sch+17] Patrick Schultz et al. “Algebraic Databases”. Theory
and Applications of Categories 32.16 (2017), pp. 547–619.

[Spi12] David I Spivak. “Functorial data migration”. Informa-
tion and Computation 217 (2012), pp. 31–51.

[SW17] Patrick Schultz and Ryan Wisnesky. “Algebraic data
integration”. Journal of Functional Programming 27 (2017).

30 / 30

	Profunctor Presentations

