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Introduction

• To compute with categories we need syntax.

• There is a canonical way to present small categories by
generators and relations (and morphisms between them).

• There is a canonical way to present Set-valued functors.
• But what about profunctors?

A profunctor P : C −7−→ D is either

Cop ×D → Set or Cop → SetD

but, surprisingly, the syntactic notions suggested by these alterna-
tives are not equivalent. This is the subtlety that we explore in this
work.

But... why would we care?
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Motivation: Categorical Database Theory

Our motivation comes from a categorical data model based on
the following idea:

Database Schema ←→ Category
Database Instance ←→ Copresheaf

...every theorem about small categories becomes a theorem
about databases. [Spi12]

Remark: This data model (as presented in e.g. [Spi12]) has
been superseded by another which incorporates data types and at-
tributes [Sch+17], but the subtlety we are interested in arises already
at this level.

So, how does this work?
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DB Schema←→ Category

A category presentation consists of objects (a.k.a. “sorts”), gen-
erating arrows (a.k.a. “function symbols”) and equations between
parallel paths.

Example:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept



The dots represent the associative concatenation of paths.
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DB Schema←→ Category

C presents the category LCM (“the semantics of C”) whose mor-
phisms are the paths in C quotiented by the provable equality
relation ≈C generated by the equations.

Explicitly, ≈C is the smallest equivalence relation that contains all
the equations of C which is compatible with concatenation of paths
(p ≈C q implies f .p.g ≈C f .q.g whenever the expression makes
sense).

We write [p] for the equivalence class of p.
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DB Schema←→ Category

In the example, we get:

C :=

 Emp Deptmgr

worksIn

sec
mgr.worksIn = worksIn
sec.worksIn = 1Dept


Obj(LCM) :={Emp, Dept}
Mor(LCM) :={1Emp, 1Dept,︸ ︷︷ ︸

length 0

, [worksIn], [sec], [mgr]︸ ︷︷ ︸
length 1

,

[mgr.mgr], [worksIn.sec], [sec.mgr]︸ ︷︷ ︸
length 2

, . . .

[mgrk ], [worksIn.sec.mgrk−2], [sec.mgrk−1]︸ ︷︷ ︸
length k, k ≥ 3

, . . . }
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DB Schema←→ Category

A morphism of category presentations F : C → D is an as-
signment on objects together with an assignment from generating
arrows to paths in the target presentation.

Example:

F :

 Emp Deptmgr

worksIn

sec


Emp7→Emp
Dept7→Dept−−−−−−−−−−→mgr7→mgr

worksIn7→worksIn
sec7→sec.mgr

 Emp Deptmgr

worksIn

sec


We require that if p =C q, then F (p) ≈D F (q):

mgr.worksIn =C worksIn⇝ mgr.worksIn ≈C worksIn ✓
sec.worksIn =C 1Dept ⇝ (sec.mgr).worksIn ≈C sec.worksIn ≈C 1Dept ✓

In this way we obtain a category CatPr and a semantics functor
L−M : CatPr→ Cat.
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DB Instance←→ Copresheaf

To understand this as a database schema, let us look at an example
copresheaf I on LCM, which is determined by its action on objects
and on the generating arrows:

I :=

Alice 

Bob 

Charlie

CS 

Math

dep

sec

mgr : LCM→ Set

Emp Deptmgr

worksIn

sec
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DB Instance←→ Copresheaf

When we visualize with tables, we see that each object c corresponds
to a table and each function symbol in C going out of c corresponds
to a column in that table:

Alice 

Bob 

Charlie

CS 

Math

dep

sec

mgr

Emp mgr worksIn
Alice Alice CS
Bob Charlie Math
Charlie Charlie Math

Dept sec
CS Alice
Math Charlie
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DB Instance←→ Copresheaf

From now on we will use the words “instance” and “copresheaf”
interchangeably.

We can go further and define instance presentations similarly to
presentations for actions of monoids/groups, e.g.

I = ⟨ e : Emp︸ ︷︷ ︸
generator(s)

| ∅︸︷︷︸
equations

⟩.

This presents the infinite copresheaf LIM : LCM→ Set given by
Emp mgr worksIn
[e] [e.mgr] [e.worksIn]
[e.mgr] [e.mgr2] [e.worksIn]
. . . . . . [e.worksIn]
[e.worksIn.sec] [e.worksIn.sec.mgr] [e.worksIn]
[e.worksIn.sec.mgr] [e.worksIn.sec.mgr2] [e.worksIn]
. . . . . . [e.worksIn]

Dept sec
[e.worksIn] [e.worksIn.sec]
[e.worksIn] [e.worksIn.sec]
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DB Instance←→ Copresheaf

Formally we define an instance presentation on C to be a category
presentation extending C with a unique object ∗, new arrows coming
out of ∗, and some equations involving the newly added arrows, e.g.

I = ⟨e : Emp | ∅⟩ I ′ = ⟨e : Emp | e.mgr = e⟩

Emp

∗

Dept

mgr

worksIn

e

sec

e.mgr = e Emp

∗

Dept

mgr

worksIn

e

sec

A morphism of instance presentations C ϕ : I → J is an assign-
ment of generators x : ∗ → c in I to paths y1. · · · .yn : ∗ → c in D
such that equations in I are respected.
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DB Queries ←→ Mapping out of Instances?

A data model should also say how to manipulate the data. We will
consider a finitely presented instance as a conjunctive query, using
it to query other instances by mapping into them.

Emp

∗

Dept

mgr

worksIn

e

sec

e = mgr.e Emp

∗

Dept

mgr

worksIn

e

sec

• I presents a representable on Emp: SetLCM(LIM,J ) ∼= J (Emp)
(i.e. representables are the free (co)presheaves on one generator).

• SetLCM(LI ′M,J ) is the set of employees in J who are their own
managers.
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DB Queries ←→ Profunctors!

This is nice for basic querying, but it’s not expressive enough if
instead of a set of answers, we actually want to produce a new
instance (e.g. implement data migration).

Profunctors let us query and transform in more complex ways: given
a profunctor P : C −7−→ D seen as P : Cop → SetD, define

EvalP : SetD → SetC

EvalP(J ) := SetD(P(−),J )

This contains the previous situation as a particular case by setting
C = 1, since a profunctor 1 −7−→ D is simply a copresheaf on D.
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Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

C D E C EPp Qp P⊙Qp

(P ⊙Q)(c, e) ∼=
∫ d∈D

P(c, d)×Q(d , e).

Profunctor composition implements composition of queries, because

EvalP ◦ EvalQ ∼= EvalP⊙Q.

Examples are much easier with presentations, so let’s get to that
first.

13 / 30



Composing Queries

Moreover it is crucial to be able to compose queries before evaluating
them (i.e. without taking a look at the data).

Recall the usual composition rule for profunctors:

C D E C EPp Qp P⊙Qp

(P ⊙Q)(c, e) ∼=
∫ d∈D

P(c, d)×Q(d , e).

Profunctor composition implements composition of queries, because

EvalP ◦ EvalQ ∼= EvalP⊙Q.

Examples are much easier with presentations, so let’s get to that
first.

13 / 30



Profunctor Presentations



Uncurried Profunctor Presentations

Since instances on a category C are profunctors 1 −7−→ C, we can start
from instance presentations and generalise. An uncurried profunc-
tor presentation C → D is a category presentation simultaneously
extending C and D:

Emp • •

Dept •

mgr

profunctor
symbols

worksIn sec

+
equations between
parallel cross-paths

This notion turns out to be equivalent to (Cop × D)-instance pre-
sentations.

By defining morphisms of uncurried presentations in a straightfor-
ward way, we obtain a category UnCurr(C , D) and a semantics
functor L−M : UnCurr(C , D)→ Prof(LCM, LDM).
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Problem: Failure of Compositionality in the Finite

Given finite category presentations C and D and a profunctor P :
LCM→ LDM, if it admits a finite profunctor presentation P (such that
LPM ∼= P) then we say that it is finitely uncurried presentable

Theorem: The class of finitely uncurried presentable profunctors is
not closed under composition.

Proof: consider the following presentations (with no equations):

LPM(c, d) = {[p.f k ] | k ≥ 0}
LQM(d , e) = {[f k .q] | k ≥ 0}

(LPM⊙ LQM)(c, e) = {[p.f k .q] | k ≥ 0}

C D E

c d e

P Q

p

f

q

But any uncurried presentation R : C → E such that LRM(c, e) is infinite
must have an infinite number of generating profunctor symbols.
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Curried Profunctor Presentations

Recall that semantically, CAT(Cop ×D, Set) ≃ CAT(Cop, SetD).

Solution: move from (C , D)-uncurried presentations to Cop-indexed
families of D-instance presentations, with morphisms between them.

• • •

• •

• •

∗

•

• •

∗

•
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Curried Profunctor Presentations

• • •

• •

• •

∗

•

• •

∗

•

The morphisms of instance presentations, when composed with
each other, must satisfy the equations of C in a suitable sense (up
to provable equality). We call these curried profunctor presenta-
tions.

Morphisms are defined in a straightforward way. We obtain a cate-
gory Curr(C , D) with semantics L−M : Curr(C , D)→ Prof(LCM, LDM).
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Syntactic Composition of Curried Presentations

Given curried profunctor presentations P : C → D and Q : D → E ,
there is a composite curried presentation P ⊛ Q : C → E . This
is obtained by following an algorithm known as sub-query unnesting
or view unfolding (as sketched for instance in [SW17]).

Importantly, P ⊛ Q is finite if both P and Q are.

Lemma: the construction extends to a functor

⊛ : Curr(C , D)× Curr(D, E )→ Curr(C , E ).

Theorem: There is a natural isomorphism

µ : L−M⊙ L=M
∼=−→ L−⊛ =M

i.e. ⊛ is correct with respect to profunctor composition.

Corollary: the class of finitely curried presentable profunctors is
closed under composition.
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An Example of Syntactic Composition (and Querying)

We explain the ⊛ construction through an example.

Example: consider the following two category presentations.

C D

Emp Admin Teach

Dept Dept′

mgr

worksIn

mgr1

worksIn1

mgr2

worksIn2

sec
sec1 sec2

mgr1.worksIn1 = worksIn1

mgr2.worksIn1 = worksIn2

sec1.worksIn1 = 1Dept′

sec2.worksIn2 = 1Dept′

The equations of C are as before. The equations of D are a dupli-
cation of the ones of C , except for the variation mgr2.worksIn1 =
worksIn2.
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An Example of Syntactic Composition (and Querying)

Now consider the following curried presentation P : C → D:

P(Emp) := ⟨a : Admin, t : Teach | t.mgr2 = a⟩
P(Dept) := ⟨d : Dept′ | ∅⟩
P(mgr) := {a 7→ a.mgr1, t 7→ t}
P(sec) := {a 7→ d.sec1, t 7→ d.sec2}

P(worksIn) := {d 7→ a.worksIn1}

Emp Admin Teach

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2

sec

d

sec1 sec2
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An Example of Syntactic Composition (and Querying)

Recall the instance presentation I ′ = ⟨e : Emp | e.mgr = e⟩ from
the introduction, seen as a curried profunctor presentation ∗ → C .
Diagrammatically, the situation is this:

∗ C D

Emp Admin Teach

∗

Dept Dept′

I′ P

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

sec

d

sec1 sec2
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An Example of Syntactic Composition (and Querying)

∗ C D

Emp Admin Teach

∗

Dept Dept′

I′ P

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

sec

d

sec1 sec2

To obtain the composite I ′ ⊛ P : ∗ → D, we must define a unique
D-instance presentation (I ′ ⊛ P)(∗). To do it, look at all pairs of
“composable” generators and pair them into new symbols.

We obtain generators e⊗ a : Admin and e⊗ t : Teach.
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An Example of Syntactic Composition (and Querying)

Emp Admin Teach

∗

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

e⊗a

e⊗tsec

d

sec1 sec2

Then, to obtain the equations of the instance we take all equations
from I ′(∗), P(Emp) and P(Dept) and “tensor them” on the left and
on the right all possible generators:

e.mgr = e⇝ (e.mgr)⊗ a = e⊗ a ⇝ e⊗ a.mgr1 = e⊗ a
e.mgr = e⇝ (e.mgr)⊗ t = e⊗ t ⇝ e⊗ t = e⊗ t

t.mgr2 = a⇝ e⊗ (t.mgr2) = e⊗ a ⇝ (e⊗ t).mgr2 = e⊗ a
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An Example of Syntactic Composition (and Querying)

Emp Admin Teach

∗

Dept Dept′

mgr

a
t

worksIn

mgr1

worksIn1

mgr2

worksIn2
e

e⊗a

e⊗tsec

d

sec1 sec2

Since there are no arrow symbols in the domain presentation, we are
done. I ′ ⊛ P is the conjunctive query I ′ migrated along P, given by
the instance

⟨e⊗a : Admin, e⊗t : Teach | (e⊗a).mgr1 = e⊗a, (e⊗t).mgr2 = e⊗a⟩.

In other words, it looks for all pairs of an admin A and a teacher T
such that the manager of T is A and A is their own manager.
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Understanding Curried Versus Uncurried

So... What failed here?

c d ep

f

q
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Understanding Curried Versus Uncurried

• We want to guarantee the existence of a finite set of
generators for the composite.

• In the definition of ⊛, we did this by pairing generators from
P and Q into generators of the form p ⊗ q.

• This worked because Q contains instance presentation
morphisms Q(f ) for each f in D, which give you the
information to turn a cross-path f .q into some path
Q(f )(q) ≡ q.h1. . . . .hℓ starting with a profunctor symbol of Q.

• Given an uncurried presentation Q, we don’t have the
morphisms Q(f ) anymore, but can still require that every
cross-path in Q can be rewritten to start with a profunctor
symbol. In this case we say that Q is non-generative.
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Curryable Profunctor Presentations

It turns out that we need another condition, so that the amount of
equations in the composite is finite.

Given c ∈ C let Pc denote the D-instance presentation obtained by
“restriction”:

c • •

• •

Suppose that for every pair of paths t, t ′ in Pc starting at c, if
t ≈P t ′, then t ≈Pc t ′. (i.e. P is a conservative extension of Pc in
the sense of algebraic theories.) If this happens for all c ∈ C , we
say that P is conservative.

P is said to be curryable if it is conservative and nongenerative.
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Equivalence between Curried and Curryable

To understand the relationship between curried and curryable, we
begin by observing the existence of a straightforward uncurrying
operation.

• •

∗

•

• •

∗

•

• • •

• •

Thm: this construction determines a functor (−) : Curr(C , D) →
UnCurr(C , D) which restricts to finite presentations and preserves
the semantics.
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Equivalence between Curried and Curryable

Let Crble(C , D) be the non-full subcategory of UnCurr(C , D) spanned
by curryable presentations and morphisms that send all cross-paths
to right paths (∗).

Theorem: The functor (−) : Curr(C , D) → UnCurr(C , D) co-
restricts to an equivalence of categories

(−) : Curr(C , D) ≃−→ Crble(C , D).

This equivalence restricts to an equivalence between the subcate-
gories of finite presentations.

Remark: The technical condition (∗) can be dropped by weakening
equivalence to biequivalence (where the 2-cells of Curr(C , D) and
UnCurr(C , D) are given by provable equality of presentations).
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Thank you!
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