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Context of Today’s Story: Cartesian Differential Categories

Cartesian differential categories (CDC) provide the categorical foundations of multivariable
differential calculus over Euclidean spaces.

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories

CDC have also been successful in formalizing various important concepts in differential
calculus such as: solving differential equations; exponential functions; Jacobians and
gradients; linearizationl de Rham cohomolohy; etc.

Cartesian closed differential categories (CCDC) provide the categorical semantics of the
differential λ-calculus (and resource calculus).

T. Ehrhard, L. Regnier The differential λ-calculus.

Manzonetto, G., What is a categorical model of the differential and the resource λ-calculi?

R. Cockett, J. Gallagher Categorical models of the differential λ-calculus.

C(C)DC have also been quite popular in computer science, in particular since they provide
categorical frameworks for differential programming languages; automatic differentiation;
some machine learning algorithms; etc.

The coKleisli category of a categorial model of Differential Linear Logic (DiLL) is a C(C)DC
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Motivation of Today’s Story: Taylor Series

An all-important concept in differential calculus is the notion of Taylor series.

For a smooth function f : R→ R, its Taylor series at 0 (sometimes also called its Maclaurin
series) is the power series:

T (f )(x) =
∞∑
k=0

1

k!
· f (k)(0)xk

Taylor series are very useful, and a lot of information about a function can be gained from
studying its Taylor series. It is often highly desirable for Taylor series to converge (in the
usual real analytical sense) and also for functions to equal their Taylor series.



Motivation of Today’s Story: Taylor Series Expansion

Taylor series expansion is also important for differential λ-calculus and resource calculus.

T. Ehrhard, L. Regnier Bohm tress, Krivine’s Machine, and the Taylor Expansion of λ-terms.

T. Ehrhard, L. Regnier Uniformity and the Taylor Expansion of ordinary λ-terms.

Boudes, P., He, F., Pagani, M. A characterization of the Taylor expansion of λ-terms

Manzonetto, G., Pagani, M. Bohm’s Theorem for resource λ-calculus through Taylor Expansion

In the presence of countable infinite sums, one can give full Taylor expansions of λ-terms. In
particular, Taylor expansion provides a linear approximation of ordinary application, so:

MN =
∞∑
n=0

1

n!
(DnM · Nn)0

where DnM · Nn denotes the n-th derivative of M applied n times to N.

Manzonetto provides the categorical interpretation this in a CCDC with infinite sums.

Manzonetto, G., What is a categorical model of the differential and the resource λ-calculi?

Taylor series expansion of coKleisli maps in a categorial model of DiLL was first considered
by Ehrhard, and then further studied by Kerjean and me. This approach played a crucial role
for defining codigging in DiLL:

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Kerjean, M. and Lemay, J.-S. P. Taylor Expansion as a Monad in Models of DiLL.



Objective Today’s Story

While the notion of Taylor series for the differential λ-calculus is morally the same as the
notion of Taylor series in classical differential calculus: there is a bit of a mismatch.

For Taylor series in the differential λ-calculus: one assumes countable infinite sums in the
algebraic sense.

Having infinite sums clashes with models coming from the analysis side of things. There are
many important examples of CDC that do not have infinite sums and yet still have a
well-defined notion of Taylor series.

OBJECTIVE: provide a formal theory of Taylor series in an arbitrary CDC in such a way that
it also gives a unified story recapturing Taylor series expansion in differential calculus via
convergence and for the differential λ-calculus via algebraic infinite sums.
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Today’s Story & Summary of MFPS Paper

Formalize the notion of Taylor polynomials of maps in a CDC by generalizing:

T (n)(f )(x) =
n∑

k=0

1

k!
· f (k)(0)xk

Show that every CDC comes equipped with a canonical ultrapseudometric on its homsets
which compares Taylor polynomials of maps.

A Taylor CDC is a CDC for which this ultrapseudometric is an actual metric, and so maps
are completely determined by their Taylor polynomials.

Theorem

In a Taylor CDC, for every map f , its sequence of Taylor polynomials
(
T (n)[f ]

)∞
n=0

converges to f
with respect to this ultrametric.

This ultrametric is analogues to the ultrametric of power series which makes the infinite sum
converge, and this ultrametric then forces maps to be equal to their Taylor series.

We also explain how for coKleisli maps in DiLL, we recapture what was done by Ehrhard and
also Kerjean & Lemay.

In a CCDC with algebraic infinite sums, we explain how being Taylor is equivalent to
Manzonetto’s notion of modelling Taylor series expansion.
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Cartesian Differential Categories - Definition

Definition

For a commutative semiring k, a Cartesian k-differential category (CDC) is a category X with
finite products such that:

Hom-sets X(A,B) are k-modules such that pre-composition preserves the k-linear structure:

(r · f + s · g) ◦ x = r · (f ◦ x) + s · (g ◦ x)

A differential combinator D, which is a family of operators X(A,B)
D−→ X(A× A,B),

f : A→ B

D[f ] : A× A→ B

where D[f ] is called the derivative of f , and which satisfies seven axioms which capture the
basics of the derivative from differential calculus (such as the chain rule, etc.)

There is a very practical (sound and complete) term logic for CDC. So we write:

D[f ](a, b) :=
df (x)

dx
(a) · b



Cartesian Differential Categories - Examples

Example

Let POLYk be the Lawvere theory of polynomials, that is, whose objects are n ∈ N and where a
map P : n→ m is a tuple of polynomials P = 〈p1(~x), . . . , pm(~x)〉 with pi (~x) ∈ k[x1, . . . , xn].
Then POLYk is a CDC where D[P] : n × n→ m is:

D[P] :=

〈
n∑

i=1

∂p1(~x)

∂xi
yi , . . . ,

n∑
i=1

∂pm(~x)

∂xi
yi

〉

where
n∑

i=1

∂pi (~x)
∂xi

yi ∈ k[x1, . . . , xn, y1, . . . , yn].

Example

Let SMOOTH be the Lawvere theory of real smooth functions, that is, whose objects are
Euclidean spaces Rn and whose maps are real smooth functions F : Rn → Rm. Note we have that
F = 〈f1, . . . , fn〉 for real smooth functions fi : Rn → R. Then SMOOTH is a CDC, where for a
smooth function F : Rn → Rm, its derivative D[F ] : Rn × Rn → Rm is then defined as:

D[F ](~x , ~y) := J(F )(~x) · ~y =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉

which is the total derivative of F . Note that R-POLY is a sub-CDC of SMOOTH.



Taylor Polynomials in a CDC

We now wish to express Taylor polynomials of maps in a CDC by generalizing:

T (n)(f )(x) =
n∑

k=0

1

k!
· f (k)(0)xk

For this we need:

Higher Order Derivatives

Multiplying by 1
n!

for n ∈ N

Evaluating at zero

Multiplication and copying input variables for xn

Finite Sums
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Higher Order Derivatives

In a CDC, we can apply the differential order n-times to get:

Dn[f ] : A×
2n

→ B

called the n-th total derivative of f .

However, by the axioms of a CDC there is a lot of redundant information in Dn[f ].

For example, the second total derivative can be worked out to be:

D2[f ](a, b, c, d) = D2[f ](a, b, c, 0) + D2[f ](a, d)

So we see that D2[f ] has a D[f ] summand – which does not tell us any new information about f .
Instead, all the new information comes from differentiating the first argument repeatedly.

To make this precise: we need partial differentiation.
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Higher Order Derivatives

In a CDC, for a map g : C × A→ B, we can differentiate in C while keeping A constant by
inserting zeroes in the total derivative. So its partial derivative in C is of type C × A× C → B
and is defined as:

dg(x , a)

dx
(c1) · c2 =

dg(x , y)

d(x , y)
(c1, a) · (c2, 0)

Then for a map f : A→ B, its n-th derivative is defined by continuously deriving the first
argument of the derivative:

A→ B

A× A→ B

A× A× A→ B

...

A× A× . . .× A︸ ︷︷ ︸
n-times

→ B
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Higher Order Derivatives

For a map f : A→ B, its n-th derivative is the map ∂(n)[f ] : A× A×
n → B, which we write as:

∂(n)[f ](a0, a1, . . . , an) :=
d(n)f (x)

dx
(a0) · a1 · . . . · an

and is defined inductively as:

d(0)f (x)

dx
(a0) = f (a0)

d(n+1)f (x)

dx
(a0) · a1 · . . . · an · an+1 =

d
d(n)f (x)

dx
(y) · a1 · . . . · an

dy
(a0) · an+1

Dn[f ] can be expressed in terms of sums of ∂(j)[f ] (j ≥ n) , while ∂(n)[f ] can be obtained by
inserting zeroes into Dn[f ].
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Sums, zeroes, and positive rationals

Recall that in the definition of a CDC, our homsets where k-modules.

So we can take finite sums of parallel maps A→ B;

There is a zero map1 0, and so we can evaluate maps at zero by g ◦ 0

For any map f : A→ B, we can scalar multiply by r ∈ k to get p
q
· f : A→ B

What about scalar multiplying by 1
n!

?

For this, we now need to assume that our base semiring k is a Q≥0-algebra.

So for any map f : A→ B, we can scalar multiply by a positive rational p
q
· f : A→ B

For the rest of this talk, we will assume k is a commutative Q≥0-algebra.

1which is not a zero morphism, we only have 0 ◦ f = 0 but f ◦ 0 does not necessarilly equal 0
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Do we need multiplication?

The definition of a CDC does not assume we can multiply maps... even if both our mains
examples (polynomials/smooth functions) we could, there are examples where we cannot! (ex.
CDC of only linear maps).

Is this a problem?

ANSWER: No!

The solution comes from the higher order derivatives.

Example

Consider a real smooth function f : R→ R, then we get that ∂(n)[f ] : Rn+1 → R and is:

∂(n)[f ](x , y1, . . . , yn) = f (n)(x)y1 . . . yn

So we can just use higher order derivatives to avoid the need for multiplication.
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Taylor Polynomials in a CDC

Definition

In a CDC, for a map f : A→ B and every n ∈ N:

Define M(n)[f ] : A→ B as the composite:

M(n)[f ](x) =
1

n!
·

d(n)f (u)

du
(0) · x · . . . · x

which we call the n-th Taylor D-monomial of f .

Define T (n)[f ] : A→ B as:

T (n)[f ] =
n∑

k=0

M(k)[f ] =
n∑

k=0

1

k!
·

d(k)f (u)

du
(0) · x · . . . · x

which we call the n-th Taylor D-polymial of f .

For polynomails and smooth functions, these recapture exactly the usual notion of Taylor
polynomials.



Is polynomial the right word?

Usually, polynomials are defined using multiplication... but in a CDC we don’t have a
multiplication...

Another way of saying a smooth function is a polynomial is to say that its higher
derivative is eventually zero.

Definition

In a CDC, a D-polynomial is a map p : A→ B such that there is a n ∈ N such that ∂(n+1)[p] = 0.

D-polynomials form a sub-CDC.

Lemma

In a CDC, for every map f and n ∈ N, both M(n)[f ] and T (n)[f ] are D-polynomials.

REMARK: In some CDC, there are D-polynomials that are not Taylor D-polymials.
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Convergence of Taylor Series

In a CDC we want that maps be equal to their Taylor series:

f (x) =
∞∑
n=0

1

n!
·

d(n)f (u)

du
(0) · x · . . . · x

So we will now define a metric for which this series converges.

In fact we will define an ultrametric which is defined by comparing Taylor monomials of maps.

But first we define an ultrapseudometric.



Convergence of Taylor Series

In a CDC we want that maps be equal to their Taylor series:

f (x) =
∞∑
n=0

1

n!
·

d(n)f (u)

du
(0) · x · . . . · x

So we will now define a metric for which this series converges.

In fact we will define an ultrametric which is defined by comparing Taylor monomials of maps.

But first we define an ultrapseudometric.



Convergence of Taylor Series

In a CDC we want that maps be equal to their Taylor series:

f (x) =
∞∑
n=0

1

n!
·

d(n)f (u)

du
(0) · x · . . . · x

So we will now define a metric for which this series converges.

In fact we will define an ultrametric which is defined by comparing Taylor monomials of maps.

But first we define an ultrapseudometric.



Ultrapseudometric

An ultrapseudometric on a set M is a function d : M ×M → R≥0 such that:

d(x , x) = 0

d(x , y) = d(y , x)

d(x , z) ≤ max{d(x , y), d(y , z)} (Strong Triangle Inequality)

Definition

In a CDC X, for every homset X(A,B), define the function dD : X(A,B)× X(A,B)→ R≥0 as:

dD(f , g) =

{
2−n where n ∈ N is the smallest natural number such that M(n)[f ] 6=M(n)[g ]

0 if all n ∈ N, M(n)[f ] =M(n)[g ]

Proposition

dD : X(A,B)× X(A,B)→ R≥0 is an ultrapseudometric.

Moreover, composition, pairing, scalar multiplication, and differentiation are all non-expansive. So
this makes a CDC enriched over ultrapseudometric spaces.
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Ultrametric

It is important to note that for an ultrapseudometric, we can have d(x , y) = 0 for x 6= y .

An ultrametric on a set M is a ultrapseudometric d : M ×M → R≥0 which also satisfies that:

d(x , y) = 0 implies x = y

The canonical ultrapseudometric dD of a CDC is not always an ultrametric! Two maps can have
the same Taylor monomials but not be equal.

The canonical ultrapseudometric dD is an ultrametric precisely when maps are completely
determined by their Taylor monomials.



Ultrametric

It is important to note that for an ultrapseudometric, we can have d(x , y) = 0 for x 6= y .

An ultrametric on a set M is a ultrapseudometric d : M ×M → R≥0 which also satisfies that:

d(x , y) = 0 implies x = y

The canonical ultrapseudometric dD of a CDC is not always an ultrametric! Two maps can have
the same Taylor monomials but not be equal.

The canonical ultrapseudometric dD is an ultrametric precisely when maps are completely
determined by their Taylor monomials.



Ultrametric

It is important to note that for an ultrapseudometric, we can have d(x , y) = 0 for x 6= y .

An ultrametric on a set M is a ultrapseudometric d : M ×M → R≥0 which also satisfies that:

d(x , y) = 0 implies x = y

The canonical ultrapseudometric dD of a CDC is not always an ultrametric! Two maps can have
the same Taylor monomials but not be equal.

The canonical ultrapseudometric dD is an ultrametric precisely when maps are completely
determined by their Taylor monomials.



Ultrametric

It is important to note that for an ultrapseudometric, we can have d(x , y) = 0 for x 6= y .

An ultrametric on a set M is a ultrapseudometric d : M ×M → R≥0 which also satisfies that:

d(x , y) = 0 implies x = y

The canonical ultrapseudometric dD of a CDC is not always an ultrametric! Two maps can have
the same Taylor monomials but not be equal.

The canonical ultrapseudometric dD is an ultrametric precisely when maps are completely
determined by their Taylor monomials.



Taylor Cartesian Differential Category

Definition

A Taylor Cartesian differential category is a CDC such that:

If for parallel maps f : A→ B and g : A→ B, for all n ∈ N, M(n)[f ] =M(n)[g ]. then f = g .

Proposition

A CDC is Taylor if and only if for every homset, the ultrapseudometric
dD : X(A,B)× X(A,B)→ R≥0 is an ultrametric.

A Taylor CDC is enriched over ultrametric spaces.



Taylor Series Convergence in Taylor CDC

Theorem

In a Taylor CDC, for every map f : A→ B, the sequence
(
T (n)[f ]

)∞
n=0

converges to f with
respect to the ultrametric dD, so we may write:

f =
∞∑
n=0

M(n)[f ] f (x) =
∞∑
n=0

1

n!
·

d(n)f (u)

du
(0) · x · . . . · x (1)

This ultrametric forces the Taylor series to converge to f the same way that the ultrametric for
power series makes the infinite sum converge.



Taylor CDC – Examples

Example

POLYk is Taylor.

Example

SMOOTH is not Taylor since two smooth functions can have the same Taylor expansion but not
be equal. On the other hand, the subcategory of real entire functions is a Taylor CDC.



Taylor CDC via quotienting

While not every CDC is Taylor, we can always build one!

This follows from the fact that every ultrapseudometric space can be made into an ultrametric
space by quotienting.

So let (M, d) be an ultrapseudometric space. Then we have an equivalence relation ∼ given by
x ∼ y if and only if d(x , y) = 0. Let M∼ be the set of equivalence classes of ∼, so
[x] = {y ∈ M|x ∼ y}. Then (M∼, d∼) is an ultrametric space where d∼ ([x], [y ]) = d(x , y).

Lemma

For a CDC X, let X∼ be the CDC whose objects are the same X and whose homsets are
X∼(A,B) = X(A,B)∼. Then X∼ is a Taylor CDC.

The CDC structure on X∼ is defined as for X on the representatives, and is well-defined since ∼
is fully compatible with the CDC structure.
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What about other ways?

What if we were in a CDC where there was another reason for maps to equal their Taylor series:

Convergence via another metric

Algebraic Infinite Sums



Another metric?

Suppose we are in a CDC which is metric space enriched, so homsets have another possible
metric b : X(A,B)× X(A,B)→ R≥0.

Lemma

If for every map f , the sequence
(
T (n)[f ]

)∞
n=0

converges to f with respect to the metric b, then
the CDC is Taylor.

REMARK: The converse is not true!



Infinite Sum Case

If we are in a setting with algebraic infinite sums, for every map f : A→ B, we can formally
define the map T [f ] : A→ B as the infinite sum of its Taylor monomials:

T [f ] =
∞∑
n=0

M(n)[f ]

Proposition

A CDC with countably infinite sums is Taylor if and only if for every map, f = T [f ].



Modelling Taylor Expansion

Definition

A CCDC with countably infinite sums is said to model Taylor expansiona if for every map
f : C × A→ B and a map g : C → A,

f (c, g(c)) =
∞∑
n=0

1

n!
·

d(n)f (c, y)

dy
(0) · g(c) · . . . · g(c)

Manzonetto, G., What is a categorical model of the differential and the resource λ-calculi?

aThis is the unCurry version of Manzonetto’s formula. For convenience, Manzonetto also works in a setting with
addition is idempotent, so the coefficients 1

n!
would dissapear.

Proposition

A CCDC with countably infinite sums is Taylor if and only if it models Taylor expansion.



CoKleisli Category of a Differential Category

Differential categories provide the categorical semantics of DiLL. In particular a differential
category has a comonad ! and the coKleisli category of ! is a CDC.

In a differential category, we can define canonical natural transformations:

M
(n)
A : !A→ !A T

(n)
A : !A→ !A

and we can show that for any coKleisli map f : !A→ B, we have that:

M(n)[f ] = f ◦M
(n)
A T (n)[f ] = f ◦ T

(n)
A

The natural transformations T(n) were defined and studied by Ehrhard:

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

The natural transformations M(n) were further studied in:

Kerjean, M. and Lemay, J.-S. P. Taylor Expansion as a Monad in Models of DiLL.

The notion of Taylor series in CDC from today’s story recaptures what was done in the above for
coKleisli maps of differential categories. These ideas played a key role in our LICS2023 paper for
defining codigging.



Thanks for listening!
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HOPE YOU ENJOYED MY TALK!

THANK YOU FOR LISTENING!

MERCI!

js.lemay@mq.edu.au
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